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LLM reasoning & planning is still a hard 
problem

Number of Cities

Number of People

Trip planning

Meeting planning

[H. S. Zheng et al, NATURAL PLAN: Benchmarking LLMs on Natural Language Planning, arXiv’24]



LLM reasoning & planning is still a hard 
problem

[Y. Zhou et al, GSM-∞: How Do Your LLMs Behave over Infinitely increasing context length and reasoning complexity?, arXiv’25]

Synthetic Dataset with infinite reasoning complexity Performance drops with increasing op counts.  



LLM reasoning & planning is still a hard 
problem

[Y. Zhou et al, GSM-∞: How Do Your LLMs Behave over Infinitely increasing context length and reasoning complexity?, arXiv’25]

Synthetic Dataset with infinite reasoning complexity Performance drops with increasing op counts.  

Meeting planning
Question Answer

Complicated 
mapping
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What are the 
Solutions?

Option One: 

Reasoning by Search

Option Two: 

Reasoning by Representation



Option One: Reasoning by Search

LLM Chain of Thoughts

If we cannot get the correct solution right now from LLMs, 
use more compute to simulate the search behaviors.  



Searchformer: A* Search as a Token Prediction 
Task

0 1 2
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1

0

Start

Goal

Plan step

Frontier state

Closed state

[L. Lehnert, et al, Beyond A*: Better Planning with Transformers via Search Dynamics Bootstrapping, COLM’24]

Wall



Searchformer: A* Search as a Token Prediction 
Task

<trace><plan>
bos
create 0 2 c0 c3 
close  0 2 c0 c3 
create 0 1 c1 c2 
close  0 1 c1 c2 
create 0 0 c2 c1 
create 1 1 c2 c1 
close  0 0 c2 c1 
create 1 0 c3 c0 
close  1 0 c3 c0 
plan   0 2 
plan   0 1 
plan   0 0 
plan   1 0
eos

0 1 2

2

1

0

Start

Goal

Plan step

Frontier state

Closed state

Wall
<prompt>
bos
start 0 2
goal  1 0
wall  1 2
wall  2 0
eos



Train a Transformer to predict the next token via teacher forcing.

Training Method

Encoder

<prompt> <trace><plan>

DecoderEncoder

<prompt> <plan>

Decoder

Solution-Only Model Search-Augmented ModelModel

(100-400 tokens) (100-6500 tokens)



Search-Augmented vs. Solution-Only Models
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30x30 Maze Navigation
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Search-Augmented vs. Solution-Only Models

30x30 Maze Navigation

Search-augmented is much 
more parameter & data efficient!



Search-Augmented vs. Solution-Only Models

Search-augmented is much more parameter & data efficient!

Sokoban



How to go beyond?

Imitation 
Learning

Fine-tuning

Using solver’s trace to train the 
Transformer with teacher forcing

Fine-tune the model to achieve shorter 

trace but still leads to optimal plan!
(Reinforcement Learning task)

Search-augmented Models Searchformer



Search

Augmented

A*

Searchformer

A*

Searchformer

A*

0 5000 10000

Searchformer

A*

Sequence Length Averaged per Test Task
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Beyond A*: 
Improving search 
dynamics via 
bootstrapping



Improving search dynamics via bootstrapping

Thinking length 
becomes shorter

𝐼𝐿𝑅 =
solver len

searchformer len



Fine-tuning improves 

performance initially.

Improving search dynamics via bootstrapping



Searchformer 

outperforms largest 

solution-only model.

Improving search dynamics via bootstrapping



DualFormer (Searchformer v2)

[D. Su et al, Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces, ICLR’25]



DualFormer (Searchformer v2)

[D. Su et al, Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces, ICLR’25]

Slow thinking data



DualFormer (Searchformer v2)

[D. Su et al, Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces, ICLR’25]

Fast thinking data



DualFormer (Searchformer v2)

Dualformer automatically switches between fast mode (System 1) and slow mode (System 2) 
and works better for dedicated models on either modes. 



Fast mode performance

Slow mode performance

Dualformer

<plan>

<create>
Slow thinking 

Fast thinking 



Math Problems

Baseline Dualformer



Token Assorted (Searchformer v3)

[D. Su et al, Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning, arXiv’25]

Regular CoT

Assorted CoT



Token Assorted (Searchformer v3)

How the latent codes 
are constructed?

Using VQVAE



Better Performance



Shorter CoT



What’s wrong with Option One?

If search can solve the problem, why not 
using traditional symbolic solvers?



Option Two: Reasoning by Representation

Complicated search if we don’t 
understand the problem

Simple and straightforward to the 
destination if we understand the problem

Instead of reasoning exhaustively, we reason smartly.



Option Two: Reasoning by Representation

Neural 
Representation

Representation

(Traditional) Symbolic 
representation



Option Two: Reasoning by Representation

Emerging Symbolic 
Structure

Representation

Neural 
Representation

(Traditional) Symbolic 
representation



CoConut (Chain of Continuous Thought) 

[S. Hao et al, Training Large Language Models to Reason in a Continuous Latent Space, arXiv’24]



How to train Coconut?



Interpreting the embeddings



Ground Truth Solutions



Chain of thoughts lead to hallucinations

(Hallucination)

Hallucination 
edge
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Continuous Thoughts

(Hallucination)

(Wrong Target)

Wrong 
target
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3

1

2

3

1



Two-step Continuous Thought works!

(Correct Path)

3

1 2

3

1

2



Two-step Continuous Thought works!

3

1

22

3

1

Why the same continuous thoughts 
lead to different path?!

2 31

31 2

1



What’s 
inside?
Dead-end

1

Let’s probe!

“lempus” is not on the right path but for step=1, it is the most promising



What’s 
inside? Promising node → dead-end

Interestingly, it encodes all possible paths!

1 2



Performance in ProsQA



CoConut

Better performance than No-CoT
Shorter thinking process than CoT 



CoConut

Better performance than No-CoT
Shorter thinking process than CoT 

Cons
1. Latent tokens are not interpretable
2. Only tested on GSM8k



Reasoning Smartly: Modular Addition

𝑎 + 𝑏 = 𝑐 mod 𝑑

Does neural network have an implicit table to do retrieval? 



Learned representation = Fourier basis 

Why?  
[T. Zhou et al, Pre-trained Large Language Models Use Fourier Features to Compute Addition, NeurIPS’24]
[S. Kantamneni, Language Models Use Trigonometry to Do Addition, arXiv’25]

𝑎 + 𝑏 = 𝑐 mod 𝑑

Does neural network have an implicit table to do retrieval? 

Reasoning Smartly: Modular Addition



Minimal Problem Setup

One-hot(a) One-hot(𝒃) 𝒂 + 𝒃 = 𝒄 mod 𝑑

𝑞 hidden nodes 
(Quadratic Activation)

Bottom layer 

Top layer 

MSE Loss:      𝑀𝑖𝑛 Output – one−hot(𝒄) 2 

𝒘𝑎𝑗 𝒘𝑏𝑗

𝒘𝑐𝑗

𝑗

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]



What a Gradient Descent Solution look like?

Frequency

Hidden node index

𝑑 = 7, 𝑞 = 20

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]



Symmetry due to
Hermitian condition

Order-6 
solutions

What a Gradient Descent Solution look like?

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]



Order-6
Order-4

What a Gradient Descent Solution look like?

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]



Order-4 and order-6 
solutions really happen!

More Statistics on Gradient Descent Solutions

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]



Stronger 
weight decay

Effect of Weight Decay

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]



Why?  



How to Optimize?

𝒵1 𝒵2 𝒵3

The objective is highly nonlinear !!
However, nice algebraic structures exist! 

𝒵 = 𝑞≥0ڂ 𝒵𝑞 :  All 2-layer networks with different number of hidden nodes



How to Optimize?

𝒵1 𝒵2 𝒵3

The objective is highly nonlinear !!
However, nice algebraic structures exist! 

⟨𝒵, +, ∗⟩ is a semi-ring

𝒵 = 𝑞≥0ڂ 𝒵𝑞 :  All 2-layer networks with different number of hidden nodes

        Ring addition +:  Concatenate hidden nodes

        Ring multiplication *:  Kronecker production along the hidden dimensions   



Partial solution #1

𝒛syn
(𝑘)

∈ 𝑅c ∩ 𝑅n but 𝒛syn
(𝑘)

∉ 𝑅∗

Partial solution #2

𝒛𝜈
(𝑘)

∈ 𝑅∗ 

Composing Global Optimizers from Partial Ones

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]



Better solution

𝒛syn
(𝑘)

∗ 𝒛𝜈
(𝑘)

∈ 𝑅c ∩ 𝑅n ∩ 𝑅∗

Compositing 
solutions using 
ring multiplication ∗

Partial solution #1

𝒛syn
(𝑘)

∈ 𝑅c ∩ 𝑅n but 𝒛syn
(𝑘)

∉ 𝑅∗

Partial solution #2

𝒛𝜈
(𝑘)

∈ 𝑅∗ 

Composing Global Optimizers from Partial Ones

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]



Better solution

𝒛syn
(𝑘)

∗ 𝒛𝜈
(𝑘)

∈ 𝑅c ∩ 𝑅n ∩ 𝑅∗

Global Optimizer to MSE 
loss ℓ(𝒛) !

𝒛𝐹6 =
𝟏

𝟑
6


𝑘

𝒛syn
(𝑘)

∗ 𝒛𝜈
(𝑘)

Compositing 
solutions using 
ring multiplication ∗

Compositing 
solutions using 
ring addition +

Partial solution #1

𝒛syn
(𝑘)

∈ 𝑅c ∩ 𝑅n but 𝒛syn
(𝑘)

∉ 𝑅∗

Partial solution #2

𝒛𝜈
(𝑘)

∈ 𝑅∗ 

Composing Global Optimizers from Partial Ones

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]



Exemplar constructed global optimizers

Order-6 𝒛𝐹6 (2*3)

Order-4 (2*2, mixed with order-
6)

Perfect memorization 
(order-d per frequency)



Exemplar constructed global optimizers

Order-4 𝒛𝐹4/6 (2*2)

(mixed with order-6)

Perfect memorization 
(order-d per frequency)

Order-6 𝒛𝐹6 (2*3)



Exemplar constructed global optimizers

Perfect memorization 
(order-d per frequency)

Order-4 𝒛𝐹4/6 (2*2)

(mixed with order-6)

Order-6 𝒛𝐹6 (2*3)



Gradient Descent solutions matches with 
construction

𝑞 = 512, 𝑤𝑑 = 5 ⋅ 10−5



Gradient Descent solutions matches with 
construction

100% of the per-freq 
solutions are order-4/6



Gradient Descent solutions matches with 
construction

95% of the solutions are 
factorizable into “2*3” or “2*2” 



Gradient Descent solutions matches with 
construction

Factorization error is very small



Gradient Descent solutions matches with 
construction

98% of the solutions can be 
factorizable into the constructed forms



Shortest Path: Symbolic Emerged from Neural Rep

[A. Cohen et al, Spectral Journey: How Transformers Predict the Shortest Path, arXiv’25]

Task: Learn a 2-layer Transformer for predicting shortest path in the graph

<bos> 1 2 <e> ... <q> [source] [target] <p> [source] [node 1] [node 2] … [target]

1

2

3

4

5

6

7

source

target

Context Predicted Shortest path



What representations it 
learns?

1
2

3

4

5

6

7

𝑒𝑎

𝑒𝑏 𝑒𝑐

𝑒𝑑

𝑒𝑓

𝑒𝑔

𝑒ℎ

𝑒𝑙

<bos> 1 2 <e> ... <q> [source] [target] <p> [source] [node 1] [node 2] … [target]

Representation after the 
first Transformer layer 

(averaged over random edge order)

Neural Representation 



What representations it 
learns?

1
2

3

4

5

6

7 Line graph

𝑒𝑎
𝑒𝑎

𝑒𝑏 𝑒𝑐

𝑒𝑑

𝑒𝑓

𝑒𝑔

𝑒ℎ

𝑒𝑙

𝑒𝑏 𝑒𝑐

𝑒𝑑 𝑒𝑓

𝑒𝑔

𝑒𝑙

𝑒ℎ

Normalized 
Graph Laplacian

𝐿 = 𝐼 − 𝐷−1/2𝐴𝐷−1/2

Edge Embedding

Symbolic Representation 



What representations it 
learns?

1
2

3

4

5

6

7 Line graph

𝑒𝑎
𝑒𝑎

𝑒𝑏 𝑒𝑐

𝑒𝑑

𝑒𝑓

𝑒𝑔

𝑒ℎ

𝑒𝑙

𝑒𝑏 𝑒𝑐

𝑒𝑑 𝑒𝑓

𝑒𝑔

𝑒𝑙

𝑒ℎ

Normalized 
Graph Laplacian

𝐿 = 𝐼 − 𝐷−1/2𝐴𝐷−1/2

Edge Embedding

<bos> 1 2 <e> ... <q> [source] [target] <p> [source] [node 1] [node 2] … [target]

Representation after the 
first Transformer layer 

(averaged over random edge order)



What representations it 
learns?

Graph Edge Embedding 
of various dimensions

Computed edge embedding with trained Transformers

Normalized Correlation > 0.9



Spectral Line Navigator (SLN)

Simple Algorithms of Graph Shortest Path
 
1. Compute Line Graph ෨𝐺 of existing graph 𝐺
2. Compute eigenvectors of normalized 

Laplacian 𝐿( ෨𝐺)
3. 𝑖 =  𝑠𝑜𝑢𝑟𝑐𝑒 
4. While 𝑖 ≠ 𝑡𝑎𝑟𝑔𝑒𝑡 do 

             𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑗, 𝑘; 𝑖 ≔ 𝑣𝑖𝑗 − 𝑣𝑘,𝑡𝑎𝑟𝑔𝑒𝑡 2

             Find 𝑗 = argmin𝑗,𝑘  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑗, 𝑘; 𝑖) 

             Let 𝑖 =  𝑗

o3-mini-high implementation: https://chatgpt.com/share/67b027f9-fb28-8012-aa64-a1f7479134b7 

>99% optimal for small 
random graph (size < 10)

https://chatgpt.com/share/67b027f9-fb28-8012-aa64-a1f7479134b7


Possible Implications

Do neural networks end up learning more efficient 
symbolic representations that we don’t know?

Does gradient descent lead to a solution that 
can be reached by advanced algebraic operations?

Will gradient descent become obsolete, eventually?



Thanks!
93
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