
Reason by Search or by Representation?
A Path Towards Unifying Neural and

Symbolic Decision Making

Yuandong Tian
Research Scientist Director

Meta AI

Large Language Models (LLMs)

Conversational AI Content Generation AI Agents

Reasoning Planning

Large Language Models (LLMs)

Conversational AI Content Generation AI Agents

Reasoning Planning

LLM reasoning & planning is still a hard
problem

Number of Cities

Number of People

Trip planning

Meeting planning

[H. S. Zheng et al, NATURAL PLAN: Benchmarking LLMs on Natural Language Planning, arXiv’24]

LLM reasoning & planning is still a hard
problem

[Y. Zhou et al, GSM-∞: How Do Your LLMs Behave over Infinitely increasing context length and reasoning complexity?, arXiv’25]

Synthetic Dataset with infinite reasoning complexity Performance drops with increasing op counts.

LLM reasoning & planning is still a hard
problem

[Y. Zhou et al, GSM-∞: How Do Your LLMs Behave over Infinitely increasing context length and reasoning complexity?, arXiv’25]

Synthetic Dataset with infinite reasoning complexity Performance drops with increasing op counts.

Meeting planning
Question Answer

Complicated
mapping

What are the
Solutions?

What are the
Solutions?

Option One:

Reasoning by Search

Option Two:

Reasoning by Representation

Option One: Reasoning by Search

LLM Chain of Thoughts

If we cannot get the correct solution right now from LLMs,
use more compute to simulate the search behaviors.

Searchformer: A* Search as a Token Prediction
Task

0 1 2

2

1

0

Start

Goal

Plan step

Frontier state

Closed state

[L. Lehnert, et al, Beyond A*: Better Planning with Transformers via Search Dynamics Bootstrapping, COLM’24]

Wall

Searchformer: A* Search as a Token Prediction
Task

<trace><plan>
bos
create 0 2 c0 c3
close 0 2 c0 c3
create 0 1 c1 c2
close 0 1 c1 c2
create 0 0 c2 c1
create 1 1 c2 c1
close 0 0 c2 c1
create 1 0 c3 c0
close 1 0 c3 c0
plan 0 2
plan 0 1
plan 0 0
plan 1 0
eos

0 1 2

2

1

0

Start

Goal

Plan step

Frontier state

Closed state

Wall
<prompt>
bos
start 0 2
goal 1 0
wall 1 2
wall 2 0
eos

Train a Transformer to predict the next token via teacher forcing.

Training Method

Encoder

<prompt> <trace><plan>

DecoderEncoder

<prompt> <plan>

Decoder

Solution-Only Model Search-Augmented ModelModel

(100-400 tokens) (100-6500 tokens)

Search-Augmented vs. Solution-Only Models

Search-Augmented vs. Solution-Only Models

30x30 Maze Navigation

Search-Augmented vs. Solution-Only Models

30x30 Maze Navigation

Search-Augmented vs. Solution-Only Models

30x30 Maze Navigation

Search-augmented is much
more parameter & data efficient!

Search-Augmented vs. Solution-Only Models

Search-augmented is much more parameter & data efficient!

Sokoban

How to go beyond?

Imitation
Learning

Fine-tuning

Using solver’s trace to train the
Transformer with teacher forcing

Fine-tune the model to achieve shorter

trace but still leads to optimal plan!
(Reinforcement Learning task)

Search-augmented Models Searchformer

Search

Augmented

A*

Searchformer

A*

Searchformer

A*

0 5000 10000

Searchformer

A*

Sequence Length Averaged per Test Task

S
te

p
 1

S
te

p
 2

S
te

p
 3

Beyond A*:
Improving search
dynamics via
bootstrapping

Improving search dynamics via bootstrapping

Thinking length
becomes shorter

𝐼𝐿𝑅 =
solver len

searchformer len

Fine-tuning improves

performance initially.

Improving search dynamics via bootstrapping

Searchformer

outperforms largest

solution-only model.

Improving search dynamics via bootstrapping

DualFormer (Searchformer v2)

[D. Su et al, Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces, ICLR’25]

DualFormer (Searchformer v2)

[D. Su et al, Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces, ICLR’25]

Slow thinking data

DualFormer (Searchformer v2)

[D. Su et al, Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces, ICLR’25]

Fast thinking data

DualFormer (Searchformer v2)

Dualformer automatically switches between fast mode (System 1) and slow mode (System 2)
and works better for dedicated models on either modes.

Fast mode performance

Slow mode performance

Dualformer

<plan>

<create>
Slow thinking

Fast thinking

Math Problems

Baseline Dualformer

Token Assorted (Searchformer v3)

[D. Su et al, Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning, arXiv’25]

Regular CoT

Assorted CoT

Token Assorted (Searchformer v3)

How the latent codes
are constructed?

Using VQVAE

Better Performance

Shorter CoT

What’s wrong with Option One?

If search can solve the problem, why not
using traditional symbolic solvers?

Option Two: Reasoning by Representation

Complicated search if we don’t
understand the problem

Simple and straightforward to the
destination if we understand the problem

Instead of reasoning exhaustively, we reason smartly.

Option Two: Reasoning by Representation

Neural
Representation

Representation

(Traditional) Symbolic
representation

Option Two: Reasoning by Representation

Emerging Symbolic
Structure

Representation

Neural
Representation

(Traditional) Symbolic
representation

CoConut (Chain of Continuous Thought)

[S. Hao et al, Training Large Language Models to Reason in a Continuous Latent Space, arXiv’24]

How to train Coconut?

Interpreting the embeddings

Ground Truth Solutions

Chain of thoughts lead to hallucinations

(Hallucination)

Hallucination
edge

2

3

4

5

1

1

4

2
3

5

Continuous Thoughts

(Hallucination)

(Wrong Target)

Wrong
target

2

3

1

2

3

1

Two-step Continuous Thought works!

(Correct Path)

3

1 2

3

1

2

Two-step Continuous Thought works!

3

1

22

3

1

Why the same continuous thoughts
lead to different path?!

2 31

31 2

1

What’s
inside?
Dead-end

1

Let’s probe!

“lempus” is not on the right path but for step=1, it is the most promising

What’s
inside? Promising node → dead-end

Interestingly, it encodes all possible paths!

1 2

Performance in ProsQA

CoConut

Better performance than No-CoT
Shorter thinking process than CoT

CoConut

Better performance than No-CoT
Shorter thinking process than CoT

Cons
1. Latent tokens are not interpretable
2. Only tested on GSM8k

Reasoning Smartly: Modular Addition

𝑎 + 𝑏 = 𝑐 mod 𝑑

Does neural network have an implicit table to do retrieval?

Learned representation = Fourier basis

Why?
[T. Zhou et al, Pre-trained Large Language Models Use Fourier Features to Compute Addition, NeurIPS’24]
[S. Kantamneni, Language Models Use Trigonometry to Do Addition, arXiv’25]

𝑎 + 𝑏 = 𝑐 mod 𝑑

Does neural network have an implicit table to do retrieval?

Reasoning Smartly: Modular Addition

Minimal Problem Setup

One-hot(a) One-hot(𝒃) 𝒂 + 𝒃 = 𝒄 mod 𝑑

𝑞 hidden nodes
(Quadratic Activation)

Bottom layer

Top layer

MSE Loss: 𝑀𝑖𝑛 Output – one−hot(𝒄) 2

𝒘𝑎𝑗 𝒘𝑏𝑗

𝒘𝑐𝑗

𝑗

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

What a Gradient Descent Solution look like?

Frequency

Hidden node index

𝑑 = 7, 𝑞 = 20

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Symmetry due to
Hermitian condition

Order-6
solutions

What a Gradient Descent Solution look like?

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Order-6
Order-4

What a Gradient Descent Solution look like?

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Order-4 and order-6
solutions really happen!

More Statistics on Gradient Descent Solutions

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Stronger
weight decay

Effect of Weight Decay

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Why?

How to Optimize?

𝒵1 𝒵2 𝒵3

The objective is highly nonlinear !!
However, nice algebraic structures exist!

𝒵 = 𝑞≥0ڂ 𝒵𝑞 : All 2-layer networks with different number of hidden nodes

How to Optimize?

𝒵1 𝒵2 𝒵3

The objective is highly nonlinear !!
However, nice algebraic structures exist!

⟨𝒵, +, ∗⟩ is a semi-ring

𝒵 = 𝑞≥0ڂ 𝒵𝑞 : All 2-layer networks with different number of hidden nodes

 Ring addition +: Concatenate hidden nodes

 Ring multiplication *: Kronecker production along the hidden dimensions

Partial solution #1

𝒛syn
(𝑘)

∈ 𝑅c ∩ 𝑅n but 𝒛syn
(𝑘)

∉ 𝑅∗

Partial solution #2

𝒛𝜈
(𝑘)

∈ 𝑅∗

Composing Global Optimizers from Partial Ones

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Better solution

𝒛syn
(𝑘)

∗ 𝒛𝜈
(𝑘)

∈ 𝑅c ∩ 𝑅n ∩ 𝑅∗

Compositing
solutions using
ring multiplication ∗

Partial solution #1

𝒛syn
(𝑘)

∈ 𝑅c ∩ 𝑅n but 𝒛syn
(𝑘)

∉ 𝑅∗

Partial solution #2

𝒛𝜈
(𝑘)

∈ 𝑅∗

Composing Global Optimizers from Partial Ones

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Better solution

𝒛syn
(𝑘)

∗ 𝒛𝜈
(𝑘)

∈ 𝑅c ∩ 𝑅n ∩ 𝑅∗

Global Optimizer to MSE
loss ℓ(𝒛) !

𝒛𝐹6 =
𝟏

𝟑
6

𝑘

𝒛syn
(𝑘)

∗ 𝒛𝜈
(𝑘)

Compositing
solutions using
ring multiplication ∗

Compositing
solutions using
ring addition +

Partial solution #1

𝒛syn
(𝑘)

∈ 𝑅c ∩ 𝑅n but 𝒛syn
(𝑘)

∉ 𝑅∗

Partial solution #2

𝒛𝜈
(𝑘)

∈ 𝑅∗

Composing Global Optimizers from Partial Ones

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Exemplar constructed global optimizers

Order-6 𝒛𝐹6 (2*3)

Order-4 (2*2, mixed with order-
6)

Perfect memorization
(order-d per frequency)

Exemplar constructed global optimizers

Order-4 𝒛𝐹4/6 (2*2)

(mixed with order-6)

Perfect memorization
(order-d per frequency)

Order-6 𝒛𝐹6 (2*3)

Exemplar constructed global optimizers

Perfect memorization
(order-d per frequency)

Order-4 𝒛𝐹4/6 (2*2)

(mixed with order-6)

Order-6 𝒛𝐹6 (2*3)

Gradient Descent solutions matches with
construction

𝑞 = 512, 𝑤𝑑 = 5 ⋅ 10−5

Gradient Descent solutions matches with
construction

100% of the per-freq
solutions are order-4/6

Gradient Descent solutions matches with
construction

95% of the solutions are
factorizable into “2*3” or “2*2”

Gradient Descent solutions matches with
construction

Factorization error is very small

Gradient Descent solutions matches with
construction

98% of the solutions can be
factorizable into the constructed forms

Shortest Path: Symbolic Emerged from Neural Rep

[A. Cohen et al, Spectral Journey: How Transformers Predict the Shortest Path, arXiv’25]

Task: Learn a 2-layer Transformer for predicting shortest path in the graph

<bos> 1 2 <e> ... <q> [source] [target] <p> [source] [node 1] [node 2] … [target]

1

2

3

4

5

6

7

source

target

Context Predicted Shortest path

What representations it
learns?

1
2

3

4

5

6

7

𝑒𝑎

𝑒𝑏 𝑒𝑐

𝑒𝑑

𝑒𝑓

𝑒𝑔

𝑒ℎ

𝑒𝑙

<bos> 1 2 <e> ... <q> [source] [target] <p> [source] [node 1] [node 2] … [target]

Representation after the
first Transformer layer

(averaged over random edge order)

Neural Representation

What representations it
learns?

1
2

3

4

5

6

7 Line graph

𝑒𝑎
𝑒𝑎

𝑒𝑏 𝑒𝑐

𝑒𝑑

𝑒𝑓

𝑒𝑔

𝑒ℎ

𝑒𝑙

𝑒𝑏 𝑒𝑐

𝑒𝑑 𝑒𝑓

𝑒𝑔

𝑒𝑙

𝑒ℎ

Normalized
Graph Laplacian

𝐿 = 𝐼 − 𝐷−1/2𝐴𝐷−1/2

Edge Embedding

Symbolic Representation

What representations it
learns?

1
2

3

4

5

6

7 Line graph

𝑒𝑎
𝑒𝑎

𝑒𝑏 𝑒𝑐

𝑒𝑑

𝑒𝑓

𝑒𝑔

𝑒ℎ

𝑒𝑙

𝑒𝑏 𝑒𝑐

𝑒𝑑 𝑒𝑓

𝑒𝑔

𝑒𝑙

𝑒ℎ

Normalized
Graph Laplacian

𝐿 = 𝐼 − 𝐷−1/2𝐴𝐷−1/2

Edge Embedding

<bos> 1 2 <e> ... <q> [source] [target] <p> [source] [node 1] [node 2] … [target]

Representation after the
first Transformer layer

(averaged over random edge order)

What representations it
learns?

Graph Edge Embedding
of various dimensions

Computed edge embedding with trained Transformers

Normalized Correlation > 0.9

Spectral Line Navigator (SLN)

Simple Algorithms of Graph Shortest Path

1. Compute Line Graph ෨𝐺 of existing graph 𝐺
2. Compute eigenvectors of normalized

Laplacian 𝐿(෨𝐺)
3. 𝑖 = 𝑠𝑜𝑢𝑟𝑐𝑒
4. While 𝑖 ≠ 𝑡𝑎𝑟𝑔𝑒𝑡 do

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑗, 𝑘; 𝑖 ≔ 𝑣𝑖𝑗 − 𝑣𝑘,𝑡𝑎𝑟𝑔𝑒𝑡 2

 Find 𝑗 = argmin𝑗,𝑘 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑗, 𝑘; 𝑖)

 Let 𝑖 = 𝑗

o3-mini-high implementation: https://chatgpt.com/share/67b027f9-fb28-8012-aa64-a1f7479134b7

>99% optimal for small
random graph (size < 10)

https://chatgpt.com/share/67b027f9-fb28-8012-aa64-a1f7479134b7

Possible Implications

Do neural networks end up learning more efficient
symbolic representations that we don’t know?

Does gradient descent lead to a solution that
can be reached by advanced algebraic operations?

Will gradient descent become obsolete, eventually?

Thanks!
93

	Slide 1: Reason by Search or by Representation? A Path Towards Unifying Neural and Symbolic Decision Making
	Slide 2: Large Language Models (LLMs)
	Slide 3: Large Language Models (LLMs)
	Slide 4: LLM reasoning & planning is still a hard problem
	Slide 5: LLM reasoning & planning is still a hard problem
	Slide 6: LLM reasoning & planning is still a hard problem
	Slide 7: What are the Solutions?
	Slide 8: What are the Solutions?
	Slide 9: Option One: Reasoning by Search
	Slide 10: Searchformer: A* Search as a Token Prediction Task
	Slide 11: Searchformer: A* Search as a Token Prediction Task
	Slide 12: Training Method
	Slide 13: Search-Augmented vs. Solution-Only Models
	Slide 14: Search-Augmented vs. Solution-Only Models
	Slide 15: Search-Augmented vs. Solution-Only Models
	Slide 16: Search-Augmented vs. Solution-Only Models
	Slide 17: Search-Augmented vs. Solution-Only Models
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: DualFormer (Searchformer v2)
	Slide 24: DualFormer (Searchformer v2)
	Slide 25: DualFormer (Searchformer v2)
	Slide 26: DualFormer (Searchformer v2)
	Slide 27
	Slide 28: Math Problems
	Slide 30: Token Assorted (Searchformer v3)
	Slide 31: Token Assorted (Searchformer v3)
	Slide 32: Better Performance
	Slide 33: Shorter CoT
	Slide 35: What’s wrong with Option One?
	Slide 36: Option Two: Reasoning by Representation
	Slide 37: Option Two: Reasoning by Representation
	Slide 38: Option Two: Reasoning by Representation
	Slide 39: CoConut (Chain of Continuous Thought)
	Slide 40: How to train Coconut?
	Slide 41: Interpreting the embeddings
	Slide 42: Ground Truth Solutions
	Slide 43: Chain of thoughts lead to hallucinations
	Slide 44: Continuous Thoughts
	Slide 45: Two-step Continuous Thought works!
	Slide 46: Two-step Continuous Thought works!
	Slide 47: What’s inside?
	Slide 48: What’s inside?
	Slide 49: Performance in ProsQA
	Slide 50: CoConut
	Slide 51: CoConut
	Slide 52: Reasoning Smartly: Modular Addition
	Slide 53
	Slide 54: Minimal Problem Setup
	Slide 56: What a Gradient Descent Solution look like?
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: Why? 🤔
	Slide 65: How to Optimize?
	Slide 66: How to Optimize?
	Slide 72: Composing Global Optimizers from Partial Ones
	Slide 73: Composing Global Optimizers from Partial Ones
	Slide 74: Composing Global Optimizers from Partial Ones
	Slide 75: Exemplar constructed global optimizers
	Slide 76: Exemplar constructed global optimizers
	Slide 77: Exemplar constructed global optimizers
	Slide 78: Gradient Descent solutions matches with construction
	Slide 79: Gradient Descent solutions matches with construction
	Slide 80: Gradient Descent solutions matches with construction
	Slide 81: Gradient Descent solutions matches with construction
	Slide 82: Gradient Descent solutions matches with construction
	Slide 86: Shortest Path: Symbolic Emerged from Neural Rep
	Slide 87: What representations it learns?
	Slide 88: What representations it learns?
	Slide 89: What representations it learns?
	Slide 90: What representations it learns?
	Slide 91: Spectral Line Navigator (SLN)
	Slide 92
	Slide 93: Thanks!

