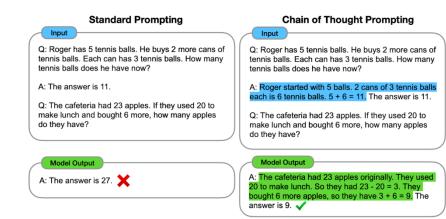

Reason by Search or by Representation? A Path Towards Unifying Neural and Symbolic Decision Making

Yuandong Tian Research Scientist Director

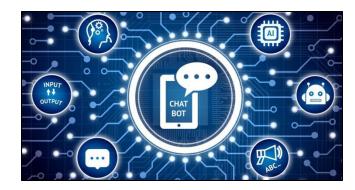
Meta Al

Large Language Models (LLMs)


Conversational AI

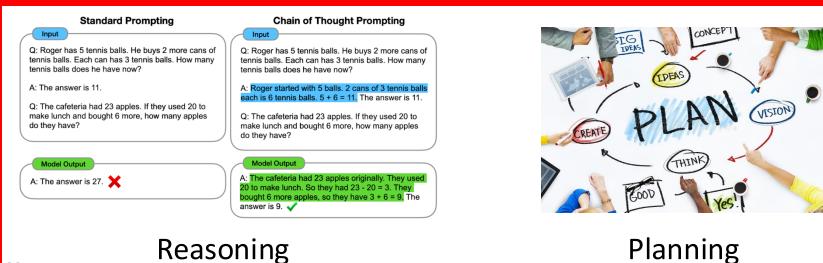
Content Generation

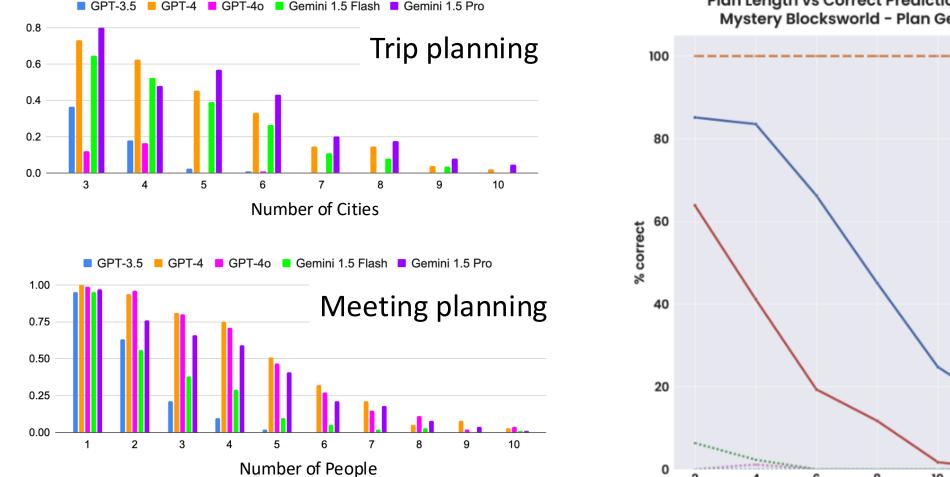
AI Agents



Reasoning

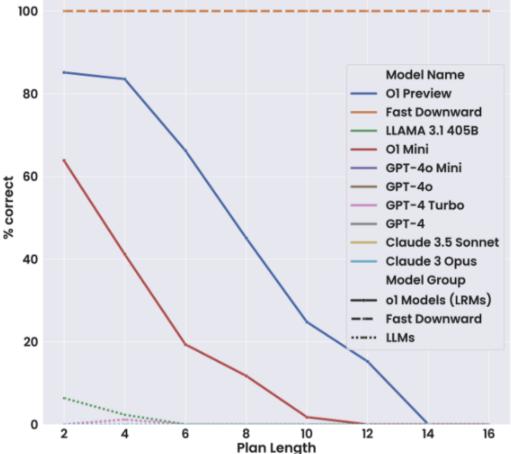
Large Language Models (LLMs)


Conversational AI

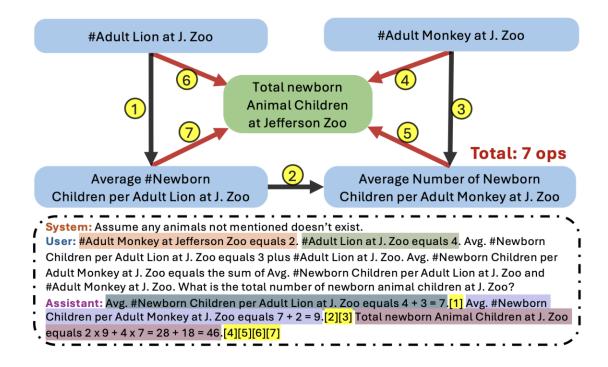


Content Generation

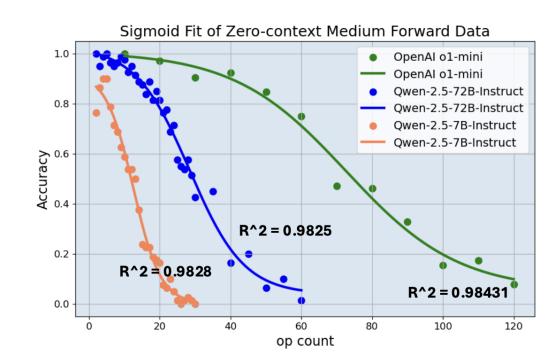
AI Agents



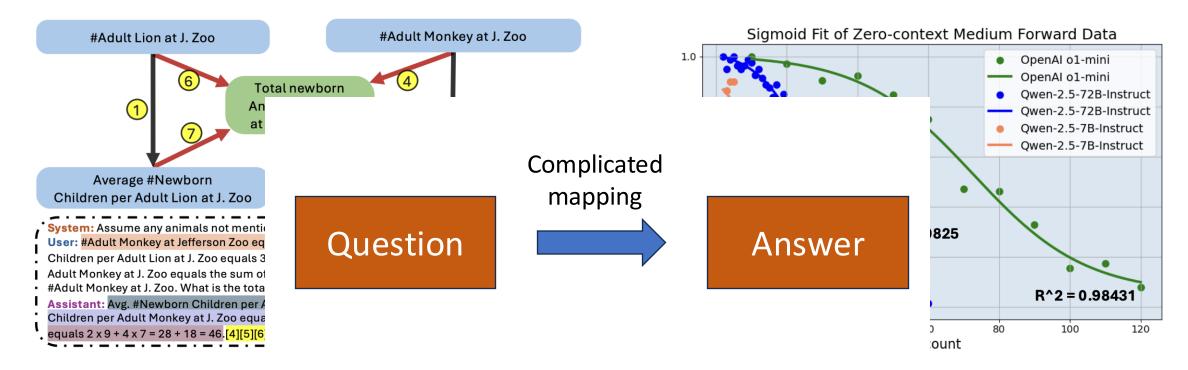
LLM reasoning & planning is still a hard problem



[H. S. Zheng et al, NATURAL PLAN: Benchmarking LLMs on Natural Language Planning, arXiv'24]


Plan Length vs Correct Predictions for all Models on Mystery Blocksworld - Plan Generation Zero Shot

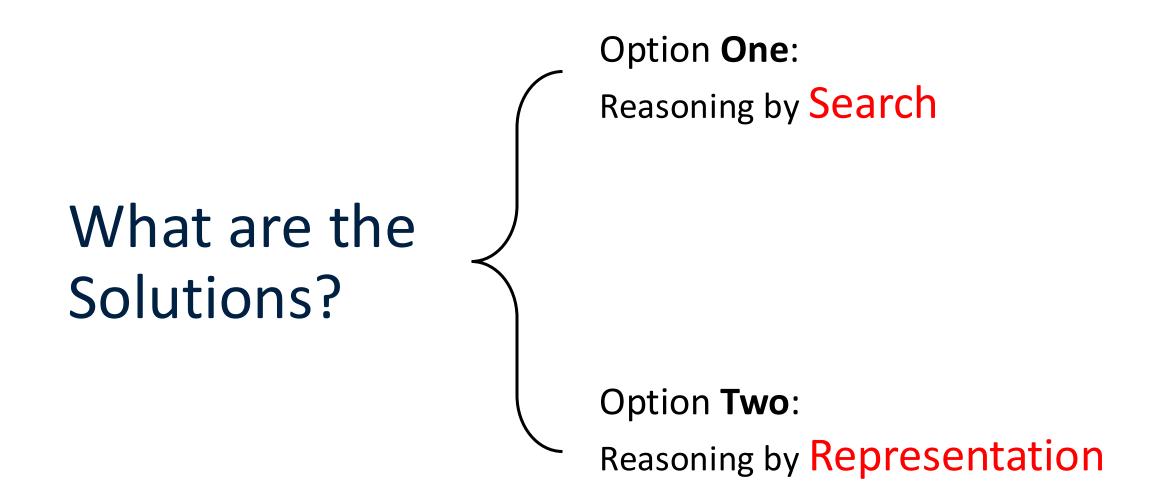
LLM reasoning & planning is still a hard problem


Synthetic Dataset with infinite reasoning complexity

Performance drops with increasing op counts.

facebook Ar [Y. Zhou et al, GSM-∞: How Do Your LLMs Behave over Infinitely increasing context length and reasoning complexity?, arXiv'25]

LLM reasoning & planning is still a hard problem

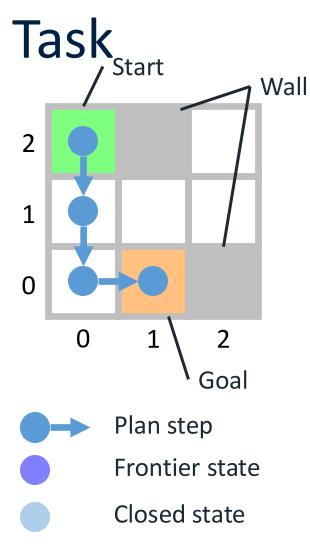


Synthetic Dataset with infinite reasoning complexity

Performance drops with increasing op counts.

facebook Ar [Y. Zhou et al, GSM-∞: How Do Your LLMs Behave over Infinitely increasing context length and reasoning complexity?, arXiv'25]

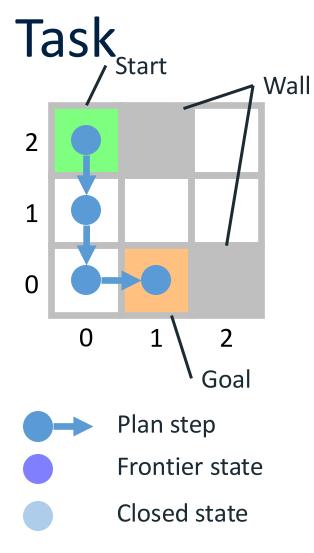
What are the Solutions?



Option **One**: Reasoning by **Search**

If we cannot get the correct solution right now from LLMs, use more compute to simulate the search behaviors.

Searchformer: A* Search as a Token Prediction



facebook Artificial Intelligence

[L. Lehnert, et al, Beyond A*: Better Planning with Transformers via Search Dynamics Bootstrapping, COLM'24]

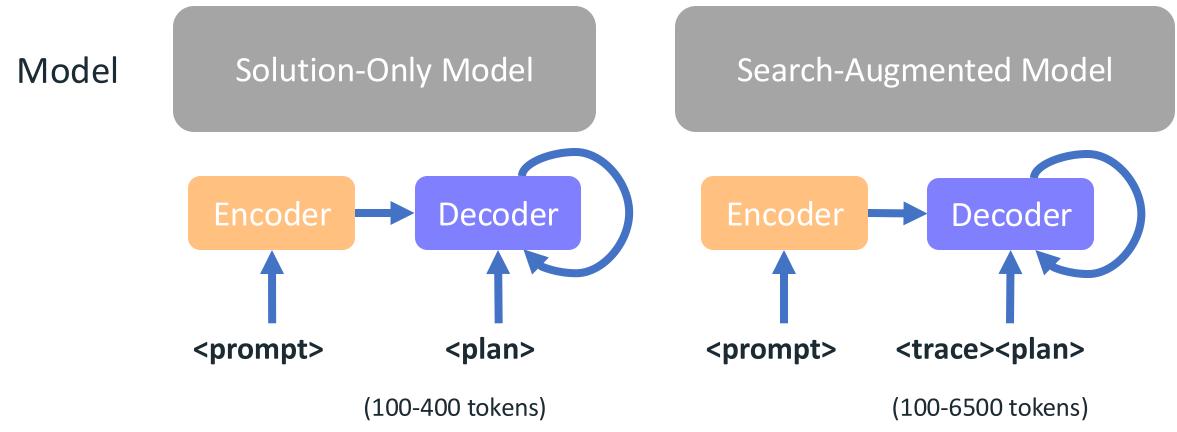
Searchformer: A* Search as a Token Prediction

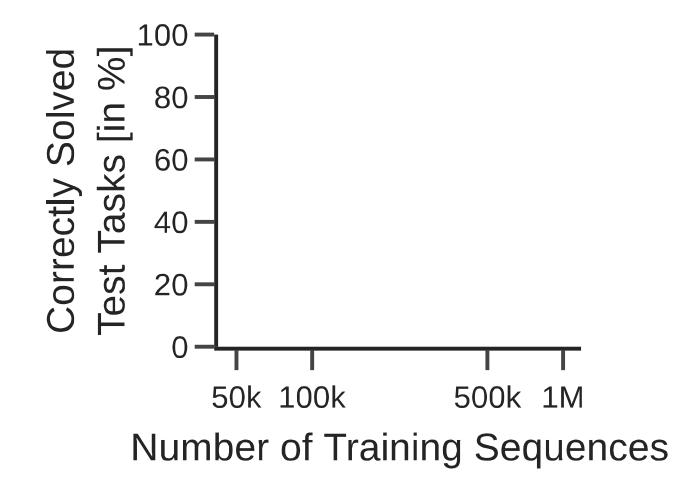
-biou	' P'		
bos			
start	0	2	
goal	1	0	

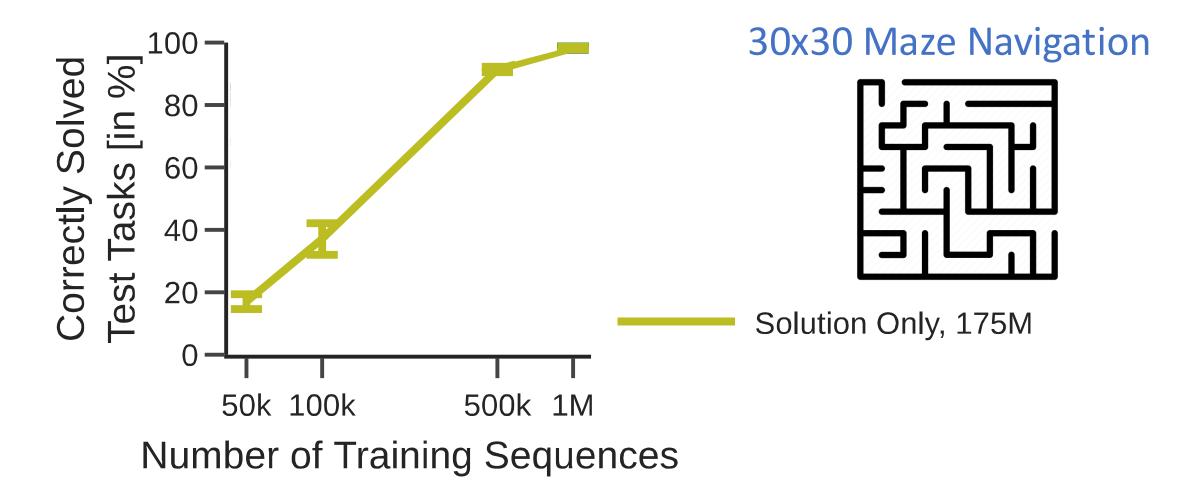
<nromnt>

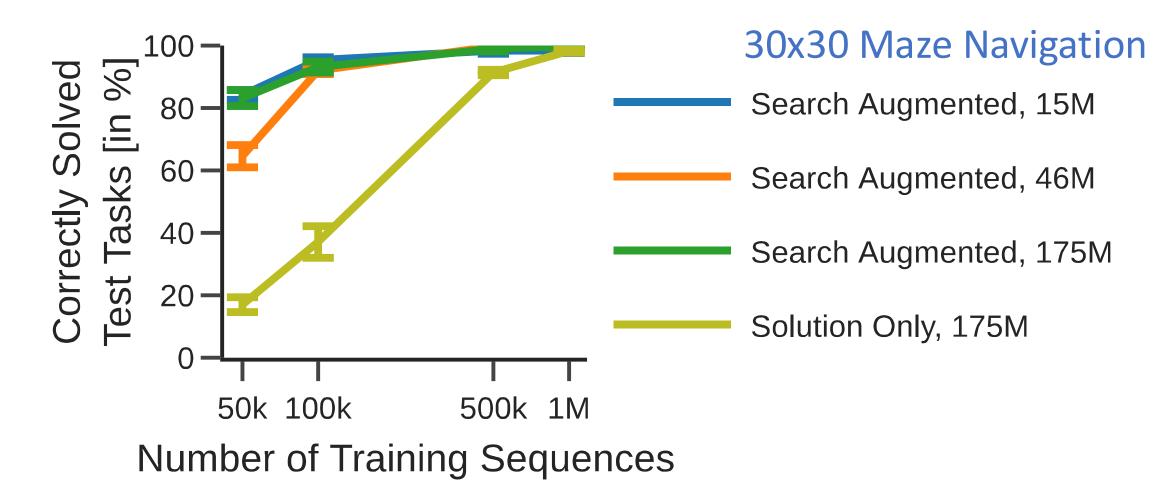
wall 12 wall 20

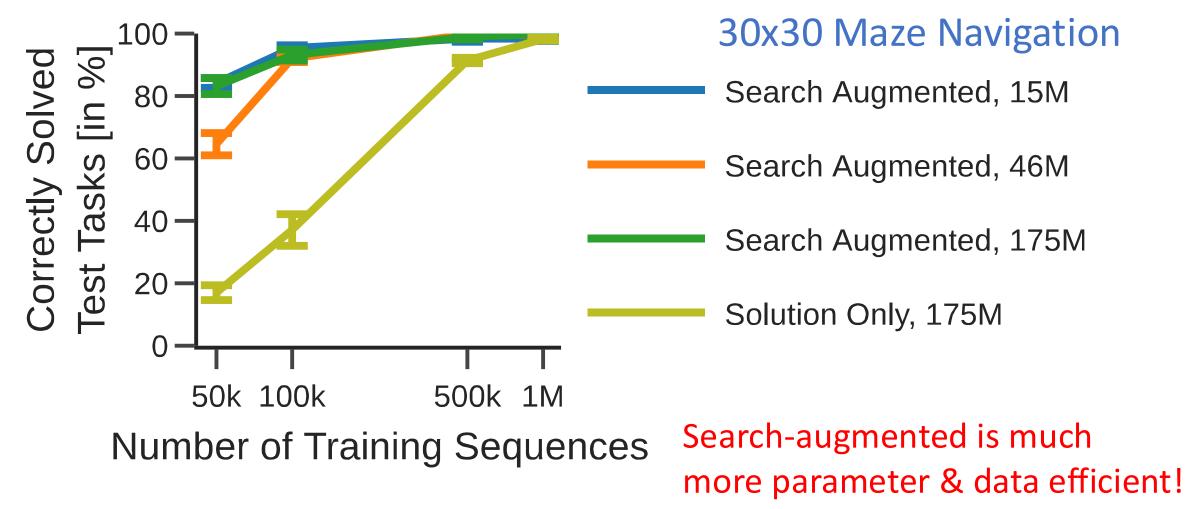
eos

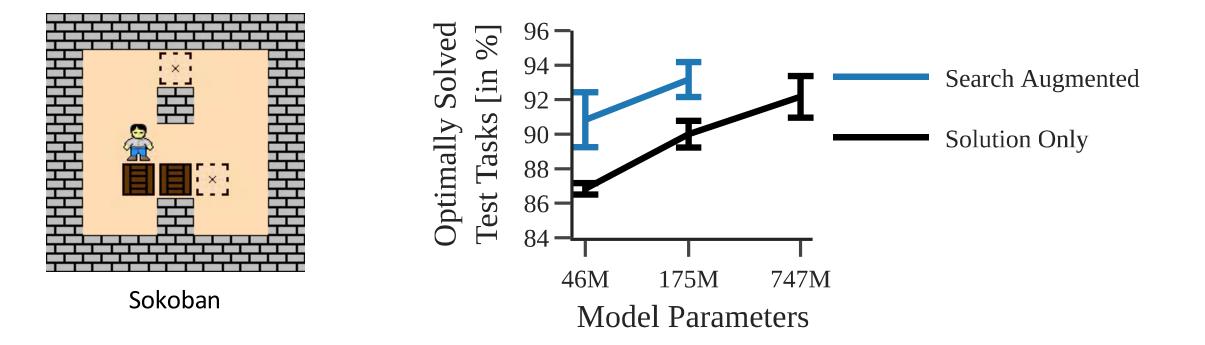

<trace><plan>

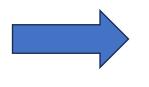

bos


create	0	2	c0	c 3
close	0	2	c0	c 3
create	0	1	c1	c2
close	0	1	c1	c 2
create	0	0	c2	c1
create	1	1	c2	c1
close	0	0	c 2	c1
create	1	0	c 3	c0
close	1	0	c 3	c0
plan	0	2		
plan	0	1		
plan	0	0		
plan	1	0		
eos				


Training Method

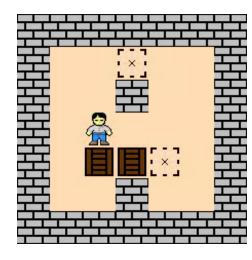

Train a Transformer to predict the next token via teacher forcing.

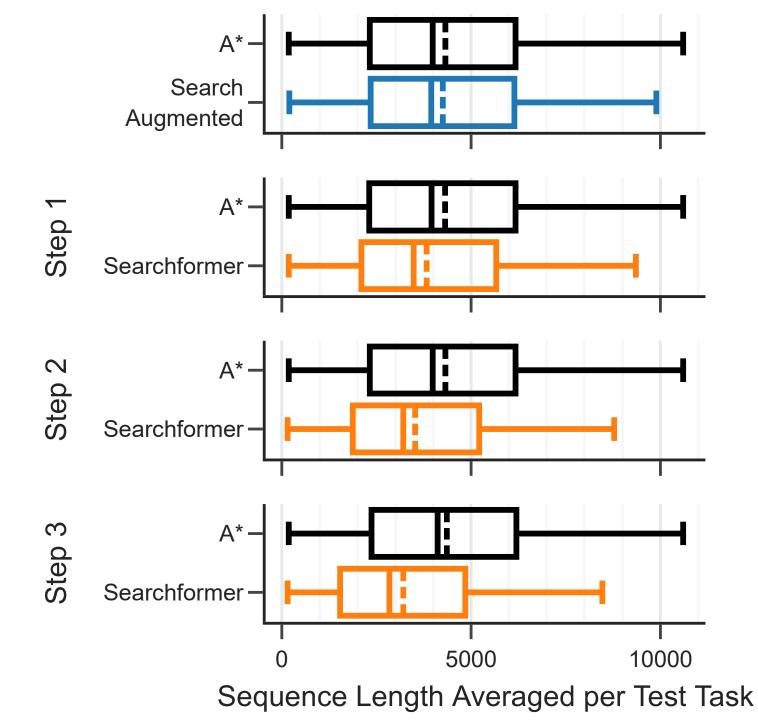




Search-augmented is much more parameter & data efficient!

How to go beyond?

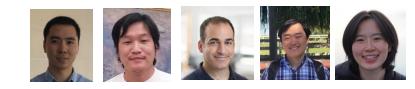

Using solver's trace to train the Transformer with teacher forcing Fine-tune the model to achieve **shorter** trace but still leads to **optimal** plan! (Reinforcement Learning task)

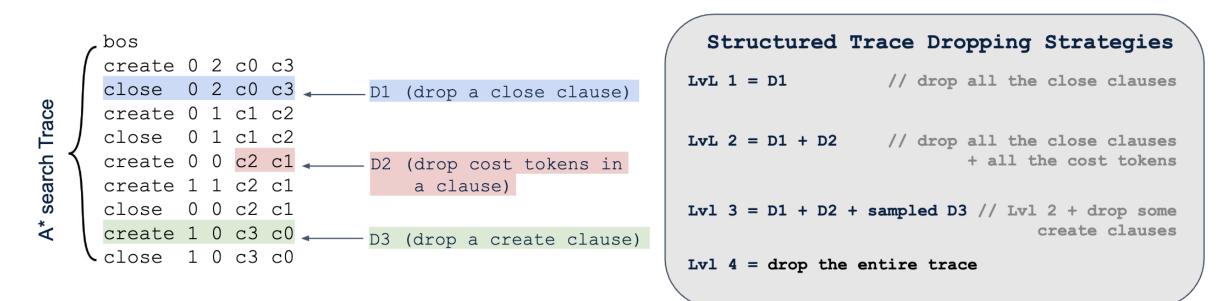

Fine-tuning

Beyond A*: Improving search dynamics via bootstrapping

Improving search dynamics via bootstrapping

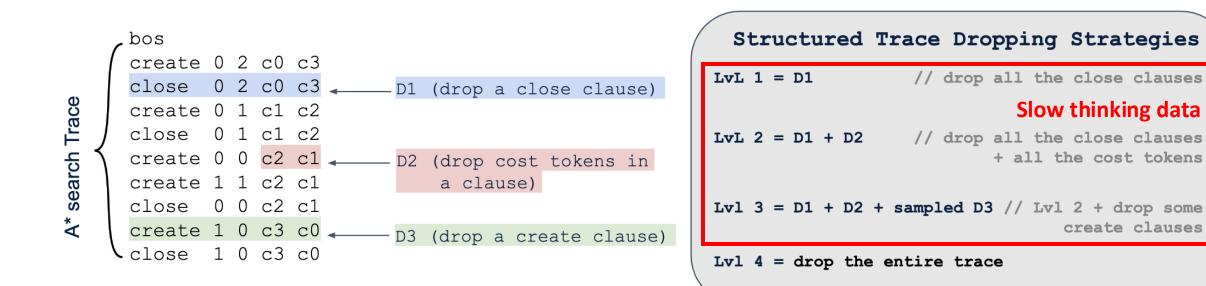
Params.	Model	ILR-on-solved	ILR-on-optimal	_
	Solution only	_	—	_
	Search augmented	0.908 ±0.020	$0.919 \hspace{0.1 cm} \pm 0.019$	
45M	Searchformer, step 1	1.054 ± 0.025	$1.062 \hspace{0.1 cm} \pm 0.015$	Thinking length
	Searchformer, step 2	1.158 ± 0.025	1.181 ± 0.012	becomes shorter
	Searchformer, step 3	1.292 ± 0.044	1.343 ± 0.067	
175M	Solution only	_	_	_
175101	Search augmented	$0.925 \ \pm 0.010$	$\textbf{0.933} \pm 0.011$	
757M	Solution only	_	_	

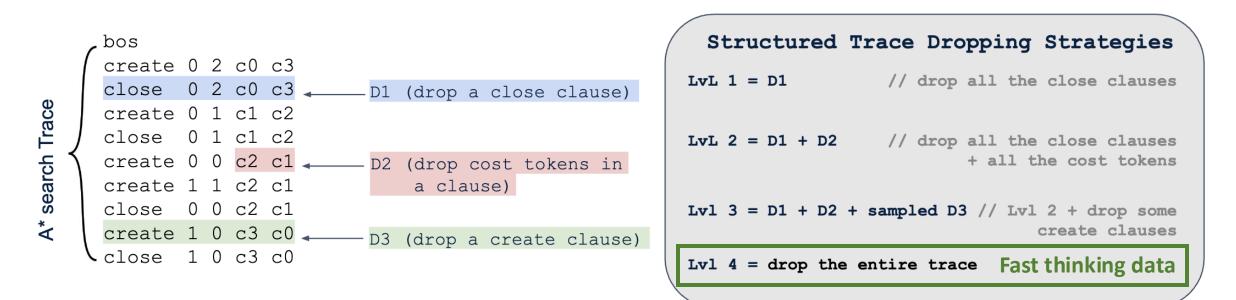

$$ILR = \frac{\text{solver len}}{\text{searchformer len}}$$


Improving search dynamics via bootstrapping

Params.	Model	Solved (%)	Optimal (%)	_
	Solution only	90.3 ±1.0	86.8 ±0.3	-
	Search augmented	$92.5 \ \pm 1.0$	90.8 ±1.6	
45M	Searchformer, step 1	$95.5 \ \pm 1.0$	93.5 ±1.0	Fine-tuning improves
	Searchformer, step 2	$96.0\ \pm 0.5$	93.4 ±0.6	performance initially.
	Searchformer, step 3	$95.5\ \pm 0.8$	93.7 ±1.6	
175M	Solution only	$95.7 \hspace{0.1 in} \pm 0.2$	90.0 ± 0.8	-
175101	Search augmented	$95.2 \ \pm 0.9$	$93.2 \ \pm 1.0$	
757M	Solution only	$96.5\ \pm 0.1$	$92.2 \ \pm 1.2$	_

Improving search dynamics via bootstrapping


Params.	Model	Solved (%)	Optimal (%)	_
	Solution only	90.3 ±1.0	86.8 ±0.3	_
	Search augmented	$92.5 \ \pm 1.0$	$90.8 \ \pm 1.6$	
45M	Searchformer, step 1	$95.5 \ \pm 1.0$	93.5 ±1.0	
	Searchformer, step 2	$96.0\ \pm 0.5$	93.4 ±0.6	
	Searchformer, step 3	$95.5 \ \pm 0.8$	93.7 ±1.6	Searchformer
175M	Solution only	$95.7 \hspace{0.1 in} \pm 0.2$	90.0 ± 0.8	-outperforms largest
175101	Search augmented	$95.2 \ \pm 0.9$	$93.2 \hspace{0.1 in} \pm 1.0$	solution-only model.
757M	Solution only	$96.5\ \pm 0.1$	92.2 ±1.2	_


[D. Su et al, Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces, ICLR'25]

[D. Su et al, Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces, ICLR'25]

[D. Su et al, Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces, ICLR'25]

	Method	Avg Trace Length	1-Optimal-64 / 3-Optimal-64	1-Solved-64 / 3-Solved-64	SWC	Diversity
	Dualformer (auto)	222	99.7 / 99.4	99.9 / 99.8	0.999	12.52
Maze 15 x 15	Complete-Trace	495	94.6 / 90.1	96.7 / 93.0	0.964	7.60
	Solution-Only	-	72.0 / 68.9	82.7 / 80.1	0.610	1.52
	Dualformer (auto)	351	99.5 / 98.6	99.9 / 99.3	0.997	20.28
Maze 20 x 20	Complete-Trace	851	98.3 / 95.5	98.8 / 93.0	0.987	14.53
	Solution-Only	-	56.3 / 52.0	71.9 / 67.5	0.690	1.52
	Dualformer (auto)	427	98.6 / 96.9	99.8 / 99.0	0.998	24.81
Maze 25 x 25	Complete-Trace	1208	95.2 / 85.7	97.0 / 90.4	0.968	18.85
	Solution-Only	-	39.7 / 34.7	60.3 / 55.4	0.570	1.9
	Dualformer (auto)	617	96.6 / 92.1	98.4 / 97.7	0.989	24.42
Maze 30 x 30	Complete-Trace	1538	93.3 / 82.4	95.9 / 88.1	0.964	7.60
	Solution-Only	-	30.0 / 26.0	54.1 / 47.8	0.500	1.86
	Dualformer (auto)	494	94.0 / 90.0	97.4 / 94.7	0.979	4.97
Sokoban	Complete-Trace	3600	92.9 / 84.4	94.7 / 89.0	0.944	2.91
	Solution-Only	-	86.8 / 83.4	92.8 / 90.0	0.919	1.24

Dualformer **automatically** switches between fast mode (System 1) and slow mode (System 2) and works **better** for **dedicated** models on either modes.

Fast mode performance

	Method	1-Optimal-64 / 3-Optimal-64	1-Solved-64 / 3-Solved-64	SWC	Diversity
Maze 15x15	Dualformer(fast)	91.8 / 87.6	97.1 / 94.8	0.960	9.05
	Solution-Only	72.0 / 68.9	82.7 / 80.1	0.610	1.52
Maze 20x20	Dualformer(fast)	90.9 / 84.0	97.0 / 94.0	0.960	17.27
	Solution-Only	56.3 / 52.0	71.9 / 67.5	0.690	1.52
Maze 25x25	Dualformer(fast)	83.9 / 72.9	95.5 / 90.6	0.940	21.23
	Solution-Only	39.7 / 34.7	60.3 / 55.4	0.570	1.9
Maze 30x30	Dualformer(fast)	80.0 / 66.0	91.8 / 85.7	0.906	18.23
	Solution-Only	30.0 / 26.0	54.1 / 47.8	0.500	1.86
Sokoban	Dualformer(fast)	97.3 / 94.4	94.8 / 90.0	0.970	4.92
	Solution-Only	86.8 / 83.4	92.8 / 90.0	0.919	1.24

Slow thinking

<create>

<plan> Fast thinking

Slow mode performance

	Method	Avg Trace Length	1-Optimal-64 / 3-Optimal-64	1-Solved-64 / 3-Solved-64	SWC	Diversity
Maze 15 x 15	Dualformer (slow)	278	99.6 / 99.2	99.9 / 99.9	0.999	12.54
	Complete-Trace	495	94.6 / 90.1	96.7 / 93.0	0.964	7.60
Maze 20 x 20	Dualformer (slow)	439	98.9 / 97.8	99.9 / 99.7	0.998	18.86
	Complete-Trace	851	98.3 / 95.5	98.8 / 93.00	0.987	14.53
Maze 25 x 25	Dualformer (slow)589Complete-Trace1208		99.9 / 97.2 95.2 / 85.7	99.7 / 99.3 97.0 / 90.4	0.997 0.968	25.05 18.85
Maze 30 x 30	Dualformer (slow)854Complete-Trace1538		97.6 / 93.2 93.3 / 82.4	99.5 / 98.2 95.9 / 88.1	0.993 0.964	25.77 7.60
Sokoban	Dualformer(slow)	1482	94.5 / 87.6	97.4 / 94.1	0.970	4.66
	Complete-Trace	3600	92.9 / 84.4	94.7 / 89.0	0.944	2.91

Math Problems

Llama-3-Aug (baseline) Here is a detailed step-by-step explanation of the reasoning:

- Step 1: Understand the problem and the given information. We are asked to find the sum of the elements in the tenth row of Pascal's Triangle, given that the third row has four elements and their sum is 8.
- Step 2: Recall the formula for the sum of the elements in a row of Pascal's Triangle. The sum of the elements in the nth row is given by the formula:

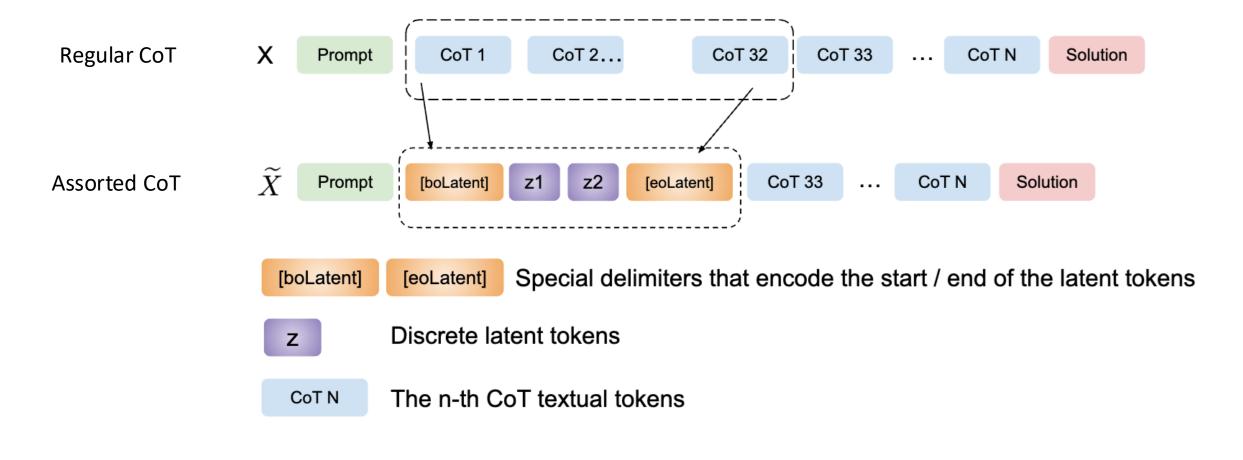
 (ⁿ₀) + (ⁿ₁) + (ⁿ₂) + ···+ (ⁿ_n) = 2ⁿ.
- Step 3: Identify the relationship between the sum of the elements in a row and the sum of the elements in the previous row. Since the sum of the elements in the nth row is 2ⁿ, the sum of the elements in the (n-1)th row is 2ⁿ⁻¹.
- Step 4: Recognize that the sum of the elements in the third row is 8, which is equal to 2^3 . This is because the sum of the elements in the third row is $\binom{3}{0} + \binom{3}{1} + \binom{3}{2} = 1 + 3 + 3 = 7$, and the extra 1 comes from the top row, which is counted as the 0th row.

In Pascal's Triangle, the third row has four elements, and the sum of these elements is 8. What is the sum of the elements in the tenth row? (Note that we are counting the top row with a single 1 as the 0th row).

- Step 5: Use the relationship between the sums of the elements in consecutive rows to find the sum of the elements in the tenth row. Since the sum of the elements in the third row is 2^3 , and the sum of the elements in the third row is 2^3 , and the sum of the elements in the (n-1)th row is 2^{n-1} , we can set up the equation: $2^3 = 2^{10-1}$.
- Step 6: Solve the equation for n. Taking the logarithm of both sides, we get: 3 log 2 = (10 1) log 2. Simplifying, we get: 3 log 2 = 9 log 2, which implies that log 2 = 0. This is a contradiction, since log 2 is a positive number.
- Step 7: Conclude that the equation $2^3 = 2^{10-1}$ has no solution, and therefore, the sum of the elements in the tenth row is not equal to 2^{10-1} .
- Step 8: Recognize that the sum of the elements in the tenth row is still given by the formula: $\binom{10}{0} + \binom{10}{1} + \binom{10}{2} + \dots + \binom{10}{10} = 2^{10}$.

The answer is: 1024.

Question 1


Baseline

Llama-3-Aug (p=0.4, ours) Here is a detailed step-by-step explanation of the reasoning:

- Step 1: Understand the problem and the given information. We are asked to find the sum of the elements in the tenth row of Pascal's Triangle, given that the third row has four elements and their sum is 8.
- Step 2: Recall the properties of Pascal's Triangle. The elements in each row of Pascal's Triangle are the binomial coefficients, which represent the number of ways to choose k items from a set of n items. The sum of the elements in each row is equal to 2^n , where n is the row number.
- Step 3: Identify the relationship between the sum of the elements in the third row and the sum of the elements in the tenth row. Since the sum of the elements in each row is equal to 2ⁿ, we can write the sum of the elements in the third row as 2³ = 8. Similarly, the sum of the elements in the tenth row is 2¹⁰.
- Step 4: Calculate the sum of the elements in the tenth row. $2^{10} = 1024$.

The answer is: 1024.

Token Assorted (Searchformer v3)

[D. Su et al, Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning, arXiv'25]

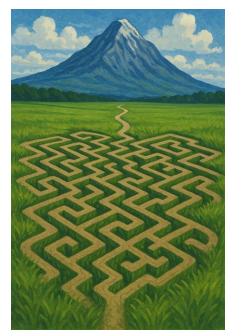
Token Assorted (Searchformer v3)

Prompt CoT Solution X $f_{\rm enc}$ Codebook How the latent codes gare constructed? ••• $e_1 e_2$ **Using VQVAE** e_n $f_{\rm dec}$

Reconstructed X

Better Performance

Мо	del	In-Do	omain	Out-of-Domain					Average
		Math	GSM8K	Gaokao-Math-2023	DM-Math	College-Math	Olympia-Math	TheoremQA	All Datasets
	Sol-Only	4.7	6.8	0.0	10.4	5.3	1.3	3.9	4.6
	СоТ	<u>10.5</u>	<u>42.7</u>	10.0	3.4	<u>17.1</u>	1.5	9.8	<u>14.1</u>
Llama 2.2.1D	iCoT	8.2	10.5	3.3	<u>11.3</u>	7.6	2.1	<u>10.7</u>	7.7
Llama-3.2-1B	Pause Token	5.1	5.3	2.0	1.4	0.5	0.0	0.6	2.1
	Latent (ours)	14.7 († +4.2)	48.7 († +6)	10.0	14.6 († +3.3)	20.5 (↑ +3.4)	<u>1.8</u>	11.3 († +0.6)	17.8 († +3.7)
	Sol-Only	6.1	8.1	3.3	14.0	7.0	1.8	6.8	6.7
	СоТ	<u>21.9</u>	<u>69.7</u>	<u>16.7</u>	27.3	<u>30.9</u>	2.2	11.6	25.2
Llama 2 2 2D	iCoT	12.6	17.3	3.3	16.0	14.2	4.9	13.9	11.7
Llama-3.2-3B	Pause Token	25.2	53.7	4.1	7.4	11.8	0.7	1.0	14.8
	Latent (ours)	26.1 († +4.2)	73.8 († +4.1)	23.3 († +6.6)	<u>27.1</u>	32.9 (↑+2)	4.2	13.5	28.1 († +2.9)
	Sol-Only	11.5	11.8	3.3	17.4	13.0	3.8	6.7	9.6
	СоТ	32.9	<u>80.1</u>	<u>16.7</u>	<u>39.3</u>	<u>41.9</u>	7.3	15.8	<u>33.4</u>
Llama-3.1-8B	iCoT	17.8	29.6	16.7	20.3	21.3	<u>7.6</u>	14.8	18.3
	Pause Token	39.6	79.5	6.1	25.4	25.1	1.3	4.0	25.9
	Latent (ours)	<u>37.2</u>	84.1 († +4.0)	30.0 († +13.3)	41.3 († +2)	44.0 († +2.1)	10.2 († +2.6)	18.4 († +2.6)	37.9 († +4.5)

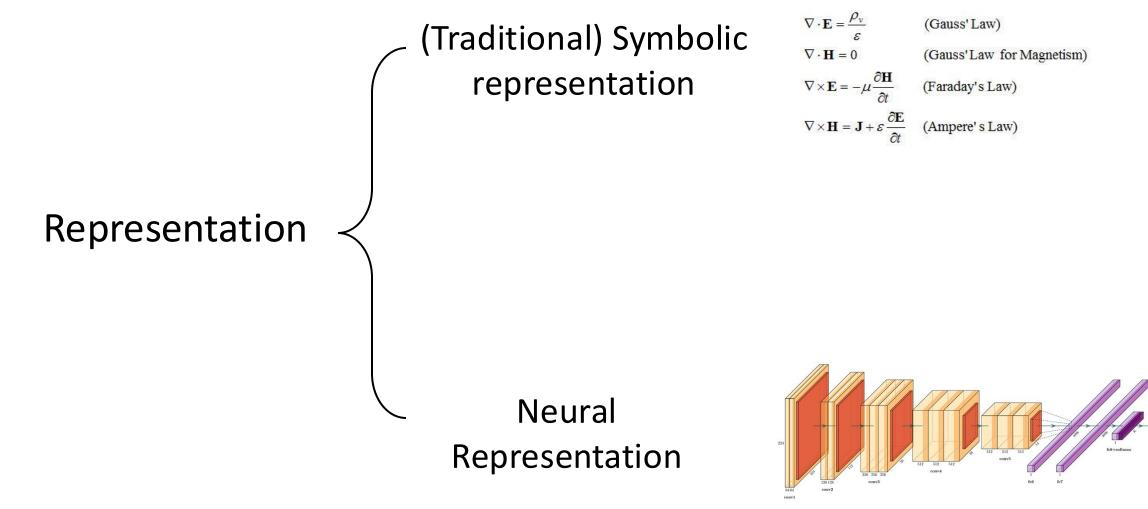

Shorter CoT

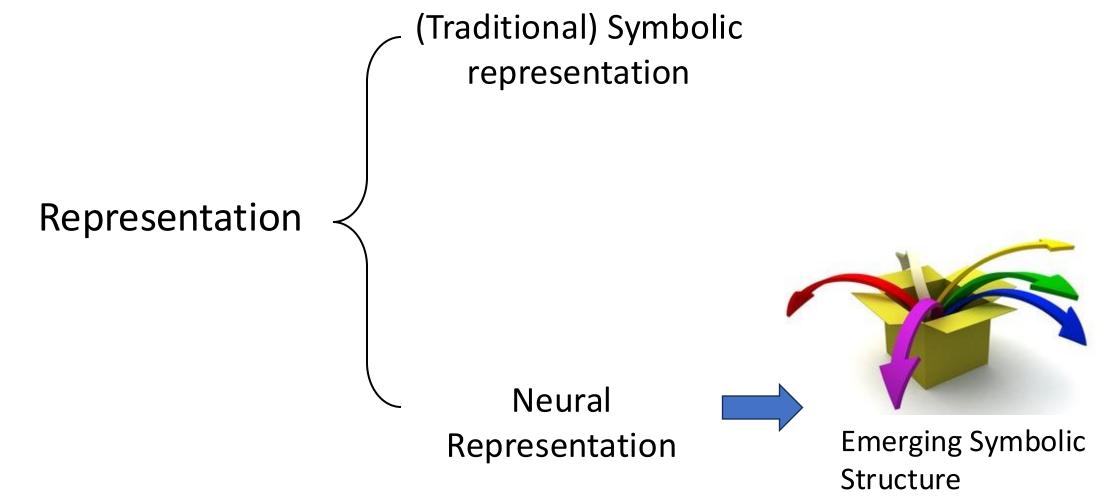
Model		In-Domain (# of tokens)		Out-of-Domain (# of tokens)					Average
		Math	GSM8K	Gaokao-Math-2023	DM-Math	College-Math	Olympia-Math	TheoremQA	All Datasets
	Sol-Only	4.7	6.8	0.0	10.4	5.3	1.3	3.9	4.6
LL	СоТ	646.1	190.3	842.3	578.7	505.6	1087.0	736.5	655.2
	iCoT	328.4	39.8	354.0	170.8	278.7	839.4	575.4	369.5
Llama-3.2-1B	Pause Token	638.8	176.4	416.1	579.9	193.8	471.9	988.1	495
	Latent (ours)	501.6 (↓ -22%)	181.3 (↓ -5%)	760.5 (↓ -11%)	380.1 (↓ -34%)	387.3 (↓ -23%)	840.0 (↓ -22 %)	575.5 (↓ -22%)	518 (↓ -21%)
	Sol-Only	6.1	8.1	3.3	14.0	7.0	1.8	6.8	6.7
	СоТ	649.9	212.1	823.3	392.8	495.9	1166.7	759.6	642.9
Llama-3.2-3B	iCoT	344.4	60.7	564.0	154.3	224.9	697.6	363.6	344.2
Liailla-3.2-3D	Pause Token	307.9	162.3	108.9	251.5	500.96	959.5	212.8	354.7
	Latent (ours)	516.7 (↓ -20%)	198.8 (↓ -6%)	618.5 (↓ -25%)	340.0 (↓ -13%)	418.0 (↓ -16%)	832.8 (↓ -29 %)	670.2 (↓ -12%)	513.6 (↓ -20%)
	Sol-Only	11.5	11.8	3.3	17.4	13.0	3.8	6.7	9.6
	СоТ	624.3	209.5	555.9	321.8	474.3	1103.3	760.1	578.5
Llowe 21 PD	iCoT	403.5	67.3	444.8	137.0	257.1	797.1	430.9	362.5
Llama-3.1-8B	Pause Token	469.4	119.0	752.6	413.4	357.3	648.2	600.1	480
	Latent (ours)	571.9 (↓ -9 %)	193.9 (↓ -8 %)	545.8 (↓ -2 %)	292.1 (↓ -10%)	440.3 (↓ -8%)	913.7 (↓ -17 %)	637.2 (↓ -16 %)	513.7 (↓ -10%)

What's wrong with Option **One**?

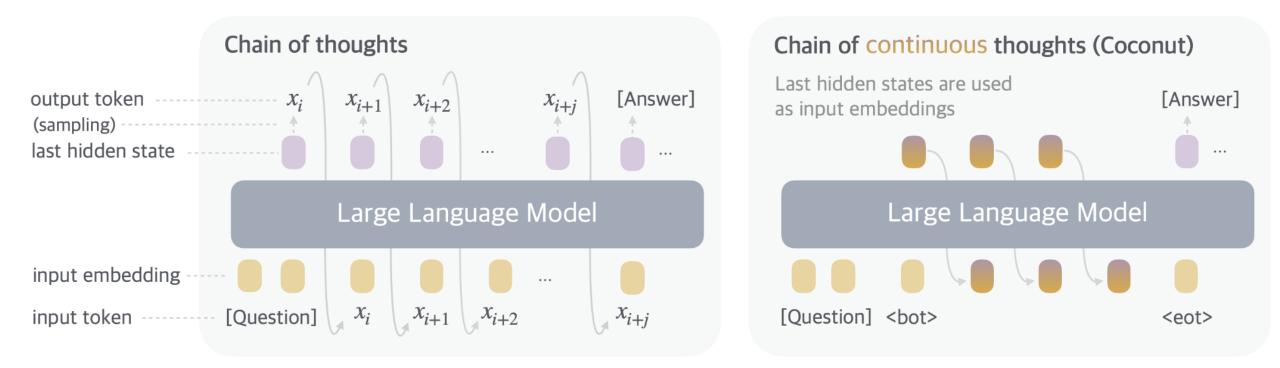
If search can solve the problem, why not using traditional symbolic solvers?

Option Two: Reasoning by Representation

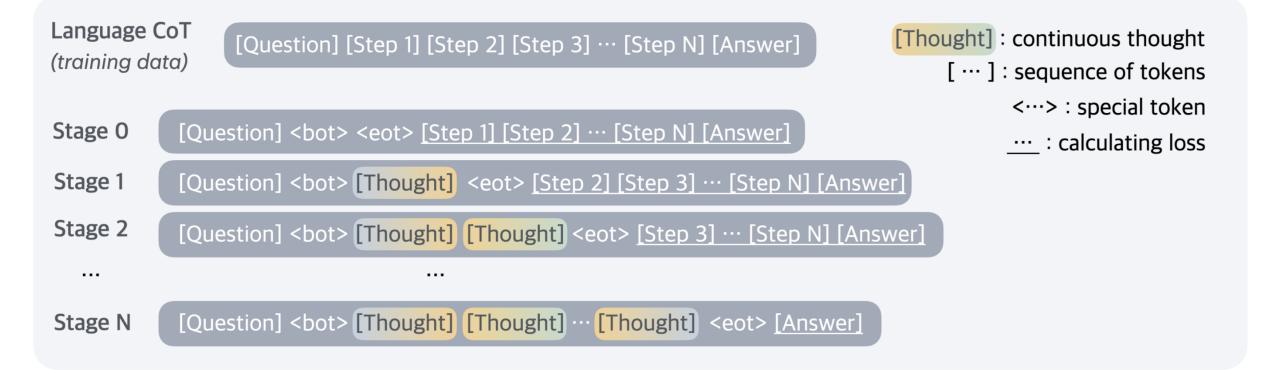

Complicated search if we **don't understand** the problem

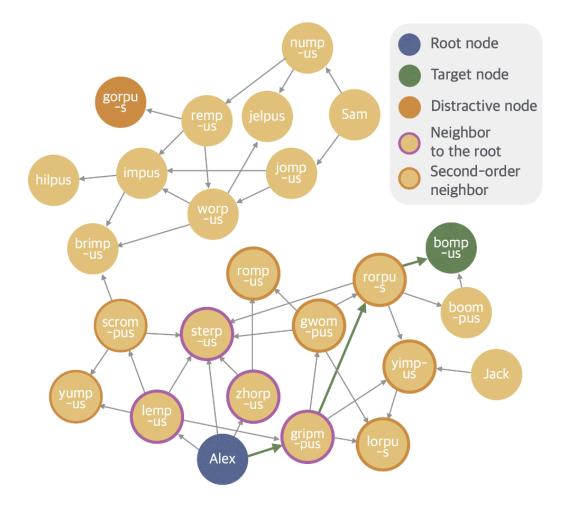

Simple and straightforward to the destination if we **understand** the problem

Instead of reasoning exhaustively, we reason smartly.


Option Two: Reasoning by Representation

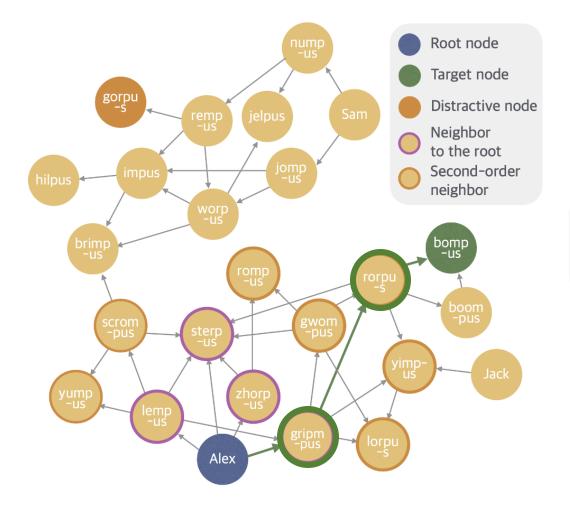
Option Two: Reasoning by Representation


CoConut (Chain of Continuous Thought)



[S. Hao et al, Training Large Language Models to Reason in a Continuous Latent Space, arXiv'24]

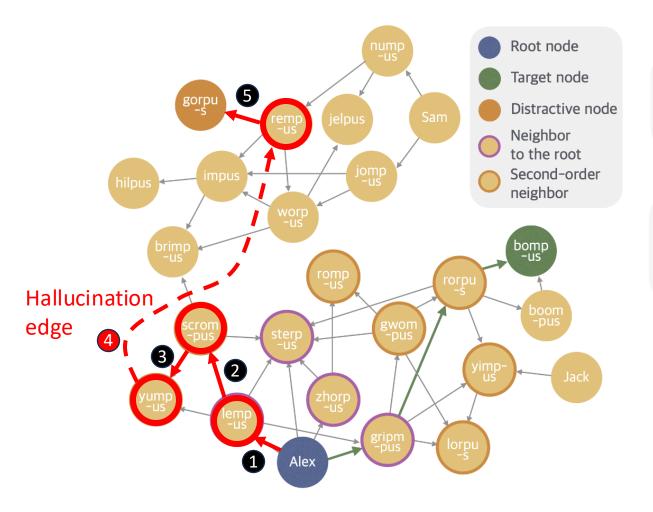
How to train Coconut?


Interpreting the embeddings

Question:

Every jells is a worpus. Sam is a jumpus. Every gwompus is a rompus. … Every lumps is a yumpus. Question: **Is Alex a gorpus or bompus?**

Ground Truth Solutions


Question:

Every jells is a worpus. Sam is a jumpus. Every gwompus is a rompus. … Every lumps is a yumpus. Question: **Is Alex a gorpus or bompus?**

Ground Truth Solution

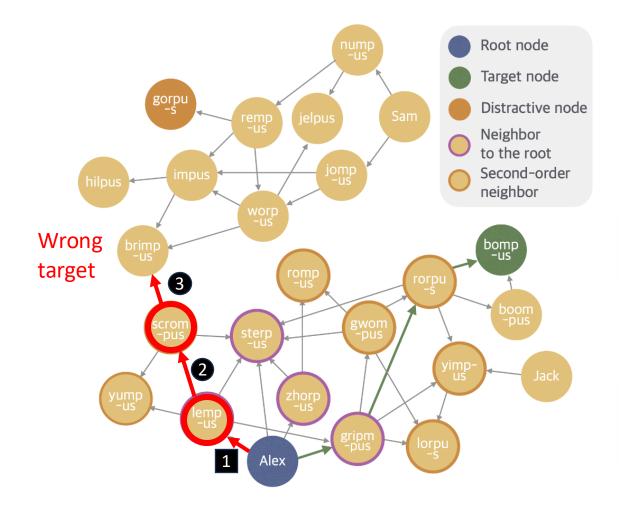
Alex is a grimpus. Every grimpus is a rorpus. Every rorpus is a bompus. ### Alex is a bompus

Chain of thoughts lead to hallucinations

Question:

Every jells is a worpus. Sam is a jumpus. Every gwompus is a rompus. … Every lumps is a yumpus. Question: **Is Alex a gorpus or bompus?**

Ground Truth Solution


Alex is a grimpus. Every grimpus is a rorpus. Every rorpus is a bompus. ### Alex is a bompus

СоТ

Alex is a lempus. 1 Every lempus is a scrompus. 2 Every scrompus is a yumpus. 3 Every yumpus is a rempus. 4 Every rempus is a gorpus. 5 ### Alex is a gorpus

(Hallucination)

Continuous Thoughts

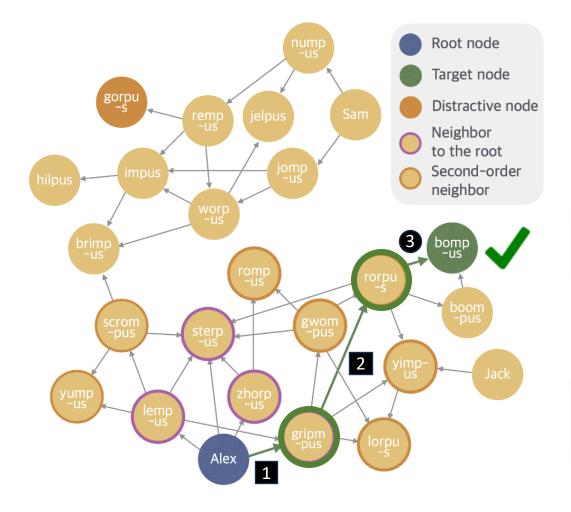
Question:

Every jells is a worpus. Sam is a jumpus. Every gwompus is a rompus. … Every lumps is a yumpus. Question: **Is Alex a gorpus or bompus?**

Ground Truth Solution Alex is a grimpus. Every grimpus is a rorpus. Every rorpus is a bompus. ### Alex is a bompus

СоТ

Alex is a lempus. Every lempus is a scrompus. Every scrompus is a yumpus. Every yumpus is a rempus. Every rempus is a gorpus. ### Alex is a gorpus


(Hallucination)

Ours (k=1)

<bot> [Thought] <eot> 1

Every lempus is a scrompus. 2

Every scrompus is a brimpus. 3

Alex is a brimpus 💥

(Wrong Target)

Two-step Continuous Thought works!

Question:

Ours (k=1)

Every jells is a worpus. Sam is a jumpus. Every gwompus is a rompus. … Every lumps is a yumpus. Question: **Is Alex a gorpus or bompus?**

Ground Truth Solution

Alex is a grimpus. Every grimpus is a rorpus. Every rorpus is a bompus. ### Alex is a bompus

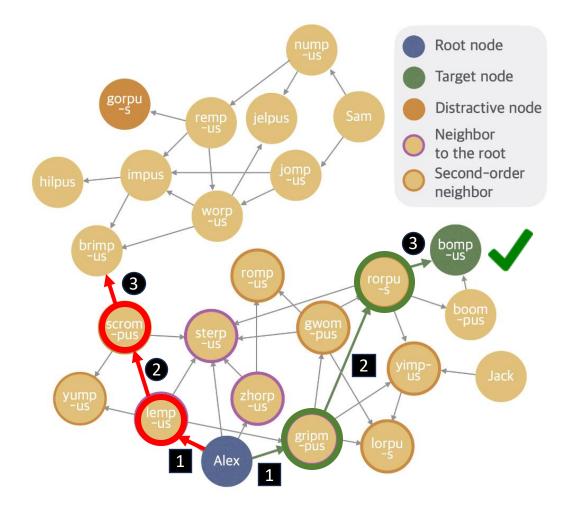
<bot> [Thought] <eot>

Every lempus is a scrompus.

Every scrompus is a brimpus.

Alex is a brimpus 💥

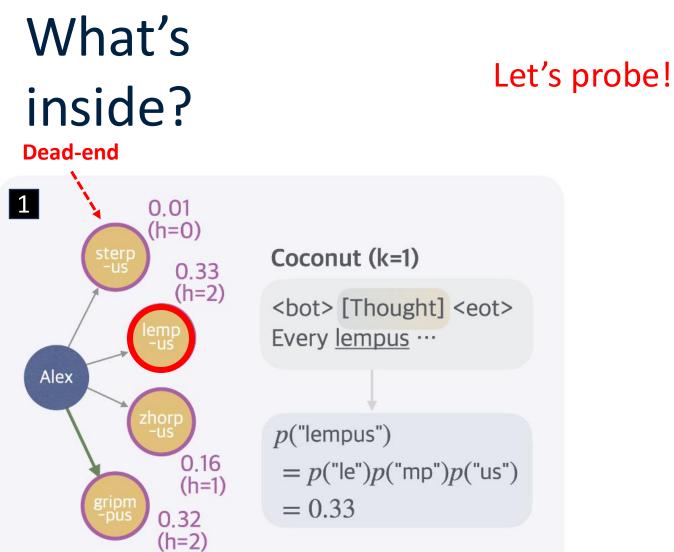
СоТ

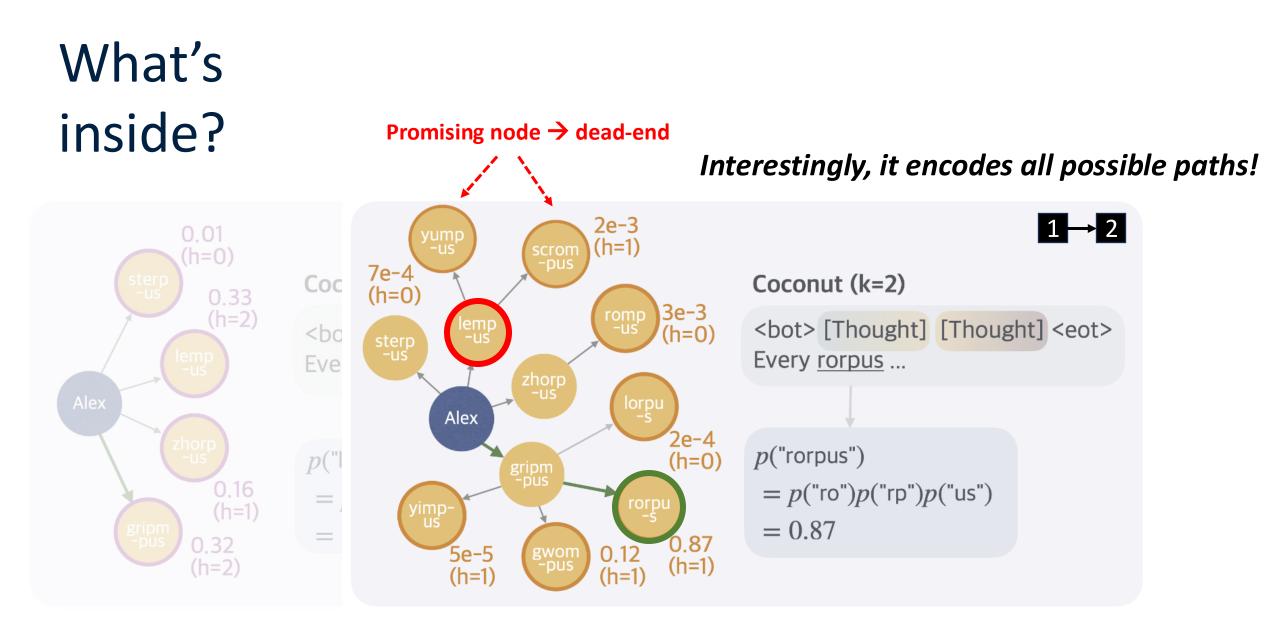

Alex is a lempus. Every lempus is a scrompus. Every scrompus is a yumpus. Every yumpus is a rempus. Every rempus is a gorpus. ### Alex is a gorpus

(Hallucination

Ours (k=2) 1 2 <bot> [thought] [thought] <eot> Every rorpus is a bompus. 3 ### Alex is a bompus 🞸

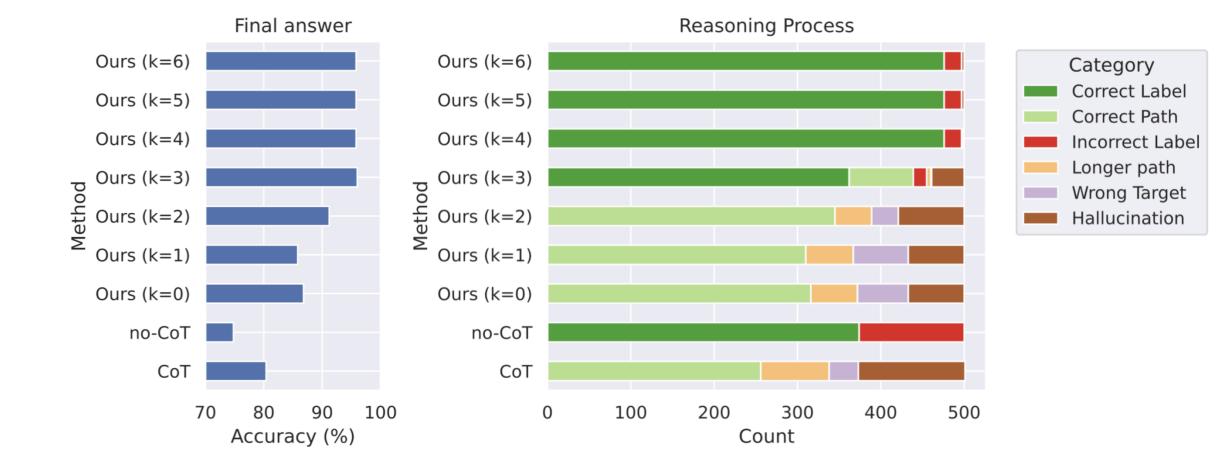
(Correct Path)


Two-step Continuous Thought works!


Ours (k=1) 1 2 3 <bot> [Thought] <eot> Every lempus is a scrompus. Every scrompus is a brimpus. ### Alex is a brimpus 💢 (Wrong Target)

Ours (k=2) 1 2 3 <bot> [thought] [thought] <eot> Every rorpus is a bompus. ### Alex is a bompus (Correct Path)

Why the same continuous thoughts 1 lead to different path?!



"lempus" is not on the right path but for step=1, it is the most promising

-	Dataset	Training	Validation	Test				
-	GSM8k ProntoQA	$385,620 \\ 9,000$	$500 \\ 200$	$\begin{vmatrix} 1319 \\ 800 \end{vmatrix}$				
ProsQA ProsQA		17,886	300	800 500				
$\frac{1}{\# \text{ Nodes } \mid \# \text{ Edges } \mid \text{Len. of Shortest Path } \mid \# \text{ Shortest Paths}}$								
23.0	36.0	3.8	1	.6				

Performance in ProsQA

CoConut

Method	GSM8k		Pron	toQA	ProsQA		
Method	Acc. (%)	# Tokens	Acc. (%)	# Tokens	Acc. (%)	# Tokens	
СоТ	$42.9{\scriptstyle~\pm 0.2}$	25.0	$98.8{\scriptstyle~\pm 0.8}$	92.5	$77.5{\scriptstyle~\pm1.9}$	49.4	
No-CoT iCoT Pause Token	$\begin{array}{c} 16.5 \pm 0.5 \\ 30.0^* \\ 16.4 \pm 1.8 \end{array}$	$2.2 \\ 2.2 \\ 2.2 \\ 2.2$	$\begin{array}{c} 93.8 \pm 0.7 \\ 99.8 \pm 0.3 \\ 77.7 \pm 21.0 \end{array}$	$3.0 \\ 3.0 \\ 3.0 \\ 3.0$	$\begin{array}{c} 76.7 \pm 1.0 \\ 98.2 \pm 0.3 \\ 75.9 \pm 0.7 \end{array}$	$8.2 \\ 8.2 \\ 8.2$	
COCONUT (Ours) - w/o curriculum - w/o thought - pause as thought	$\begin{array}{c} 34.1 \pm 1.5 \\ 14.4 \pm 0.8 \\ 21.6 \pm 0.5 \\ 24.1 \pm 0.7 \end{array}$	8.2 8.2 2.3 2.2	$\begin{array}{c} 99.8 \pm 0.2 \\ 52.4 \pm 0.4 \\ 99.9 \pm 0.1 \\ 100.0 \pm 0.1 \end{array}$	9.0 9.0 3.0 3.0	$\begin{array}{c} 97.0 \pm 0.3 \\ 76.1 \pm 0.2 \\ 95.5 \pm 1.1 \\ 96.6 \pm 0.8 \end{array}$	$ \begin{array}{r} 14.2 \\ 14.2 \\ 8.2 \\ 8.2 \end{array} $	

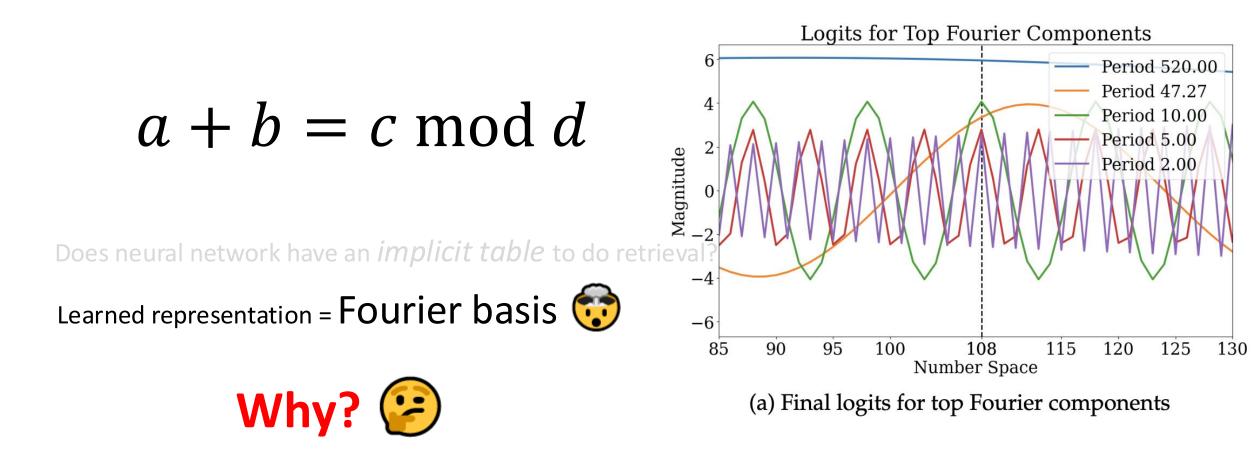
Better performance than No-CoT Shorter thinking process than CoT

CoConut

Method	GSM8k		Pron	toQA	\mathbf{ProsQA}		
Method	Acc. (%)	# Tokens	Acc. (%)	# Tokens	Acc. (%)	# Tokens	
CoT	$42.9{\scriptstyle~\pm 0.2}$	25.0	$98.8{\scriptstyle~\pm 0.8}$	92.5	$77.5{\scriptstyle~\pm1.9}$	49.4	
No-CoT iCoT Pause Token	$\begin{array}{c} 16.5 \pm 0.5 \\ 30.0^* \\ 16.4 \pm 1.8 \end{array}$	$2.2 \\ 2.2 \\ 2.2 \\ 2.2$	$\begin{array}{r} 93.8 \pm 0.7 \\ 99.8 \pm 0.3 \\ 77.7 \pm 21.0 \end{array}$	$3.0 \\ 3.0 \\ 3.0 \\ 3.0$	$\begin{array}{c} 76.7 \pm 1.0 \\ 98.2 \pm 0.3 \\ 75.9 \pm 0.7 \end{array}$	$8.2 \\ 8.2 \\ 8.2$	
COCONUT (Ours) - w/o curriculum - w/o thought	$\begin{array}{c} 34.1 \pm 1.5 \\ 14.4 \pm 0.8 \\ 21.6 \pm 0.5 \\ 24.1 \pm 0.5 \end{array}$	8.2 8.2 2.3	$\begin{array}{r} 99.8 \pm 0.2 \\ 52.4 \pm 0.4 \\ 99.9 \pm 0.1 \\ 100.0 \end{array}$	9.0 9.0 3.0	97.0 ± 0.3 76.1 ± 0.2 95.5 ± 1.1	$ \begin{array}{r} 14.2 \\ 14.2 \\ 8.2 \\ 8.2 \\ 8.2 \end{array} $	
- pause as thought	24.1 ± 0.7	2.2	Cons			• • •	

Better performance than No-CoT Shorter thinking process than CoT

1. Latent tokens are not interpretable

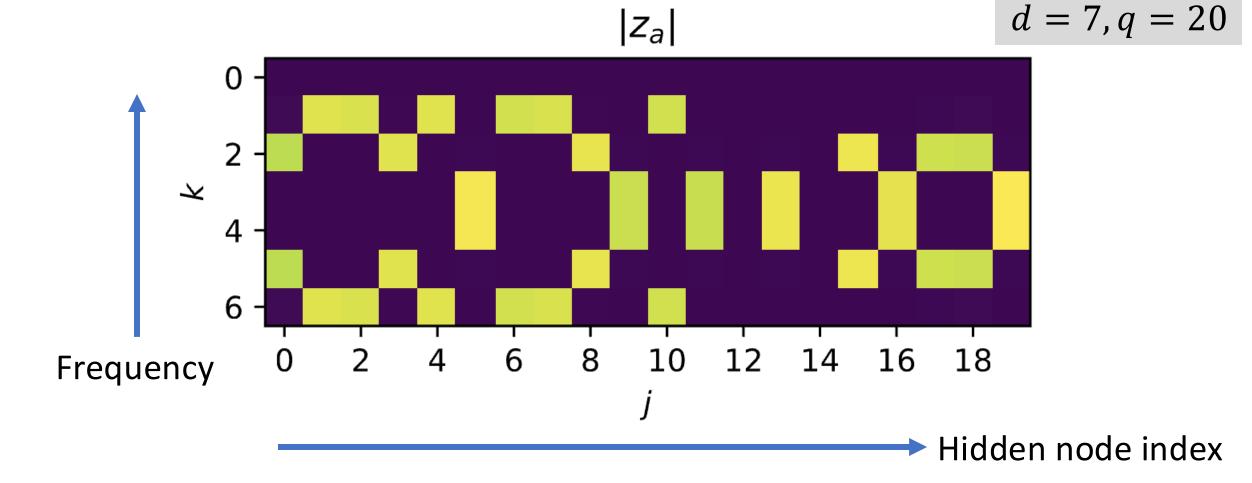

2. Only tested on GSM8k

Reasoning Smartly: Modular Addition

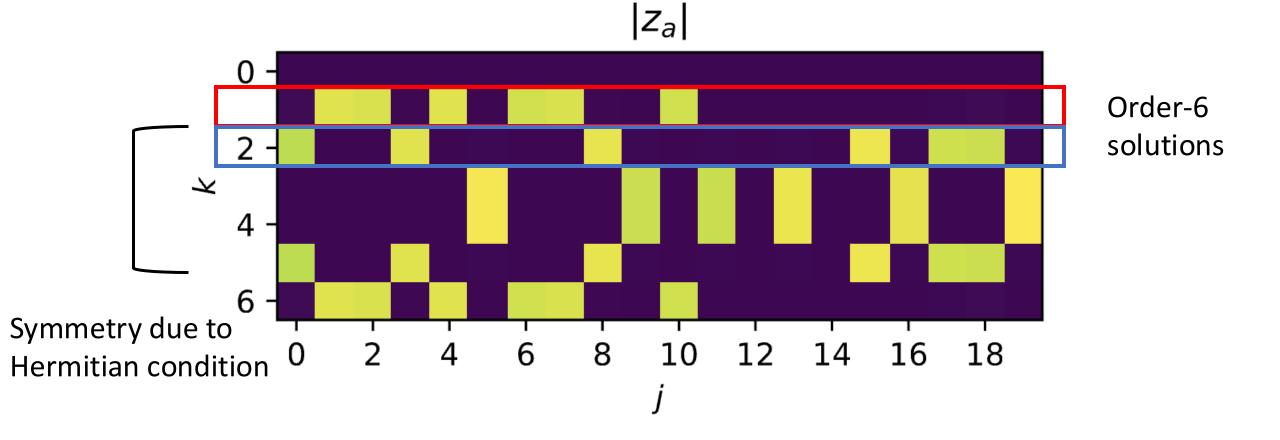
$a + b = c \mod d$

Does neural network have an *implicit table* to do retrieval?

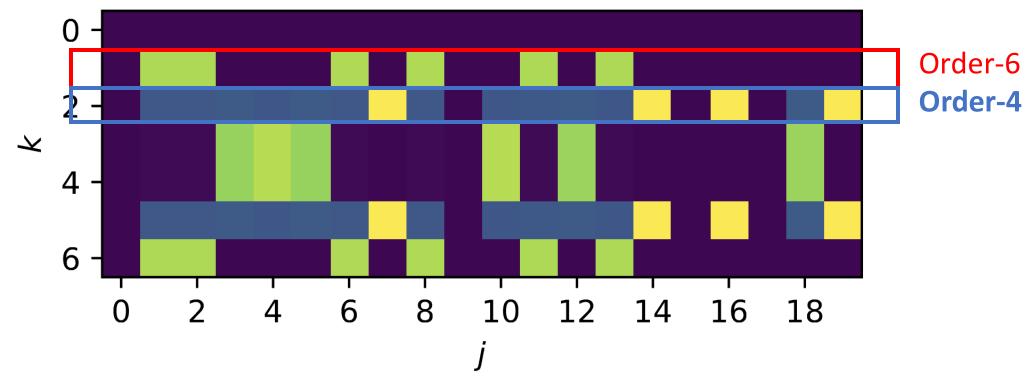

Reasoning Smartly: Modular Addition


[T. Zhou et al, *Pre-trained Large Language Models Use Fourier Features to Compute Addition*, NeurIPS'24] [S. Kantamneni, *Language Models Use Trigonometry to Do Addition*, arXiv'25]

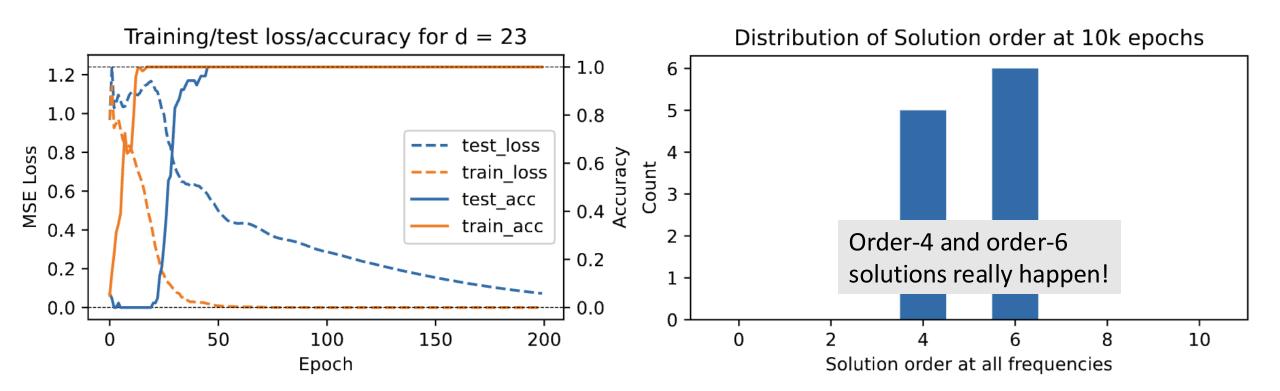
Minimal Problem Setup


MSE Loss: $Min \| \text{Output} - \text{one-hot}(\mathbf{c}) \|_2$

What a Gradient Descent Solution look like?

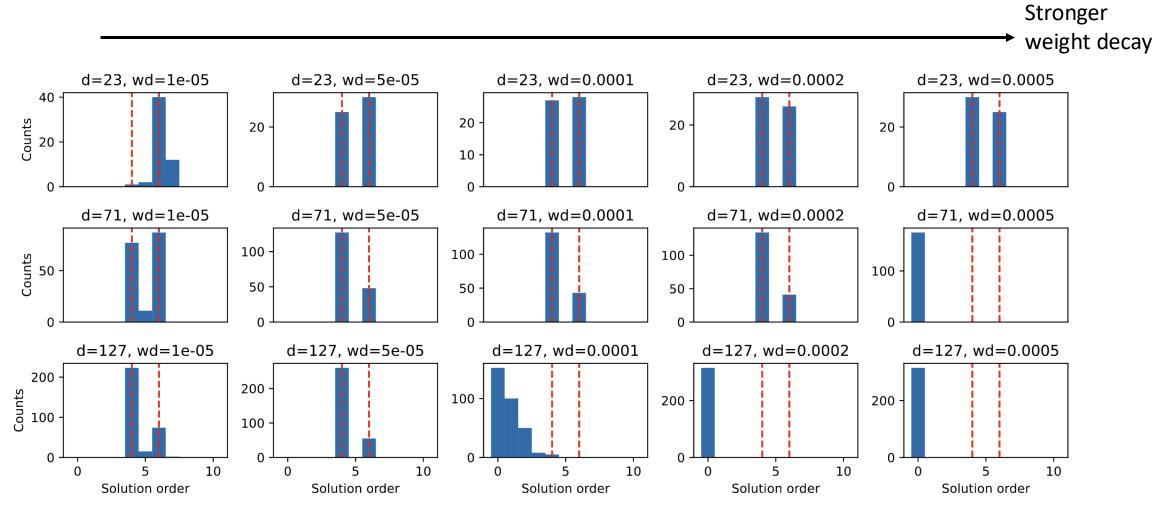


What a Gradient Descent Solution look like?



What a Gradient Descent Solution look like?

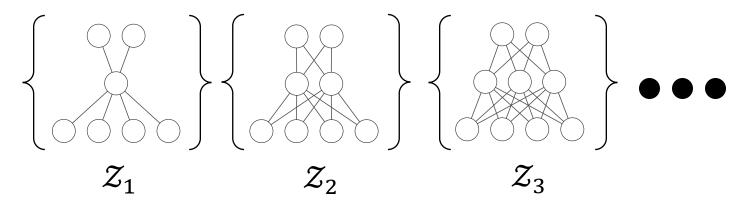
$|z_c|$ at t = 2900



More Statistics on Gradient Descent Solutions

facebook Artificial Intelligence

Effect of Weight Decay



facebook Artificial Intelligence

How to Optimize?

The objective is highly nonlinear !! However, nice *algebraic structures* exist!

 $\mathcal{Z} = \bigcup_{q \ge 0} \mathcal{Z}_q$: All 2-layer networks with different number of hidden nodes

How to Optimize?

The objective is highly nonlinear !! However, nice *algebraic structures* exist!

 $\mathcal{Z} = \bigcup_{q \ge 0} \mathcal{Z}_q$: All 2-layer networks with different number of hidden nodes **Ring addition +:** Concatenate hidden nodes **Ring multiplication *:** Kronecker production along the hidden dimensions

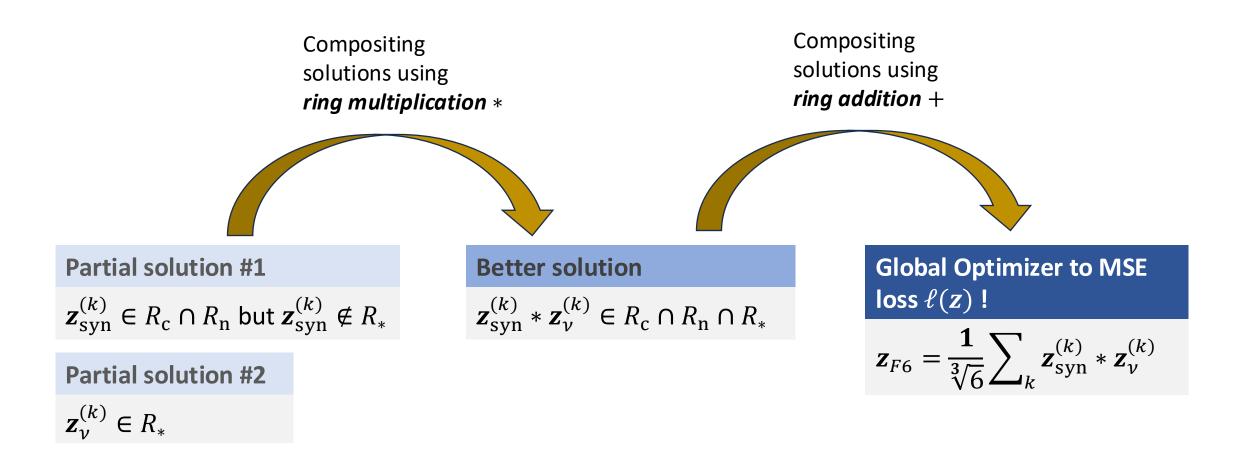
 $\langle \mathcal{Z}, +, * \rangle$ is a *semi-ring*

Composing Global Optimizers from Partial Ones


Partial solution #1

$$\mathbf{z}_{syn}^{(k)} \in R_{c} \cap R_{n}$$
 but $\mathbf{z}_{syn}^{(k)} \notin R_{*}$

Partial solution #2


 $\mathbf{z}_{\nu}^{(k)} \in R_{*}$

Composing Global Optimizers from Partial Ones

$$\mathbf{z}_{v}^{(k)} \in R_{*}$$

Composing Global Optimizers from Partial Ones

Exemplar constructed global optimizers

Order-6 z_{F6} (2*3)

$$m{z}_{F6} = rac{1}{\sqrt[3]{6}} \sum_{k=1}^{(d-1)/2} m{z}_{
m syn}^{(k)} * m{z}_{
u}^{(k)} * m{y}_k$$

Exemplar constructed global optimizers

Order-6 z_{F6} (2*3)

$$m{z}_{F6} = rac{1}{\sqrt[3]{6}} \sum_{k=1}^{(d-1)/2} m{z}_{
m syn}^{(k)} * m{z}_{
u}^{(k)} * m{y}_k$$

Order-4 $z_{F4/6}$ (2*2) (mixed with order-6)

$$oldsymbol{z}_{F4/6} = rac{1}{\sqrt[3]{6}} \hat{oldsymbol{z}}_{F6}^{(k_0)} + rac{1}{\sqrt[3]{4}} \sum_{k=1, k
eq k_0}^{(d-1)/2} oldsymbol{z}_{F4}^{(k)}$$

.

Exemplar constructed global optimizers

Order-6 z_{F6} (2*3)

$$m{z}_{F6} = rac{1}{\sqrt[3]{6}} \sum_{k=1}^{(d-1)/2} m{z}_{
m syn}^{(k)} * m{z}_{
u}^{(k)} * m{y}_k$$

Order-4 $z_{F4/6}$ (2*2) (mixed with order-6)

Perfect memorization (order-d per frequency)

$$oldsymbol{z}_{F4/6} = rac{1}{\sqrt[3]{6}} \hat{oldsymbol{z}}_{F6}^{(k_0)} + rac{1}{\sqrt[3]{4}} \sum_{k=1, k
eq k_0}^{(d-1)/2} oldsymbol{z}_{F4}^{(k)}$$

$$oldsymbol{z}_a = \sum_{j=0}^{d-1} oldsymbol{u}_a^j, \qquad oldsymbol{z}_b = \sum_{j=0}^{d-1} oldsymbol{u}_b^j \ oldsymbol{z}_M = d^{-2/3} oldsymbol{z}_a * oldsymbol{z}_b$$

4	%not	%non-factorable		error ($\times 10^{-2}$)		solution distribution (%) in factorable ones			e ones
	order-4/6	order-4	order-6	order-4	order-6	$ig oldsymbol{z}_{ u= ext{i}}^{(k)}*oldsymbol{z}_{\xi}^{(k)}$	$oxed{z_{ u= ext{i}}^{(k)} st oldsymbol{z}_{ ext{syn},lphaeta}^{(k)}}$	$\left oldsymbol{z}_{ u}^{(k)} st oldsymbol{z}_{ ext{syn}}^{(k)} ight $	others
23	0.0 ± 0.0	$0.00 {\pm} 0.00$	5.71 ± 5.71	0.05 ± 0.01	4.80 ± 0.96	47.07 ± 1.88	$11.31{\pm}1.76$	39.80 ± 2.11	1.82 ± 1.82
71	0.0 ± 0.0	$0.00 {\pm} 0.00$	0.00 ± 0.00	0.03 ± 0.00	$5.02{\pm}0.25$	1	$4.00{\pm}1.14$	1 1	
127	0.0 ± 0.0	$ 1.50 \pm 0.92 $	$ 0.00 \pm 0.00 $	$ 0.26\pm0.14 $	0.93 ± 0.18	82.96 ± 0.39	$2.25{\pm}0.64$	$ 14.13 \pm 0.87 $	$0.66 {\pm} 0.66$

$$q = 512, wd = 5 \cdot 10^{-5}$$

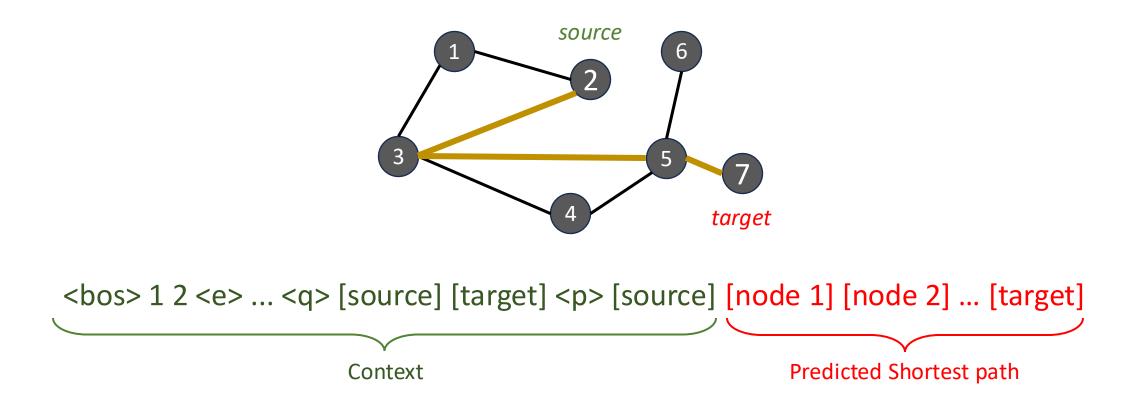
				error ($\times 10^{-2}$)					
	order-4/6	order-4	order-6	order-4	order-6	$ig oldsymbol{z}_{ u= ext{i}}^{(k)}*oldsymbol{z}_{\xi}^{(k)}$	$oxed{z_{ u= ext{i}}^{(k)} st oldsymbol{z_{ ext{syn},lphaeta}^{(k)}}}$	$\left oldsymbol{z}_ u^{(k)} st oldsymbol{z}_{ ext{syn}}^{(k)} ight $ 0	others
23	0.0 ± 0.0	0.00 ± 0.00	5.71 ± 5.71	$0.05{\pm}0.01$	4.80 ± 0.96	47.07 ± 1.88	$11.31{\pm}1.76$	$ 39.80{\pm}2.11 1.8$	32 ± 1.82
71	$0.0{\pm}0.0$	$0.00 {\pm} 0.00$	0.00 ± 0.00	$0.03{\pm}0.00$	$5.02{\pm}0.25$	$72.57{\pm}0.70$	$4.00 {\pm} 1.14$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$29 {\pm} 1.07$
127	$0.0{\pm}0.0$	$1.50{\pm}0.92$	$ 0.00 \pm 0.00 $	$ 0.26 \pm 0.14 $	0.93 ± 0.18	82.96 ± 0.39	$2.25{\pm}0.64$	$ 14.13 \pm 0.87 0.6$	36 ± 0.66
71 127	$\begin{array}{c} 0.0{\pm}0.0 \\ 0.0{\pm}0.0 \end{array}$	$0.00 {\pm} 0.00 {1.50 {\pm} 0.92}$	$\begin{array}{ }0.00{\scriptstyle\pm0.00}\\0.00{\scriptstyle\pm0.00}\end{array}$	$0.03{\scriptstyle\pm0.00 \\ 0.26{\scriptstyle\pm0.14}}$	$\begin{array}{c} 5.02{\pm}0.25\\ 0.93{\pm}0.18\end{array}$	$\begin{vmatrix} 72.57 \pm 0.70 \\ 82.96 \pm 0.39 \end{vmatrix}$	$4.00{\pm}1.14 \ 2.25{\pm}0.64$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	29 ± 1.0 56 ± 0.6

100% of the per-freq solutions are order-4/6

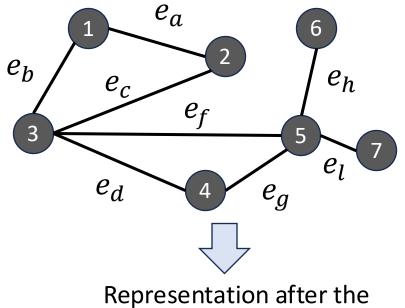
d	%not	%non-factorable		· · · · · ·		solution distribution (%) in factorable ones			
	order-4/6	order-4	order-6	order-4	order-6	$ig oldsymbol{z}_{ u= ext{i}}^{(k)}*oldsymbol{z}_{\xi}^{(k)}$	$ig oldsymbol{z}_{ u= ext{i}}^{(k)} st oldsymbol{z}_{ ext{syn},lphaeta}^{(k)}$	$\left oldsymbol{z}_{ u}^{(k)} st oldsymbol{z}_{ ext{syn}}^{(k)} ight $	others
23	0.0 ± 0.0	0.00 ± 0.00	$5.71 {\pm} 5.71$	$0.05{\pm}0.01$	4.80 ± 0.96	47.07 ± 1.88	$11.31{\pm}1.76$	39.80 ± 2.11	1.82 ± 1.82
71	$ 0.0 \pm 0.0$	$0.00 {\pm} 0.00$	$0.00 {\pm} 0.00$	$0.03{\pm}0.00$	5.02 ± 0.25	72.57 ± 0.70	$4.00 {\pm} 1.14$	21.14 ± 2.14	
						82.96 ± 0.39		$ 14.13 \pm 0.87 $	$0.66 {\pm} 0.66$
	11		1 1		I I	I	1	I I	

95% of the solutions are factorizable into "2*3" or "2*2"

d	%not order-4/6	/6 order-4 order-6		error (× 10^{-2}) order-4 order-6		$\begin{vmatrix} \text{solution distribution (\%) in factorable ones} \\ \boldsymbol{z}_{\nu=i}^{(k)} * \boldsymbol{z}_{\xi}^{(k)} \boldsymbol{z}_{\nu=i}^{(k)} * \boldsymbol{z}_{\text{syn},\alpha\beta}^{(k)} \boldsymbol{z}_{\nu}^{(k)} * \boldsymbol{z}_{\text{syn}}^{(k)} \end{vmatrix} \text{ others}$			
71	0.0 ± 0.0	$0.00 {\pm} 0.00$	$0.00 {\pm} 0.00$	$0.03{\pm}0.00$	$5.02{\pm}0.25$	$\begin{array}{c} 47.07 \pm 1.88 \\ 72.57 \pm 0.70 \\ 82.96 \pm 0.39 \end{array}$		21.14 ± 2.14	$2.29{\pm}1.07$
I	1								

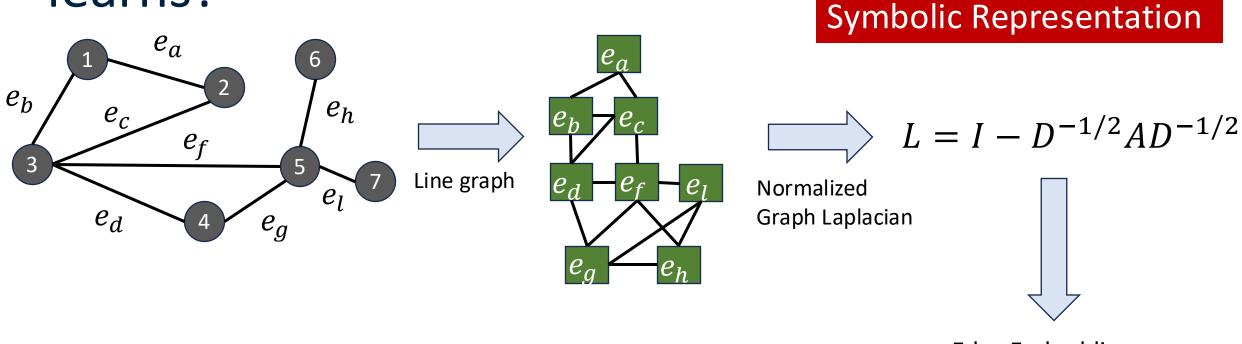

Factorization error is very small

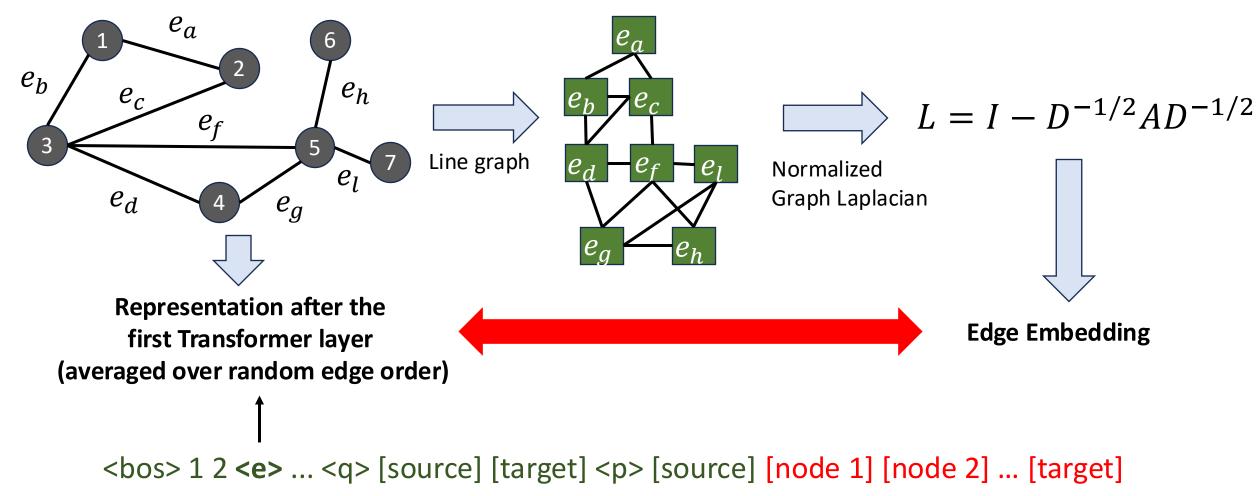
	d %not %non-fac		factorable $ $ error (×10 ⁻²)		solution distribution (%) in factorable ones				
$\begin{array}{c c} u \\ \hline \end{array}$	order-4/6			order-4	order-6	$ig oldsymbol{z}_{ u= ext{i}}^{(k)}*oldsymbol{z}_{\xi}^{(k)}$	$oldsymbol{z}_{ u= ext{i}}^{(k)} st oldsymbol{z}_{ ext{syn},lphaeta}^{(k)}$	$ig oldsymbol{z}_ u^{(k)} st oldsymbol{z}_{ ext{syn}}^{(k)}$	others
23	0.0 ± 0.0	$0.00 {\pm} 0.00$	5.71 ± 5.71	0.05 ± 0.01	$4.80{\pm}0.96$	47.07 ± 1.88	$11.31 {\pm} 1.76$	39.80 ± 2.11	1.82 ± 1.82
						$72.57 {\pm} 0.70$		21.14 ± 2.14	$2.29{\pm}1.07$
						$82.96{\scriptstyle \pm 0.39}$		14.13 ± 0.87	$0.66 {\pm} 0.66$
I	I	I	· · ·	I					'


98% of the solutions can be factorizable into the constructed forms

Shortest Path: Symbolic Emerged from Neural Rep

Task: Learn a 2-layer Transformer for predicting shortest path in the graph


[A. Cohen et al, Spectral Journey: How Transformers Predict the Shortest Path, arXiv'25]


first Transformer layer (averaged over random edge order)

<bos>12<e>...<q>[source] [target] [source] [node 1] [node 2] ... [target]


Neural Representation

Edge Embedding

Graph Edge Embedding of various dimensions

Computed edge embedding with trained Transformers

Normalized Correlation > 0.9

Spectral Line Navigator (SLN)

Simple Algorithms of Graph Shortest Path

- 1. Compute Line Graph \tilde{G} of existing graph G
- 2. Compute eigenvectors of normalized Laplacian $L(\tilde{G})$
- 3. i = source
- 4. While $i \neq target$ do $distance(j,k;i) \coloneqq ||v_{ij} - v_{k,target}||_2$ Find $j = \operatorname{argmin}_{j,k} distance(j,k;i)$ Let i = j

>99% optimal for small random graph (size < 10)

o3-mini-high implementation: <u>https://chatgpt.com/share/67b027f9-fb28-8012-aa64-a1f7479134b7</u>

Possible Implications

Do neural networks end up learning more efficient **symbolic representations** that we don't know?

Does gradient descent lead to a solution that can be reached by **advanced algebraic operations**?

Will gradient descent become **obsolete**, eventually?

Thanks!