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Large Language Models (LLMs)

Conversational AI Content Generation AI Agents

Reasoning Planning



The Progress of Large Models



The Data Usage



Comparison between Human and SoTA LMs

Training Data efficiency Power Consumption Adaptation to New Tasks How to make decision?

Human Brain
< 10B text tokens, a lot of 
sensory inputs 

Learning: ~20W 
Inference/Thinking: ~20W

Learn with a few examples
By casual relationships and 
deep understanding

Sota LMs ~10T-50T tokens
Learning: at least @ MWh  
Inference/Thinking: 1W-30W

Hundreds / Thousands of data 
points. May fail to generalize

Correlation & Pattern 
Matching

Estimated #tokens consumed by human in the life time: 70 years * 300 days / year * 12 hours / day * 3600 seconds / hours * 10 tokens / second = 9.1B

Question: Is our AI as strong as humans yet?





How we should do our research from now on?

• The “Data Wall problem”
• We may have used all the available data on the Internet. 
• How to deal with corner cases / personalization /  private data?
• Human is still much more efficient than current AI

• Everyone is GPU poor
• What are new axes to scale? GPUs are never enough.
• Data itself cannot extrapolate, only human insights can. 



The New (a.k.a. Old) Scaling Axis

The exponential 
search space

The exponential 
search space

Human  
insights

The exponential 
search space

Laws
GPUs

Question: Can we scale the scaling laws?



How we get Scaling Laws?

1. Collect the experiments  
2. Form hypothesis (linear, power-law, etc) 
3. Extrapolate

Steps:

Still pure statistics and need exponential data. 
(No leverage of the knowledge of architecture/data)



How does deep learning work?

Input Output 

“Some Nonlinear Transformation”This is an apple



Black-box versus White-box

Black box White box



What routes should we take?

Expressibility

Optimization

Generalization

+ -
+- Architecture ✓     

training dynamics ✘

Architecture ✘     
training dynamics ✓ 

Architecture ✘     
training dynamics ✘

How about 

Architecture ✓ 

training dynamics ✓ 



Start From the First Principle
• Training follows Gradient and its variants (SGD, Adams, etc) 

• First principle  Understand the behavior of the neural 
networks by checking the gradient dynamics induced by the 
neural architectures.

• Sounds complicated.. Is that possible? Yes

𝒘̇ ≔
d𝒘
d𝑡

= − ∇𝒘𝐽(𝒘)

Architecture ✓ 

training dynamics ✓ 



What Gradient Descent Analysis gives us?

Short-term:  
Finding Simple Structures 
(Low-rank, sparsity)

Long-term: 
How the representation is learned 
(Key to the success of deep models)

Leverage Them in Practical Algorithms



Finding Nice Structure: Attention Sparsity

Seq class 
(𝑚, 𝑛1) 

Seq class 
(𝑚, 𝑛2) 

 ~𝑐𝑙|𝑛1

 ~𝑐𝑙|𝑛2

Contextual  
Sparsity 
(query-dependent)

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurIPS’23]

Attention = Learnable TF-IDF (Term 
Frequency, Inverse Document Frequency) 

[Y. Tian et al, JoMA: Demystifying Multilayer Transformers via JOint Dynamics of MLP and Attention, ICLR’24]



Attention Sinks: Initial tokens draw strong attentions

First few tokens!!
Average attention logits in Llama-2-7B over 256 sentences

• Observation: Initial tokens have large attention scores, even if they're not semantically significant.  
• Attention Sink: Tokens that disproportionately attract attention irrespective of their relevance.

 [G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]



StreamingLLM

Key design: Position Rolling  
	 For all tokens, use their positions within cache to compute positional encoding! 
	  Token distance never exceeds pre-trained context window!



StreamingLLM



StreamingLLM: stable PPL, constant vRAM

Stable PPL

Constant vRAM

Sliding Window with Re-computation
StreamingLLM22x faster



Impact

• 1k+ citations
• Used in GPT OSS models in pre-training



Long-term: How Network finds Representation



Type of Representations 

Representation

(Traditional) Symbolic 
representation

Neural 
Representation🤔



Why Neural Representation is so effective?
(Traditional) Symbolic 

representation

Shall we just acknowledge that  
as “divine benevolence”?

Representation

[Garfinkle, Allie (2024-08-02). "Character.AI's Noam Shazeer on what we know about AI—and what we don't". Fortune. Retrieved 2025-03-06.]
[N. Shazeer, GLU Variants Improve Transformer]

Neural 
Representation🤔

https://fortune.com/2024/08/02/character-ais-noam-shazeer-what-we-know-about-ai/


Why there is Grokking Behavior?

[A. Power et. al, Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets]



Feature Emergence through Grokking



Emerging Symbolic  
Structure

(Traditional) Symbolic 
representation

Representation

🚨 Mechanism of Emergent Representation

[Y. Tian, Composing Global Solutions to Reasoning Tasks via Algebraic Objects in Neural Nets, NeurIPS’25]
[Y. Tian, Provable Scaling Laws of Feature Emergence from Learning Dynamics of Grokking, arXiv’25]

Neural 
Representation🤔



𝑎 + 𝑏 = 𝑐 mod 𝑑

Does neural network have an implicit table to do retrieval? 

Modular Addition



Learned representation = Fourier basis 🤯

Why? 🤔 
[T. Zhou et al, Pre-trained Large Language Models Use Fourier Features to Compute Addition, NeurIPS’24] 
[S. Kantamneni, Language Models Use Trigonometry to Do Addition, arXiv’25]

𝑎 + 𝑏 = 𝑐 mod 𝑑

Does neural network have an implicit table to do retrieval? 

Modular Addition



Minimal Problem Setup

One-hot(a) One-hot( )𝒃

 hidden nodes  
(Quadratic Activation)
𝑞

Bottom layer 

Top layer 

MSE Loss:      𝑀𝑖𝑛   Output – one−hot(𝒄)
2
  

𝒘𝑎𝑗 𝒘𝑏𝑗

𝒘𝑐𝑗

𝑗

[Y. Tian, Composing Global Solutions to Reasoning Tasks via Algebraic Objects in Neural Nets, NeurIPS’25]

a + b = c mod d



What a Gradient Descent Solution look like?

Frequency

Hidden node index

𝑑 = 7, 𝑞 = 20

[Y. Tian, Composing Global Solutions to Reasoning Tasks via Algebraic Objects in Neural Nets, NeurIPS’25]



Symmetry due to 
Hermitian condition

Order-6  
solutions

What a Gradient Descent Solution look like?



Order-6 
Order-4

What a Gradient Descent Solution look like?



Order-4 and order-6  
solutions really happen!

More Statistics on Gradient Descent Solutions

Grokking Behaviors!



Stronger  
weight decay

Effect of Weight Decay



Why? 🤔 



Nice algebraic structures exist for the solutions 

:  All 2-layer networks with different number of hidden nodes𝒵 = ⋃
q≥0

𝒵q

𝒵1 𝒵2 𝒵3



Nice algebraic structures exist for the solutions 

:  All 2-layer networks with different number of hidden nodes𝒵 = ⋃
q≥0

𝒵q

𝒵1 𝒵2 𝒵3

Ring addition :  Concatenate hidden nodes 
Ring multiplication *:  Kronecker production along the hidden dimensions

+

 is a semi-ring⟨𝒵, + , * ⟩



Ring Homomorphism
A function  is a ring homomorphism, if  

•
•
•

r(z) : 𝒵 ↦ ℂ
r(1) = 1
r(z1 + z2) = r(z1) + r(z2)
r(z1 * z2) = r(z1)r(z2)



Ring Homomorphism

🎯  and  are ring homomorphisms! 𝑟𝑘1𝑘2𝑘(𝒛) 𝑟𝑝𝑘1𝑘2𝑘(𝒛)

A function  is a ring homomorphism, if  
•
•
•

r(z) : 𝒵 ↦ ℂ
r(1) = 1
r(z1 + z2) = r(z1) + r(z2)
r(z1 * z2) = r(z1)r(z2)



Ring Homomorphism

🎯  and  are ring homomorphisms! 𝑟𝑘1𝑘2𝑘(𝒛) 𝑟𝑝𝑘1𝑘2𝑘(𝒛)

ℓ𝑘(𝒛) = − 2𝑟𝑘𝑘𝑘 + ∑
𝑘1𝑘2

𝑟𝑘1𝑘2𝑘

2
+

1
4

  ∑
𝑝∈{𝑎,𝑏}

∑
𝑘′￼

𝑟𝑝,𝑘′￼,−𝑘′￼,𝑘

2

+
1
4 ∑

𝑚≠0
∑

𝑝∈{𝑎,𝑏}
∑

𝑘′￼

𝑟𝑝,𝑘′￼,𝑚−𝑘′￼,𝑘

2
MSE Loss

A function  is a ring homomorphism, if  
•
•
•

r(z) : 𝒵 ↦ ℂ
r(1) = 1
r(z1 + z2) = r(z1) + r(z2)
r(z1 * z2) = r(z1)r(z2)



Ring Homomorphism

🎯  and  are ring homomorphisms! 𝑟𝑘1𝑘2𝑘(𝒛) 𝑟𝑝𝑘1𝑘2𝑘(𝒛)

ℓ𝑘(𝒛) = − 2𝑟𝑘𝑘𝑘 + ∑
𝑘1𝑘2

𝑟𝑘1𝑘2𝑘

2
+

1
4

  ∑
𝑝∈{𝑎,𝑏}

∑
𝑘′￼

𝑟𝑝,𝑘′￼,−𝑘′￼,𝑘

2

+
1
4 ∑

𝑚≠0
∑

𝑝∈{𝑎,𝑏}
∑

𝑘′￼

𝑟𝑝,𝑘′￼,𝑚−𝑘′￼,𝑘

2

Partial solution  satisfies 𝒛1 𝑟𝑘1𝑘2𝑘(𝒛1) = 0

Partial solution  satisfies 𝒛2 𝑟𝑝𝑘′￼,−𝑘′￼,𝑘(𝒛2) = 0

MSE Loss

A function  is a ring homomorphism, if  
•
•
•

r(z) : 𝒵 ↦ ℂ
r(1) = 1
r(z1 + z2) = r(z1) + r(z2)
r(z1 * z2) = r(z1)r(z2)



Ring Homomorphism

🎯  and  are ring homomorphisms! 𝑟𝑘1𝑘2𝑘(𝒛) 𝑟𝑝𝑘1𝑘2𝑘(𝒛)

ℓ𝑘(𝒛) = − 2𝑟𝑘𝑘𝑘 + ∑
𝑘1𝑘2

𝑟𝑘1𝑘2𝑘

2
+

1
4

  ∑
𝑝∈{𝑎,𝑏}

∑
𝑘′￼

𝑟𝑝,𝑘′￼,−𝑘′￼,𝑘

2

+
1
4 ∑

𝑚≠0
∑

𝑝∈{𝑎,𝑏}
∑

𝑘′￼

𝑟𝑝,𝑘′￼,𝑚−𝑘′￼,𝑘

2

Partial solution  satisfies 𝒛1 𝑟𝑘1𝑘2𝑘(𝒛1) = 0

Partial solution  satisfies 𝒛2 𝑟𝑝𝑘′￼,−𝑘′￼,𝑘(𝒛2) = 0
 satisfies both 𝒛 = 𝒛1 ∗ 𝒛2 𝑟𝑘1𝑘2𝑘(𝒛) = 𝑟𝑝𝑘′￼,−𝑘′￼,𝑘(𝒛) = 0

MSE Loss

A function  is a ring homomorphism, if  
•
•
•

r(z) : 𝒵 ↦ ℂ
r(1) = 1
r(z1 + z2) = r(z1) + r(z2)
r(z1 * z2) = r(z1)r(z2)



Partial Solution #1

Partial Solution #2

Composing Global Solutions from Partial Ones

z(k)
syn ∈ Rc ∩ Rn  but  z(k)

syn ∉ R*

z(k)
v ∈ R*



Better Solution

Compositing 
solutions using  
ring multiplication ∗

Partial Solution #1

Partial Solution #2

Composing Global Solutions from Partial Ones

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, NeurIPS’25]

z(k)
syn ∈ Rc ∩ Rn  but  z(k)

syn ∉ R*

z(k)
v ∈ R*

z(k)
syn * z(k)

v ∈ Rc ∩ Rn ∩ R*



Global Solutions to MSE loss!

Compositing 
solutions using  
ring multiplication ∗

Compositing  
solutions using  
ring addition +

Composing Global Solutions from Partial Ones

Better SolutionPartial Solution #1

Partial Solution #2

z(k)
syn ∈ Rc ∩ Rn  but  z(k)

syn ∉ R*

z(k)
v ∈ R*

z(k)
syn * z(k)

v ∈ Rc ∩ Rn ∩ R* zF6 =
1

3 6 ∑
k

z(k)
syn * z(k)

v

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, NeurIPS’25]



Order-4 (2*2, mixed with order-6)

Perfect memorization 
(order-d per frequency)

Optimal solutions can be constructed

Order-6  (2*3)zF6



Order-4  (2*2) 
(mixed with order-6)

zF4/6

Perfect memorization 
(order-d per frequency)

Order-6  (2*3)zF6

Optimal solutions can be constructed



Perfect memorization 
(order-d per frequency)

Order-4  (2*2) 
(mixed with order-6)

zF4/6

Order-6  (2*3)zF6

Optimal solutions can be constructed



Gradient Descent solutions matches with construction

𝑞 = 512,  𝑤𝑑 = 5 ⋅ 10−5



Gradient Descent solutions matches with construction

100% of the per-freq  
solutions are order-4/6



Gradient Descent solutions matches with construction

95% of the solutions are  
factorizable into “2*3” or “2*2” 



Gradient Descent solutions matches with construction

Factorization error is very small



Gradient Descent solutions matches with construction

98% of the solutions can be  
factorizable into the constructed forms



Gradient Descent solutions matches with construction

98% of the solutions can be  
factorizable into the constructed forms

Emerging Symbolic structure 
from neural network training



How about Gradient Dynamics?

𝒛 = 𝒚 ∗ 𝒛′￼

𝒆 ∗ 𝒛′￼

Theorem [The Occam’s Razer] If  and both  and  are global 
optimal, then there exists a path of zero loss connecting  and ’.

𝒛 = 𝒚 ∗ 𝒛’ 𝒛 𝒛’
𝒛 𝒛

𝑙(𝒛) = 0
  

is a “pseudo” identity 
𝒆 = [1, 0, 0,  . . ,  0]



How about Gradient Dynamics?

𝒛 = 𝒚 ∗ 𝒛′￼

𝒆 ∗ 𝒛′￼

Theorem [The Occam’s Razer] If  and both  and  are global 
optimal, then there exists a path of zero loss connecting  and ’.

𝒛 = 𝒚 ∗ 𝒛’ 𝒛 𝒛’
𝒛 𝒛

𝑙(𝒛) = 0

L2 regularization will push the solution to  (simpler solutions),  
since 

𝒆 ∗ 𝒛’
𝒆 ∗ 𝒛′￼ 2 ≤ 𝒚 ∗ 𝒛′￼

2

  
is a “pseudo” identity 
𝒆 = [1, 0, 0,  . . ,  0]



Limitation of the analysis

How such solutions are achieved — No analysis with gradient dynamics 

Only apply to a combination of MSE loss + all data + quadratic activation

Next work is to crack the grokking behaviors from gradient dynamics



Grokking (Delayed Generalization)

Memorization Generalization

Understanding Grokking Behavior

[Y. Tian, Provable Scaling Laws of Feature Emergence from Learning Dynamics of Grokking, arXiv’25]



Stages of Grokking Behaviors 

 random𝐺𝐹

Random  𝑉

Random  𝑊

 carries 
info of  
𝐺𝐹 ~𝑌

 𝑉ridge

Random  𝑊

target ~𝑌 target ~𝑌

 random𝐹  random𝐹  carries 
info of 
𝐺𝐹 ~𝑌 − 𝑌̂

 updated𝑉

Learned  𝑊

target ~𝑌

 updated𝐹 𝐺𝐹 ≈ 0

 updated𝑉

Complete   𝑊

𝑌̂ ≈ ~𝑌

(a) Initialization (b) After Lazy learning (c) After Independent 
Feature Learning

(d) After Interactive 
Feature learning

̂Y = σ(XW )V



Stages I: NTK regime (Lazy Learning)

Vridge = (F̃⊤F̃ + ηI)−1F̃⊤Ỹ

min
V,W

1
2

∥P⊥
1 (Y − σ(XW )V )∥2

F

Objective function ( )Y ∈ ℝn×M, X ∈ ℝn×d

Ridge Regression (with weight decay )η
Ỹ = P⊥

1 Y
F̃ = P⊥

1 FF = σ(XW )

 carries 
info of  
𝐺𝐹 ~𝑌

 𝑉ridge

Random  𝑊

target ~𝑌

 random𝐹

Here  is  
the zero-mean projection

P⊥
1 = In − 11⊤/n



The backpropagated Gradient GF

GF = η(F̃F̃⊤ + ηI)−1ỸỸ⊤F̃(F̃⊤F̃ + ηI)−1

At Ridge regression solution Vridge
 carries 

info of  
𝐺𝐹 ~𝑌

 𝑉ridge

Random  𝑊

target ~𝑌

 random𝐹

Looks complicated… any interesting properties?



The backpropagated Gradient GF

If weight decay , then  (no feature learning) 
If weight decay is large, then   
If number of hidden nodes , then  (NTK regime)

η = 0 GF = 0
GF → 0

K → + ∞ GF → 0

Key insights



The regime that feature learning happens

𝜂 = 0 , Memorization, no feature learning 𝐺𝐹 = 0

 small𝜂

 large𝜂 , Underfitting, no feature learning 𝐺𝐹 ≈ 0

 small𝐾  large𝐾 𝐾 → + ∞

𝐺𝐹 ≈ 0

Memorization
no feature learning

Underfitting

𝐺𝐹 ≠ 0

feature learning 
happens 

NTK regime

Weight 
Decay  𝜂

Network Width K

 noisy𝐺𝐹



Stage II: The Energy Function ℰ(w)

GF ∝ ηỸỸ⊤F

Component-wise  
dynamics



Connect Emerging Features with Data / Architecture
We discover that there exists an energy function  that governs the feature learning processℰ(w)

Learned features as multiple 
local maxima of  ℰ(w)

Landscape is  
maintained

Landscape collapses into  
Memorization features



Group Representation Theory



Emerging Features are Symbolic!

What is that specifically?



Emerging Features are More Efficient!



How much is sufficient? Provable Scaling Laws
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Non Abelian group

O(M log M )



Boundary between Memorization and Generalization

At the boundary,  
large Learning rate leads  
to memorization (higher )ℰ

Small learning rate 0.001 Mid learning rate 0.002 Large learning rate 0.005



Boundary between Memorization and Generalization



Stage III: Interactive Feature Learning

 carries 
info of 
𝐺𝐹 ~𝑌 − 𝑌̂

 updated𝑉

Learned  𝑊

target ~𝑌

 updated𝐹



Possible Implications

Do neural networks end up learning more efficient  
symbolic representations that we don’t know?

Does gradient descent lead to a solution that  
can be reached by advanced algebraic operations?

Will gradient descent become obsolete, eventually?

Here this work is just a tiny step. 

Next Step: Scale it to more complicated  
tasks and architectures



Thanks!
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