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Large Language Models (LLMs)
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Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
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LLM reasoning & planning is still a hard

problem
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[H. S. Zheng et al, NATURAL PLAN: Benchmarking LLMs on Natural Language Planning, arXiv'24]
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LLM reasoning & planning is still a hard

problem

#Adult Lion at ). Zoo

Total newborn
Animal Children
at Jefferson Zoo
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Synthetic Dataset with infinite reasoning complexity

[Y. Zhou et al, GSM-e=: How Do Your LLMs Behave over Infinitely increasing context length and reasoning complexity ?, arXiv’25]
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LLM reasoning & planning is still a hard
problem
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What are the
Solutions?



Option One:
/ Reasoning by Search

What are the <
Solutions?

\ Option Two:
Reasoning by Representation



Option One: Reasoning by Search

If we cannot get the correct solution right now from LLMs,
use more compute to simulate the search behaviors.

+ Chain of Thoughts
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Searchformer: A* Search as a Token Prediction

Start
/ Wall

1\ 2
Goal

@©-» Planstep
‘ Frontier state

Closed state

facebook Artificial Intelligence [L. Lehnert, et al, Beyond A*: Better Planning with Transformers via Search Dynamics Bootstrapping, COLM’24]



Searchformer: A* Search as a Token Prediction

/ Start Wall <prompt> <trace><plan>
bos bos
2 O start 0 2 create 0 2 c0@ c3
goal 1 0 )
1 * wall 1 2 create 0 1 c1 c2
wall 2 0
0 @ €eos create 0 0 c2 c1
create 1 1 c2 c1
0 1 2
create 1 @ c3 c0
Goal
@©-» Planstep plan 0 2
O Frontier state plan 0 1
plan Q0 0
Closed state olan 10

eo0s
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Training Method

Train a Transformer to predict the next token via teacher forcing.

Model Solution-Only Model Search-Augmented Model

== 4 Decoder

1 I

<prompt> <plan> <prompt> <trace><plan>

(100-400 tokens) (100-6500 tokens)

facebook Artificial Intelligence



Search-Augmented vs. Solution-Only Models

- —100-
D =
> ~ 80-
O =
P % 60 —
=) 8 40—
§ =
S O 20—
S
0= 1
50k 100k 500k 1M

Number of Training Sequences



Search-Augmented vs. Solution-Only Models
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Search-Augmented vs. Solution-Only Models
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Search-Augmented vs. Solution-Only Models
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Number of Training Sequences >Search-augmented is much
more parameter & data efficient!
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Search-Augmented vs. Solution-Only Models
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How to go beyond?

Imitation

Learning

Using solver’s trace to train the
Transformer with teacher forcing

e

Search-augmented Models

facebook Artificial Intelligence

Fine-tuning

Fine-tune the model to achieve shorter

trace but still leads to optimal plan!
(Reinforcement Learning task)

"

Searchformer



Beyond A*:
Improving search
dynamics via
bootstrapping
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Improving search dynamics via bootstrapping

Params. Model ILR-on-solved ILR-on-optimal
Solution only - -
Search augmented 0.908 +0.020 0.919 +0.019
45M  Searchformer, step 1  1.054 +0.025 1.062 +0.015 | Thinking length
Searchformer, step 2 1.158 +0.025 1.181 +0.012 | becomes shorter
Searchformer, step 3 1.292 +0.044 1.343 +0.067

\4

Solution only - —

175M Search augmented 0.925 +0.010 0.933 +0.011
757TM  Solution only — _

solver len
ILR =

searchformer len
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Improving search dynamics via bootstrapping

Params. Model Solved (%) Optimal (%)

Solution only 90.3 +1.0 86.8 0.3

Search augmented 92.5 1.0 90.8 +1.6

45M  Searchformer, step 1  95.5 +1.0 93.5 +£1.0
Searchformer, step 2  96.0 +0.5 93.4 +0.6
Searchformer, step 3  95.5 +0.8 03.7 +1.6

175M Solution only 05.7 +0.2 90.0 +0.8
Search augmented 95.2 4+0.9 93.2 £+1.0

757M  Solution only 96.5 +0.1 02.2 +1.2

facebook Artificial Intelligence

Fine-tuning improves
performance initially.



Improving search dynamics via bootstrapping

Params. Model Solved (%) Optimal (%)

Solution only 90.3 +1.0 86.8 +0.3

Search augmented 92.5 1.0 90.8 +1.6

45M  Searchformer, step 1  95.5 +1.0 93.5 +£1.0
Searchformer, step 2  96.0 +0.5 93.4 +0.6
Searchformer, step 3  95.5 +0.8 03.7 +1.6

175M Solution only 05.7 +0.2 90.0 +0.8
Search augmented 95.2 4+0.9 93.2 £+1.0

757M  Solution only 96.5 +0.1 02.2 +1.2
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Searchformer
outperforms largest
solution-only model.



DualFormer (Searchformer v2)

bos /Structured Trace Dropping Strategieh
(create 0 2 cO0 c3 1 L /7 a 11 the o1 .
o close 0 2 c0 c3 D1 (drop a close clause) LvL =D rop a the close clauses
8 create 0 1 cl c2
= close 0 1 cl c2 LvL 2 = D1 + D2 // drop all the close clauses
5 create 0 0 c2 ¢l « D2 (drop cost tokens in + all the cost tokens
e
© create 1 1 c2 cl a clause)
()]
o close 0 0 c2 cl Lvl 3 = D1 + D2 + sampled D3 // Lvl 2 + drop some
< kcreate 1 0c3 c0le—p3 (drop a create clause) st L
close 1 0 c3 c0

(1 4 = drop the entire trace /

facebook Artificial Intelligence [D. Su et al, Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces, ICLR’25]



DualFormer (Searchformer v2)

bos /Structured Trace Dropping Strategieh
(create 0 2 cO0 c3 1 1 P T n
o close 0 2 c0 c3 D1 (drop a close clause) LvL =D rop a the close clauses
O create 0 1 cl c2 Slow thinking data
= close 0 1 cl c2 LvL 2 = D1 + D2 // drop all the close clauses
5 create 0 0 c2 ¢l « D2 (drop cost tokens in + all the cost tokens
.
© create 1 1 c2 cl a clause)
QO
o close 0 0 c2 cl Lvl 3 = D1 + D2 + sampled D3 // Lvl 2 + drop some
< kcreate 1 0c3 c0le—p3 (drop a create clause) create clauses
close 1 0 c3 c0

(1 4 = drop the entire trace /
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DualFormer (Searchformer v2)

bos /Structured Trace Dropping Strategieh
(create 0 2 cO c3 1 1 /7 a 11 the o1 .
o close 0 2 c0 c3 D1 (drop a close clause) LvL =D rop a the close clauses
S create 0 1 cl c2
= close 0 1 cl c2 LvL 2 = D1 + D2 // drop all the close clauses
5 create 0 0 c2 ¢l « D2 (drop cost tokens in + all the cost tokens
.
@© create 1 1 c2 cl a clause)
()]
n close 0 0 c2 cl Lvl 3 = D1 + D2 + sampled D3 // Lvl 2 + drop some
< kcreate 1 0c3 c0le—p3 (drop a create clause) ste P U
close 1 0

c3 c0 \I Lvl 4 = drop the entire trace Fast thinking daw

facebook Artificial Intelligence [D. Su et al, Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces, ICLR’25]



DualFormer (Searchformer v2)

Method Avg Trace Length 1-Optimal-64 / 3-Optimal-64 1-Solved-64 / 3-Solved-64 SWC  Diversity
Dualformer (auto) 222 99.7 / 994 99.9 / 99.8 0.999 12.52
Maze 15x 15 Complete-Trace 495 94.6/90.1 96.7/93.0 0.964 7.60
Solution-Only - 72.0/68.9 82.7/80.1 0.610 1.52
Dualformer (auto) 351 99.5 / 98.6 99.9 / 99.3 0.997 20.28
Maze 20 x 20 Complete-Trace 851 98.3/95.5 08.8/93.0 0.987 14.53
Solution-Only - 56.3/52.0 71.9/67.5 0.690 1.52
Dual former (auto) 427 98.6 / 96.9 99.8 / 99.0 0.998 24 81
Maze 25 x 25 Complete-Trace 1208 95.2/85.7 97.0/90.4 0.968 18.85
Solution-Only - 39.7/34.7 60.3/55.4 0.570 1.9
Dual former (auto) 617 96.6 / 92.1 984 / 97.7 0.989 24.42
Maze 30 x 30 Complete-Trace 1538 03.3/82.4 95.9/88.1 0.964 7.60
Solution-Only - 30.0/26.0 54.1/47.8 0.500 1.86
Dualformer (auto) 494 94.0 / 90.0 97.4 / 94.7 0.979 4.97
Sokoban Complete-Trace 3600 929/844 94.7789.0 0.944 2.91
Solution-Only - 86.8/83.4 92.8/90.0 0.919 1.24

Dualformer automatically switches between fast mode (System 1) and slow mode (System 2)
and works better for dedicated models on either modes.
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Fast mode performance

Method 1-Optimal-64 / 3-Optimal-64 1-Solved-64 / 3-Solved-64 SWC  Diversity
Maze 15x15 Dualformer (fast) 91.8 / 87.6 97.1 / 94.8 0.960 9.05
Solution-Only 72.0/68.9 82.7/80.1 0.610 1.52
Maze 20x20 Dualformer (fast) 90.9 / 84.0 97.0 / 94.0 0.960 17.27
Solution-Only 56.3/52.0 71.9/67.5 0.690 1.52
Dualformer (fast) 839 / 729 95.5 / 90.6 0.940 21.23
Maze 25x25 " Solution-Only 39.7/34.7 60.3/55.4 0570 1.9 Dualformer [%
Maze 30x30 Dualformer (fast) 80.0 / 66.0 91.8 / 85.7 0.906 18.23
Solution-Only 30.0/26.0 54.1/47.8 0.500 1.86
Sokoban Dualformer (fast) 973 / 944 94.8 / 90.0 0.970 4.92
Solution-Only 86.8/83.4 92.8/90.0 0.919 1.24
Slow mode performance
Method Avg Trace Length 1-Optimal-64 / 3-Optimal-64 1-Solved-64 /3-Solved-64 SWC  Diversity
Maze 15x 1§ PDualformer (slow) 278 99.6 / 99.2 99.9 / 99.9 0.999 12.54
Complete-Trace 495 94.6/90.1 96.7/93.0 0.964 7.60
Maze 20 x 20 Dualformer (slow) 439 989 / 97.8 99.9 / 99.7 0.998 18.86
Complete-Trace 851 98.3/95.5 98.8/93.00 0.987 14.53
Maze 25 x 25 Dualformer (slow) 589 999 / 97.2 99.7 / 99.3 0.997 25.05
Complete-Trace 1208 95.2/85.7 97.0/90.4 0.968 18.85
Maze 30 x 30 Dualformer (slow) 854 97.6 / 93.2 99.5 / 98.2 0.993 25.77
Complete-Trace 1538 933/824 95.9/88.1 0.964 7.60
Dualformer (slow) 1482 94.5 / 87.6 97.4 / 94.1 0.970 4.66
Sokoban Complete-Trace 3600 929/84.4 94.7/89.0 0.944 291

facebook Artificial Intelligence

Slow thinking
r <create>

\ <plan>
Fast thinking



Math Problems

Llama-3-Aug (baseline) Here is a detailed
step-by-step explanation of the reasoning:

» Step 1: Understand the problem and the
given information. We are asked to find
the sum of the elements in the tenth row
of Pascal’s Triangle, given that the third
row has four elements and their sum is 8.

 Step 2: Recall the formula for the sum of
the elements in a row of Pascal’s Triangle.
The sum of the elements in the nth row is
given by the formula: (3) + (7) + (5) +

()=

» Step 3: Identify the relationship between
the sum of the elements in a row and the
sum of the elements in the previous row.
Since the sum of the elements in the nth
row is 2", the sum of the elements in the
(n-1)th row is 271,

» Step 4: Recognize that the sum of the ele-
ments in the third row is 8, which is equal
to 23. This is because the sum of the ele-
ments in the third row is (g) + (:1;) + (g) =
1+ 3+ 3 = 7, and the extra 1 comes from
the top row, which is counted as the Oth

row.

facebook Artificial Intelligence

Question 1

In Pascal’s Triangle, the third row has four elements, and the sum of these elements is 8. What is the
sum of the elements in the tenth row? (Note that we are counting the top row with a single 1 as the

0th row).

Step 5: Use the relationship between the
sums of the elements in consecutive rows
to find the sum of the elements in the tenth
row. Since the sum of the elements in
the third row is 23, and the sum of the
elements in the (n-1)th row is 2"~ 1, we
can set up the equation: 23 = 210-1,

Step 6: Solve the equation for n. Tak-
ing the logarithm of both sides, we get:
3log2 = (10 — 1) log 2. Simplifying, we
get: 3log 2 = 9log 2, which implies that
log 2 = 0. This is a contradiction, since
log 2 is a positive number.

Step 7: Conclude that the equation 23 =
2191 has no solution, and therefore, the
sum of the elements in the tenth row is not
equal to 2101,

Step 8: Recognize that the sum of the ele-
ments in the tenth row is still given by the
formula: () +(7) + () +++++ (10) =
210

The answer is: 1024.

Baseline

Llama-3-Aug (p=0.4, ours) Here is a de-
tailed step-by-step explanation of the reason-
ing:

* Step 1: Understand the problem and the

given information. We are asked to find
the sum of the elements in the tenth row of
Pascal’s Triangle, given that the third row
has four elements and their sum is 8.

Step 2: Recall the properties of Pascal’s
Triangle. The elements in each row of
Pascal’s Triangle are the binomial coeffi-
cients, which represent the number of ways
to choose k items from a set of n items. The
sum of the elements in each row is equal to
2™ where n is the row number.

Step 3: Identify the relationship between
the sum of the elements in the third row
and the sum of the elements in the tenth
row. Since the sum of the elements in each
row is equal to 2", we can write the sum
of the elements in the third row as 2% = 8.
Similarly, the sum of the elements in the
tenth row is 210,

Step 4: Calculate the sum of the elements
in the tenth row. 210 = 1024.

The answer is: 1024.

Dualformer



Token Assorted (Searchformer v3)
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[boLatent] = [eoLatent] Special delimiters that encode the start / end of the latent tokens

Z Discrete latent tokens

CoTN The n-th CoT textual tokens

[D. Su et al, Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning, arXiv’25]



Token Assorted (Searchformer v3)

Prompt CoT Solution
X
fenc
How the latent codes qg ][] U D U X Codebook
are constructed? N JuUu q U U D I
Using VQVAE  du= ll D D - €1 €2
fdec \ /

Reconstructed X
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Better Performance

Model In-Domain Out-of-Domain Average
Math GSMSK Gaokao-Math-2023 DM-Math College-Math  Olympia-Math TheoremQA  All Datasets
Sol-Only 4.7 6.8 0.0 104 53 1.3 3.9 4.6
CoT 10.5 42.7 10.0 34 17.1 1.5 9.8 14.1
iCoT 8.2 10.5 3.3 11.3 7.6 2.1 10.7 7.7
Llama-3.2-1B e Token 5.1 5.3 2.0 14 0.5 0.0 0.6 2.1
Latent (ours) 14.7 (1 +4.2) 48.7 (1 +6) 10.0 146 (1 +3.3) 205(1+34) 1.8 11.3 (1 +0.6) 17.8 (T +3.7)
Sol-Only 6.1 8.1 3.3 14.0 7.0 1.8 6.8 6.7
CoT 21.9 69.7 16.7 27.3 30.9 2.2 11.6 25.2
iCoT 12.6 17.3 33 16.0 14.2 4.9 13.9 11.7
Llama-3.2-38 b, e Token  25.2 53.7 4.1 7.4 11.8 0.7 1.0 14.8
Latent (ours) 26.1 (T +4.2) 73.8(1+4.1) 23.3 (1 +6.6) 27.1 329 (1 +2) 4.2 13.5 28.1 (1 +2.9)
Sol-Only 11.5 11.8 3.3 17.4 13.0 3.8 6.7 0.6
CoT 32.9 80.1 16.7 39.3 41.9 7.3 15.8 334
Llama-3.1.8B iCoT 17.8 29.6 16.7 20.3 21.3 7.6 14.8 18.3
) Pause Token  39.6 79.5 6.1 254 25.1 1.3 4.0 25.9
Latent (ours) 37.2 84.1 (1 +4.0) 30.0 (T +13.3) 41.3 (T +2) 44.0 (1 +2.1) 10.2 (1 +2.6) 18.4 (1 +2.6) 37.9 (T +4.5)




Shorter CoT

Model In-Domain (# of tokens) Out-of-Domain (# of tokens) Average
Math GSMBK Gaokao-Math-2023 DM-Math College-Math Olympia-Math TheoremQA All Datasets
Sol-Only 4.7 6.8 0.0 10.4 53 1.3 3.9 4.6
CoT 646.1 190.3 842.3 578.7 505.6 1087.0 736.5 655.2
Llama-3.2-1B iCoT 328.4 39.8 354.0 170.8 278.7 839.4 575.4 369.5
il Pause Token 638.8 176.4 416.1 579.9 193.8 471.9 988.1 495
Latent (ours) 501.6 (| -22%) 181.3 (| -5%) 760.5 (| -11%) 380.1 (] -34%) 3873(]-23%) 840.0(] -22%) 575.5(]-22%) 518 (| -21%)
Sol-Only 6.1 8.1 33 14.0 7.0 1.8 6.8 6.7
CoT 649.9 212.1 823.3 392.8 495.9 1166.7 759.6 642.9
Llama-3.2-3B iCoT 344 .4 60.7 564.0 154.3 224.9 697.6 363.6 3442
) Pause Token 307.9 162.3 108.9 251.5 500.96 959.5 212.8 354.7
Latent (ours) 516.7 (| -20%) 198.8 (| -6%) 618.5 (| -25%) 340.0 () -13%) 418.0(] -16%) 832.8(] -29%) 670.2(,-12%) 513.6 (] -20%)
Sol-Only 11.5 11.8 33 17.4 13.0 3.8 6.7 9.6
CoT 624.3 209.5 555.9 321.8 474.3 1103.3 760.1 578.5
Llama-3.1-8B iCoT 403.5 67.3 444.8 137.0 2571 797.1 430.9 362.5
e Pause Token 469.4 119.0 752.6 4134 357.3 648.2 600.1 480

Latent (ours)

571.9 (1 -9 %)

193.9 (| -8 %)

545.8 (] -2 %)

292.1 (4 -10%)

440.3 (| -8%)

913.7 ( -17 %)

637.2 (J -16 %)

513.7 (§ -10%)




What’s wrong with Option One?

If search can solve the problem, why not
using traditional symbolic solvers?
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Option Two: Reasoning by Representation

Complicated search if we don’t Simple and straightforward to the
understand the problem destination if we understand the problem

Instead of reasoning exhaustively, we reason smartly.

facebook Artificial Intelligence



Option Two: Reasoning by Representation

-

Representation <

facebook Artificial Intelligence

-

(Traditional) Symbolic
representation

Neural
Representation

v.E=P
£

V-H=0

cH
VXxE=—u—
=

VxH=J+£§
ot

conv3

(Gauss'Law)
(Gauss'Law for Magnetism)

(Faraday's Law)

(Ampere's Law)




Option Two: Reasoning by Representation

(Traditional) Symbolic
/ representation

Representation <

\ Neural

Representation Emerging Symbolic
Structure

facebook Artificial Intelligence



CoConut (Chain of Continuous Thought)

Chain of thoughts Chain of continuous thoughts (Coconut)

Last hidden states are used
as input embeddings [Answer]

output token X, | X1 X Xiyj  [Answer]
(sampling)

last hidden state
Large Language Model Large Language Model

input token [Question] | . X Xiv1 | Xig2 X

i+j [Question] <bot> <eot>

RO L

[S. Hao et al, Training Large Language Models to Reason in a Continuous Latent Space, arXiv’24]

input embedding

facebook Artificial Intelligence



How to train Coconut?

Lan.gljlage el [Question] [Step 1] [Step 2] [Step 3] - [Step N] [Answer] [Thought] : continuous thought
(training data)

[ ---]: sequence of tokens

<---> : special token
Stage O

-+ : calculating loss
Stage 1

Stage 2

[Question] <bot> |Rialelif=a1d ) [REel=1d] <eot> [Step 3] --- [Step N] [Answer

Stage N (o[NS5l sl B sleied [ Thoughtl} [ ThoughtlER [ Thought] =l eR a4

facebook Artificial Intelligence



Interpreting the embeddings

@ Root node Question:
‘// \ @ Tarset node Every jells is a worpus. Sam is a jumpus. Every gwompus is a
\ @ Distractive node rompus. -+ Every lumps is a yumpus. Question: Is Alex a
gorpus or bompus?

Neighbor

-:/ \ / / to the root

Second-order

/ ~ ! // neighbor

facebook Artificial Intelligence



Ground Truth Solutions

@ Root node Question:
‘// \ @ Tarset node Every jells is a worpus. Sam is a jumpus. Every gwompus is a
\ @ Distractivenode  TOMPUS- "7 Every lumps is a yumpus. Question: Is Alex a
gorpus or bompus?

Neighbor

-/ \ /" / to the root

+ Second-order

/ ~ // neighbor

Ground Truth Solution

Alex is a grimpus.

Every grimpus is a rorpus.
Every rorpus is a bompus.
### Alex is a bompus

facebook Artificial Intelligence



Chain of thoughts lead to hallucinations

Hallucination
edge 7/
g e|

facebook Artificial Intelligence

. Root node

. Target node

. Distractive node

Neighbor

to the root
Second-order
neighbor

Question:

Every jells is a worpus. Sam is a jumpus. Every gwompus is a
rompus. -+ Every lumps is a yumpus. Question: Is Alex a

gorpus or bompus?

Ground Truth Solution
Alex is a grimpus.

Every grimpus is a rorpus.
Every rorpus is a bompus.

### Alex is a bompus

CoT

Alex is a lempus. o

Every lempus is a scrompus. Q
Every scrompus is a yumpus. )
Every yumpus is a rempus. e
Every rempus is a gorpus. e
### Alex is a gorpus

(Hallucination)



Continuous Thoughts

@ Root node Question:
// \ @ Tarset node Every jells is a worpus. Sam is a jumpus. Every gwompus is a
\ @ Distractivenode  TOMPUS Every lumps is a yumpus. Question: Is Alex a
gorpus or bompus?

Neighbor

-/ \ /‘ / to the root

+ Second-order

// neighbor

Ours (k=1)

<bot> [Thought] <eot> 1
Every lempus is a scrompus. @
Every scrompus is a brimpus.€)
### Alex is a brimpus ¢

(Wrong Target)

facebook Artificial Intelligence



Two-step Continuous Thought works!

. Root node

. Target node

. Distractive node

Neighbor

to the root
Second-order
neighbor

facebook Artificial Intelligence

Question:

Every jells is a worpus. Sam is a jumpus. Every gwompus is a
rompus. -+ Every lumps is a yumpus. Question: Is Alex a
gorpus or bompus?

Ours (k=2)

<bot> [thought] [thought] <eot>

Every rorpus is a bompus. 6
### Alex is a bompus

(Correct Path)



Two-step Continuous Thought works!

. Root node
. Target node
gorgu / / \ : :
. @ Distractive node

Neighb
Wy Y% tothe root ours (<=1) [l @ ©

. ! // iiic:;g;rorder <bot> [Thought] <eot> Ours (k=2) 6
/ ™ Every lempus is a scrompus. <ot [thought] [thought] <eot>
e o Every SCrompus is a brimpus.  Eyery rorpus is a bompus.
@ J ### Alex is a brimpus ¢ ### Alex is a bompus <7
X (Wrong Target) (Correct Path)

Why the same continuous thoughts
lead to different path?!

facebook Artificial Intelligence



0.16
(h=1)

0.32
(h=2)

facebook Artificial Intelligence

Let’s probe!

Coconut (k=1)

<bot> [Thought] <eot>
Every lempus ---

p("lempus”)

= pCle)p(mp)p('us")
= 0.33

“lempus” is not on the right path but for step=1, it is the moOst promising



What’s
i nsS | d e ? Promising node = dead-end

Interestingly, it encodes all possible paths!

H-B

Coconut (k=2)

3
0) <bot> [Thought] [Thought] <eot>
Every rorpus ...

(h=0) p(‘rorpus”)

= p(ro)p(P)p('us’)
87 = 0.87

facebook Artificial Intelligence



Dataset | Training ‘ Validation | Test

GSM8k | 385,620 200 1319
ProntoQA 9,000 200 800

Performance in ProsQA Posga | s | aw | oo

# Nodes ‘ # Edges | Len. of Shortest Path ‘ # Shortest Paths

230 | 360 | 3.8 | 1.6
Final answer Reasoning Process
Ours (k=6) G Ours (k=6) | Category
Ours (k=5) GG ours (k=5) ] me= Correct Label
Correct Path
ours (k=4) N Ours (k=4) | mmm [ncorrect Label
o Ours (k=3) NN Ours (k=3) I 1. Longer path
o o Wrong Target
% Ours (k=2) NS % Ours (k=2) [ mmm Hallucination
= Ours (k=1) I = Ours (k=1) —
Ours (k=0) NG Ours (k=0) B
no-CoT Il no-CoT Y
CoT N CoT ]
70 80 90 100 0 100 200 300 400 500
Accuracy (%) Count
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CoConut

GSM8k ProntoQA ProsQA
Method
Acc. () # Tokens Acc. (%) # Tokens Acc. (%) # Tokens
CoT 42.9 +o.2 25.0 98.8 +0.8 92.5 77.5 £1.9 49.4
No-CoT 16.5 +0.5 2.2 93.8 +0.7 3.0 76.7 +1.0 8.2
iCoT 30.0% 2.2 99.8 +0.3 3.0 98.2 +0.3 8.2
Pause Token 16.4 +1.8 2.2 T77.7 £21.0 3.0 75.9 +0.7 8.2
CoconNuT (Ours) [34.1 £1.5 8.2 99.8 +0.2 9.0 97.0 0.3 14.2
- w/o curriculum  14.4 +0.8 8.2 52.4 +0.4 9.0 76.1 0.2 14.2
- w/o thought 21.6 +o0.5 2.3 99.9 +o0.1 3.0 95.5 +1.1 8.2
- pause as thought 24.1 +o.7 2.2 100.0 +o0.1 3.0 96.6 +0.8 8.2

Better performance than No-CoT
Shorter thinking process than CoT



CoConut

GSMS8k ProntoQA ProsQA
Method
Acc. () # Tokens Acc. (%) # Tokens Acc. (%) # Tokens
CoT  42.9 to0.2 25.0 98.8 +0.8 92.5 77.5 1.9 49.4
No-CoT 16.5 0.5 2.2 93.8 +0.7 3.0 76.7 £1.0 8.2
iCoT 30.0% 2.2 99.8 +0.3 3.0 98.2 +0.3 8.2
Pause Token 16.4 +1.8 2.2 T77.7 £21.0 3.0 75.9 +0.7 8.2
CoconuT (Ours) |34.1 +1.5 8.2 99.8 +0.2 9.0 97.0 +0.3 142 |
- w/o curriculum  14.4 +0.8 8.2 52.4 +0.4 9.0 76.1 0.2 14.2
- w/o thought 21.6 +o0.5 2.3 99.9 +o0.1 3.0 95.5 +1.1 8.2
- pause as thought 24.1 +o.7 2.2 AR oo AR ° o
Cons

Better performance than No-CoT
Shorter thinking process than CoT

1. Latent tokens are not interpretable
2. Only tested on GSM8k



Reasoning Smartly: Modular Addition

a+b=cmodd

Does neural network have an implicit table to do retrieval?



Reasoning Smartly: Modular Addition

Logits for Top Fourier Components

6 ! —— Period 520.00
. ! —— Period 47.27
—_— — Period 10.00
a _I_ b = C mOd d . 2 | —— Period 5.00
g / \ ’ \ | \ ’ : —— Period 2.00
LA i\l
2_2. ‘ i ‘ i
g —A
Learned representation = FOuUrier basis @ 6
85 90 95 100 108 115 120 125 130

Number Space

W hy? @ (a) Final logits for top Fourier components

[T. Zhou etal, Pre-trained Large Language Models Use Fourier Features to Compute Addition, NeurlPS'24]

e . S. Kantamneni, Language Models Use Trigonometry to Do Addition, arXiv’' 25
facebook Artificial Intelligence [ 919 I Y ]



Minimal Problem Setup

MSE Loss:

Top layer

Bottom layer

Min ||Output —one-hot(c)||,

WCj

J

O-0O-0O--- g hidden nodes

(Quadratic Activation)

ij

One-hot(a)

One-hot(b) a+b=cmodd

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



What a Gradient Descent Solution look like?

|2, d=7,q=20
0
2
X
4
6
Frequency O 2 4 6 8 10 12 14 16 18

J
e eeeeeeeee®> Hid d €N NOd € iNdEX

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



What a Gradient Descent Solution look like?

Order-6
solutions

Symmetry due to
Hermitian condition

o 2 4 o6 8 10 12 14 16 18
J

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



What a Gradient Descent Solution look like?

zc| at t =2900

Order-6
Order-4

O 2 4 o6 8 10 12 14 16 18
J

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



MSE Loss

More Statistics on Gradient Descent Solutions

Training/test loss/accuracy ford = 23

Distribution of Solution order at 10k epochs

facebook Artificial Intelligence

1.0 6 1
L 0.8 5 1
—-—=- test loss > 4 -
~—- train_loss [ 90 ® E
3 3 .
— test acc L 04 O S
—— train_acc < 5
05 Order-4 and order-6
it S ' 1 solutions really happen!
. = Y — B BN .
150 200 0 2 4 6 8 10

Solution order at all frequencies

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



Effect of Weight Decay

Stronger

d=23, wd=1e-05

40 A

20 A

Counts

d=71, wd=1e-05

50 A

Counts

d=127, wd=1e-05

200 - !
I
I
I

100 A

Counts

Solution order

facebook Artificial Intelligence

d=23, wd=5e-05

20 A

d=23, wd=0.0001

20 -

10 -

d=71, wd=5e-05

100 A

50 A

d=71, wd=0.0001

100 -

50 1

d=127, wd=5e-05

200 -

100 A

0 5
Solution order

10

d=127, wd=0.0001

100 -

5

10

Solution order

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]

d=23, wd=0.0002

> weight decay

d=23, wd=0.0005

! I
20 1 20 -
0 - 0
d=71, wd=0.0002 d=71, wd=0.0005
"B HE
100 - I b
: 1001 !
50 A 1 1 1
| |
| |
0 - 0 - —t
d=127, wd=0.0002 d=127, wd=0.0005
I I
1 1 1 1
200 - L 200 - .
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
O - 1 T 1 T 0' 1 T 1 T
0 5 10 0 5 10

Solution order

Solution order



Why? )



How to Optimize?

The objective is highly nonlinear !!
However, nice algebraic structures exist!

< > < >~ < 2 X X

Z = Ugs0 44 All 2-layer networks with different number of hidden nodes



How to Optimize?

The objective is highly nonlinear !!
However, nice algebraic structures exist!

- N B - B

< > < >~ < 2 X X

V4 Z5 Z3

Z = Ugs0 44 All 2-layer networks with different number of hidden nodes

Ring addition +: Concatenate hidden nodes
Ring multiplication *: Kronecker production along the hidden dimensions

(Z,+, *)is asemi-ring



Composing Global Optimizers from Partial Ones

Partial solution #1

o € R

syn

2% € R.NR, butz

syn
Partial solution #2

zgk) € R,

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv'24]



Composing Global Optimizers from Partial Ones

Compositing
solutions using
ring multiplication *

Partial solution #1 Better solution
z{5), € R. N R, but o, & R, zi + 259 € R.N R, NR,

Partial solution #2

zf,k) € R,

facebook Artificial Intelli gence [Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv' 24]



Composing Global Optimizers from Partial Ones

Compositing Compositing
solutions using solutions using
ring multiplication * ring addition +

Partial solution #1 Better solution Global Optimizer to MSE
loss £(z) !
A eR R but R, 202 €RNR R, ol
» z () 5 (k)
Partial solution #2 F6 — \/— Zsyn *
zsk) € R,

facebook Artificial Intelli gence [Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv' 24]



Exemplar constructed global optimizers

 (d21)/2
Order-6 zg¢ (2*3) Zpe = 6 Z zéﬁ& * 257 * Yy
k=1



Exemplar constructed global optimizers

Order-6 zp (2*3)

Order-4 zp, 6 (2%2)
(mixed with order-6)

(d—1)/2
1
o= g 2. Heetu,
k=1



Exemplar constructed global optimizers

Order-6 zp (2*3)

Order-4 zp, 6 (2%2)
(mixed with order-6)

Perfect memorization
(order-d per frequency)

1 (d—1)/2
_ (k) (k)
zF6_3_ Z zsyn*zu * Yk
A
1 1 (d—1)/2
s (ko) (k)
ZF4/6 = 552 F6 + K7 D Zri
kzl,k#k{]
d—1 | d—1
zazz'u,ﬁl, zbzz'u:g
7=0 7=0



Gradient Descent solutions matches with

construction
Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
d k) . B[k . (k) | (k) . (k)
order-4/6| order-4 | order-6 || order-4 | order-6 ||z, *x 2, |2, * 2., ,5|%v  * Zsyn| others
23 || 0.040.0 {0.0040.00/5.71+5.71{|0.05+0.01|4.804+0.96(|47.07+1.88| 11.31+1.76 [39.80+2.11({1.82+1.82
71 (| 0.040.0 {0.004+0.00[{0.00+0.00{{0.0340.00/5.02+0.25||72.57+0.70| 4.00+1.14 |21.144+2.14|2.2941.07
127|| 0.040.0 {1.5040.92|0.00+0.00[{0.2640.14|0.93+0.18(|82.96+0.39| 2.25+0.64 |14.13+0.87|0.66+0.66

g=512,wd=5-107°



Gradient Descent solutions matches with

construction
Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
order-4/6| order-4 | order-6 || order-4 | order-6 z,(f":)i * zék) z,(/k’:)i * zs(;fr)l’a 5 25 « zS(IBfr)l others
23 Il 0.040.0 |0.0040.00/5.71+5.71{|0.05+0.01|4.804+0.96(|47.07+1.88| 11.31+1.76 [39.80+2.11({1.82+1.82
71 [l 0.040.0 ]0.0040.00[{0.00+0.00{{0.0340.00/5.02+0.25||72.57+0.70| 4.00+1.14 [21.144+2.14|2.2941.07
1270 0.040.0 |1.504+0.92|0.00+0.00[{0.2640.14|0.93+0.18(|82.96+0.39| 2.25+0.64 |14.13+0.87|0.66+0.66

100% of the per-freq
solutions are order-4/6




Gradient Descent solutions matches with

construction
Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
d k) . ()| (k) . (k) | (k) . _(K)
order-4/6| order-4 | order-6 || order-4 | order-6 ||z, *x 2. |2, * 2., ,5|%v  * Zsyn| others
23 || 0.040.0 [0.0040.00/5.71+5.7110.05+0.01|4.804+0.96(|47.07+1.88| 11.31+1.76 [39.80+2.11({1.82+1.82
71 (| 0.040.0 ]0.0040.00[{0.00+0.00[{0.034+0.00/5.02+0.25||72.57+0.70| 4.00+1.14 |21.144+2.14|2.2941.07
127|| 0.040.0 |1.5040.92|0.00+0.00[{0.2640.14|0.93+0.18(|82.96+0.39| 2.25+0.64 |14.13+0.87|0.66+0.66

95% of the solutions are
factorizable into “2*3” or “2*2”




Gradient Descent solutions matches with

construction
Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
d k) . ()| (k) . (k) | (k) . _(K)
order-4/6| order-4 | order-6 || order-4 | order-6 ||z,”; *x 2. |2, * 2., ,5|%v  * Zsyn| others
23 || 0.040.0 {0.0040.00/5.71+5.71(10.05+0.01|4.804+0.96||47.07+1.88| 11.31+1.76 [39.80+2.11({1.82+1.82
71 (| 0.040.0 {0.0040.00[{0.00+0.00({10.0340.00/5.02+0.25|| 72.57+0.70| 4.00+1.14 |21.144+2.14|2.2941.07
127|| 0.040.0 [1.504+0.92|0.00+0.00[]0.264+0.14|0.93+0.18|82.96+0.39| 2.25+0.64 |14.13+0.87|0.66+0.66

Factorization error is very small




Gradient Descent solutions matches with

construction
Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
d k) . ()| (k) . (k) | (k) . _(K)
order-4/6| order-4 | order-6 || order-4 | order-6 |z,2; *x 2. (2,2 * 2., ,5|%v  * Zsyn| others
23 || 0.040.0 {0.0040.00/5.71+5.71{|0.05+0.01|4.804+0.96}|47.07+1.88| 11.31+1.76 [39.80+2.11({1.82+1.82
71 (| 0.040.0 {0.0040.00[{0.00+0.00{{0.034+0.00/5.02+0.25)| 72.57+0.70| 4.00+1.14 |21.144+2.14|2.2941.07
127|| 0.040.0 [{1.5040.92|0.00+0.00[{0.2640.14|0.93+0.18)|82.96+0.39| 2.25+0.64 |14.13+0.87|0.66+0.66

98% of the solutions can be
factorizable into the constructed forms




Shortest Path: Symbolic Emerged from Neural Rep

Task: Learn a 2-layer Transformer for predicting shortest path in the graph

source

target

<bos>1 2 <e> ... <qg> [source] [target] <p> [source] [node 1] [node 2] ... [target]

_ AN /
~ ~

Context Predicted Shortest path

facebook Artificial Intelligence [A. Cohen et al, Spectral Journey: How Transformers Predict the Shortest Path, arXiv’'25]



What representations it

P
|ea Ms: Neural Representation

Representation after the
first Transformer layer
(averaged over random edge order)

I

<bos>1 2 <e> ... <qg> [source] [target] <p> [source] [node 1] [node 2] ... [target]

facebook Artificial Intelligence



What representations it

?
learns: Symbolic Representation
> L=1-D"Y24p1/?

Normalized
Graph Laplacian

N

Edge Embedding

facebook Artificial Intelligence



What representations it
learns?

:> L=1-D"124p~1/2

Normalized
Graph Laplacian

Representation after the N _
first Transformer layer messs——)) o Embedding

(averaged over random edge order)

I

<bos>1 2 <e> ... <qg> [source] [target] <p> [source] [node 1] [node 2] ... [target]

facebook Artificial Intelligence



What representations it
learns?

Heads 1 Heads 2

20 20
15 149
18 18
0 17 17
5 16 16
‘- 15 15
£ 14 14
w 13 1=
5 12 12
. - 11
Graph Edge Embedding 5 1 10
. . . 5 g 9
of various dimensions T 5
5 7 7
=2 ]
L 5 5
# 4 4
3 3
2 2
14 1

1234567 8 910111215314151617181920 123456 78 9101112153141516171819 20

# PCA Coefficients # PCA Coefficients

Computed edge embedding with trained Transformers

facebook Artificial Intelligence Norma IlZEd CO rrelat|on > 0.9

0.8

0.6

0.4

0.2

0.0



Spectral Line Navigator (SLN)

Simple Algorithms of Graph Shortest Path

1. Compute Line Graph G of existing graph G
2. Compute eiggnvectors of normalized >99% optimal for small
Laplacian L(G)

3. I = source

4. While i # target do
distance(j, k; i) = ||v,;j = Wy, gesrare ||2
Find j = argmin;  distance(j, k; i)
Leti = j§

random graph (size < 10)

03-mini-high implementation: https://chatgpt.com/share/67b027f9-fb28-8012-aa64-a1f7479134b7



https://chatgpt.com/share/67b027f9-fb28-8012-aa64-a1f7479134b7

Possible Implications

Do neural networks end up learning more efficient
symbolic representations that we don’t know?

Does gradient descent lead to a solution that
can be reached by advanced algebraic operations?

Will gradient descent become obsolete, eventually?



facebook Artificial Intelligence

Thanks!
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