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Large Language Models (LLMs

OUTPUF

Conversational Al

Standard Prompting

tennis balls does he have now?
A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many

A: The answer is 27. x

)

Content Generation

Chain of Thought Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

J

Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23-20=3. T
bought 6 more apples, so they have 3 + 6 = 9. The

Cnswer is9. )

Reasoning
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The Progress of Large Models
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The Data Usage

facebook Art

Projections of the stock of public text and data usage

Effective stock (number of tokens)
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Comparison between Human and SoTA LMs

Question: Is our Al as strong as humans yet?

Training Data efficiency Power Consumption Adaptation to New Tasks How to make decision?

Human Brain < 10B text tokens, a lot of Learning: ~20W Learn with a few examples By casual relationships and
sensory inputs Inference/Thinking: ~20W P deep understanding
Sota LMs ~10T-50T tokens Learning: at least @ MWh Hundreds / Thousands of data Correlation & Pattern

Inference/Thinking: 1W-30W points. May fail to generalize =~ Matching

Estimated #tokens consumed by human in the life time: 70 years * 300 days / year * 12 hours / day * 3600 seconds / hours * 10 tokens / second =9.1B
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& Andrej Karpathy & (A e

'w @karpathy

My pleasure to come on Dwarkesh last week, | thought the questions
and conversation were really good.

| re-watched the pod just now too. First of all, yes | know, and I'm sorry
that | speak so fast :). It's to my detriment because sometimes my
speaking thread out-executes my thinking thread, so | think | botched a
few explanations due to that, and sometimes | was also nervous that I'm
going too much on a tangent or too deep into something relatively
spurious. Anyway, a few notes/pointers:

AGI timelines. My comments on AGI timelines looks to be the most
trending part of the early response. This is the "decade of agents" is a
reference to this earlier tweet x.com/karpathy/statu... Basically my Al
timelines are about 5-10X pessimistic w.r.t. what you'll find in your
neighborhood SF Al house party or on your twitter timeline, but still quite
optimistic w.r.t. arising tide of Al deniers and skeptics. The apparent
conflict is not: imo we simultaneously 1) saw a huge amount of progress
in recent years with LLMs while 2) there is still a lot of work remaining
(grunt work, integration work, sensors and actuators to the physical
world, societal work, safety and security work (jailbreaks, poisoning,
etc.)) and also research to get done before we have an entity that you'd
prefer to hire over a person for an arbitrary job in the world. | think that
overall, 10 years should otherwise be a very bullish timeline for AGI, it's
only in contrast to present hype that it doesn't feel that way.



How we should do our research from now on?

* The “Data Wall problem”
* We may have used all the available data on the Internet.
* How to deal with corner cases / personalization / private data?
* Human is still much more efficient than current Al

* Everyone is GPU poor
* What are new axes to scale? GPUs are never enough.
* Data itself cannot extrapolate, only human insights can.



The New (a.k.a. Old) Scaling Axis

Human
insights

The exponential
search space

The exponential
search space

The exponential
search space

Question: Can we scale the scaling laws?
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Parameters

How we get Scaling Laws?

1T Approach Coeff. a where N,,; o« C*  Coeff. b where D,p o ct
1. Minimum over training curves 0.50 (0.488,0.502) 0.50 (0.501,0.512)
2. IsoFLOP profiles 0.49 (0.462,0.534) 0.51 (0.483,0.529)
100B —— Approach 1 3. Parametric modelling of the loss 0.46 (0.454, 0.455) 0.54 (0.542,0.543)
Approach 2 Kaplan et al. (2020) 0.73 0.27
—— Approach 3
108 ---- Kaplan et al (2020)
% Chinchilla (70B) Steps:
1.0B Y Gopher (280B)
' % GPT-3(175B) :
% Megatron-Turing NLG (530B) 1. Collect the experiments
100M 2. Form hypothesis (linear, power-law, etc)

3. Extrapolate

1017 1019 1021 1023 1025

FLOPs Still pure statistics and need exponential data.
(No leverage of the knowledge of architecture/data)



How does deep learning work?

mmmmm) Output

This is an apple “Some Nonlinear Transformation”
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Black-box versus White-box

Black box White box
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What routes should we take?

Generalization

Expressibility

Optimization

Architecture X

training dynamics X

Architecture V'
training dynamics X

Architecture X

training dynamics v

How about

Architecture V'

training dynamics v




Start From the First Principle m

* Training follows Gradient and its variants (SGD, Adams, etc)

, dw vV Jw)
w =— = — w
dt v

* First principle - Understand the behavior of the neural
networks by checking the gradient dynamics induced by the
neural architectures.

 Sounds complicated.. Is that possible? Yes Architecture ¥’
training dynamics 4
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What Gradient Descent Analysis gives us?

Short-term: Long-term:
Finding Simple Structures How the representation is learned
(Low-rank, sparsity) (Key to the success of deep models)

Leverage Them in Practical Algorithms



Finding Nice Structure: Attention Sparsity

Contextual
Sparsity

Seq class / (query'dependent)

(m,ny) /

i Attention = Learnable TF-IDF (Term
[ ] Frequency, Inverse Document Frequency)

Cl|n1

=
Seq class

(m, n,)

cl n,

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurlPS’23]
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[Y. Tian et al, JoMA: Demystifying Multilayer Transformers via JOint Dynamics of MLP and Attention, /CLR’24]



Attention Sinks: Initial tokens draw strong attentions

Layer 0 Head 0
I2.4

2.2

Layer 1 Head 0 Layer 2 Head 0 Layer 9 Head 0 Layer 16 Head 0
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Average attention logits in Llama-2-7B over 256 sentences

« Observation: Initial tokens have large attention scores, even if they're not semantically significant.
Attention Sink: Tokens that disproportionately attract attention irrespective of their relevance.
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StreamingLLM

Generating

Token7 [0 |1 [2 13[4 ]15|[6 |7

Generating
Token 8

Generating |
Token 9

Attention Sinks  Evicted Tokens Rolling KV Cache

Key design: Position Rolling
For all tokens, use their positions within cache to compute positional encoding!
- Token distance never exceeds pre-trained context window!



StreamingLLM

w/ StreamingLLM

(streaming) guangxuan@l29:~/workspace/streaming-11m$ CUDA_VISIBLE_DEVICE|(streaming) guangxuan@l29:~/workspace/streaming-1lm$ CUDA_VISIBLE_DEVICES=1 p
=0 python examples/run_streaming_llama.py thon examples/run_streaming_llama.py -—enable_streaming

Loading model from msys/vicuna-13b-v1.3 ... Loading model from lmsys/vicuna-13b-v1.3 ...

Loading checkpoint shards: 67%| B | 2/3 [00:09<00:04, 4.94s/it]||Loading checkpoint shards: 67% | NENERNNEN | 2/3 [00:09<00:04, 4.89s/it]




StreamingLLM: stable PPL, constant vRAM

I:l Sliding Window with Re-computation

Log perplexity & VRAM usage of Llama 2 7B as a function of input lengths 22)( fa ster
4.0 — — : [ streamingLLM
——- attention_sinks vram —— attention_sinks perplexity
—== transformers vram —=— transformers perplexity 155 2
-—- windowed vram ;‘J— windowed perplexity B 1600 1411 - 21 19
3.5 - s @ /m 1616
g a 1200 1414
g L 15.0 » é % 14 |1313 1313
.Q |
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Impact

Attention: Following GPT-3, attention blocks alternate between banded window and fully
dense patterns [8]|9], where the bandwidth is 128 tokens. Each layer has 64 query heads of
dimension 64, and uses Grouped Query Attention (GQA [10][11]) with 8 key-value heads. We
apply rotary position embeddings [12] and extend the context length of dense layers to 131,072
tokens using YaRN [13]. Each attention head has a learned bias in the denominator of the
softmax, similar to off-by-one attention and attention sinks [14][15], which enables the attention
mechanism to pay no attention to any tokens.

* 1k+ citations
* Used in GPT OSS models in pre-training



Long-term: How Network finds Representation



Type of Representations

(Traditional) Symbolic ~ "&%  ©wi
/ . V-H=0 (Gauss'Law for Magnetism)
representation Vxteu  (RuntaysLon

CE
VxH=J+¢ & (Ampere's Law)
d

Representation <

Neural )
\ e PIESE ntation g{) E,,,; V- = : ’; y 4=

nnnnnn

convs

.....
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Why Neural Representation is so effective?

(Traditional) Symbolic
/ representation

4 Conclusions

We have extended the GLU family of layers and proposed their use in Transformer. In a transfer-learning

Re p re S e ntat i O n setup, the new variants seem to produce better perplexities for the de-noising objective used in pre-training,

as well as better results on many downstream language-understanding tasks. These architectures are simple
to implement, and have no apparent computational drawbacks. We offer no explanation as to why these
architectures seem to work; we attribute their success, as all else, to divine benevolence.

Neura l Shall we just acknowledge that

as “divine benevolence”?

\ Representation(’)

[Garfinkle, Allie (2024-08-02). "Character.Al's Noam Shazeer on what we know about Al—and what we don't". Fortune. Retrieved 2025-03-06.]
[N. Shazeer, GLU Variants Improve Transformer]



https://fortune.com/2024/08/02/character-ais-noam-shazeer-what-we-know-about-ai/

Why there is Grokking Behavior?

Modular Division (training on 50% of data) Steps until generalization for product in abstract group Ss
100 —— train o 5:10° AAAAAL
o
— val g
A
80 >
S 105
-]
O
©
- 60 c
¢ S
- -~
S S
o =
< 40 g
o 10%
g
7))
o
20 b
0
E A Runs that didn't reach 99% val acc in 5 - 10° updates
° ® Runs that reached > 99% val acc in 5-10° updates
0 s —— Median
10! 102 103 104 10° 10° 10°
0.3 0.4 0.5 0.6 0.7 0.8
Optimization Steps Training data fraction
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Feature Emergence through Grokking
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& Mechanism of Emergent Representation

(Traditional) Symbolic
/ representation

Representation <

Neural ‘

\ Representation(’)

Emerging Symbolic
Structure

[Y. Tian, Composing Global Solutions to Reasoning Tasks via Algebraic Objects in Neural Nets, Neur|PS’25]

Artificial Intelligence ) . . . . .
facebook Artificial Intell Igenc [Y. Tian, Provable Scaling Laws of Feature Emergence from Learning Dynamics of Grokking, arXiv’'25]



Modular Addition

a+ b=cmodd

Does neural network have an implicit table to do retrieval?



Modular Addition

Logits for Top Fourier Components

6 —— Period 520.00
E —— Period 47.27
a+ b=cmodd g rorod 1050

Period 5.00
Period 2.00

Magnitude
(@)

_n

. -4 5

Learned representation = Fourier basis {50 _6 §
85 90 95 100 108 115 120 125 130

Number Space

W hy? @ (a) Final logits for top Fourier components

[T. Zhou et al, Pre-trained Large Language Models Use Fourier Features to Compute Addition, NeurlPS'24]

R . [S. Kantamneni, Language Models Use Trigonometry to Do Addition, arXiv’'25]
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Minimal Problem Setup

MSE Loss: Min HOutput — one—hot(c)H2

Top layer

Bottom layer

---@-@--eg

w

¢J

A .
J

4RN

O-0O-0O--- g hidden nodes

(Quadratic Activation)

w

aj

wbj

One-hot(a)

One-hot(b) a+b=c modd

[Y. Tian, Composing Global Solutions to Reasoning Tasks via Algebraic Objects in Neural Nets, NeurlPS’25]



What a Gradient Descent Solution look like?

|Za| d="17,q=20
0
A
2
X
4
6
Frequency 0 2 4 6 8 10 12 14 16 18

J
» Hidden node index

[Y. Tian, Composing Global Solutions to Reasoning Tasks via Algebraic Objects in Neural Nets, Neur|PS’25]



What a Gradient Descent Solution look like?

Order-6
solutions

Symmetry due to T . .
Hermitian conditon 0 2 4 6 8 10 12 14 16 18

J



What a Gradient Descent Solution look like?
1z¢| at t =2900

Order-6
Order-4

0 2 4 6 8 10 12 14 16 18
J



MSE Loss

More Statistics on Gradient Descent Solutions

Training/test loss/accuracy ford = 23 Distribution of Solution order at 10k epochs
1.2 _ 1.0 6 =
1.0 - - 0.8 5 -
—-—~- test loss -
o8 ——~ train loss [ 06 § 2
- =
0.6 1 — testacc | g S3
\"\ — i B¢
0.4 - Seee train_acc 2 - Order-4 and order-6
~~\s B 0.2 e
0.2 - R TR ] - solutions really happen!
0 50 100 150 200 0 2 4 6 8 10
Epoch Solution order at all frequencies

Grokking Behaviors!
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Effect of Weight Decay

Stronger

d=23, wd=1e-05

40 A

20 A

Counts

d=71, wd=1e-05

50 A1

Counts

d=127, wd=1e-05

200 A

100 A

Counts

Solution order
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d=23, wd=5e-05

20 A

d=23, wd=0.0001

20 A

10 -

d=71, wd=5e-05

100 -

50 A

d=71, wd=0.0001

100 A

50 1

d=127, wd=5e-05

200 -

100 A

0 5 10
Solution order

d=127, wd=0.0001

100 A

0 5 10
Solution order

d=23, wd=0.0002

> weight decay

d=23, wd=0.0005

20 A 20 -
0 0
d=71, wd=0.0002 d=71, wd=0.0005
"B H
100 - ! P
| ool
50 + 1 1 1
1 1
1 1
0 0 - I
d=127, wd=0.0002 d=127, wd=0.0005
HE HE
1 1 1 1
200 - b 200 - Lo
| 1 1 1
| 1 1 1
| 1 1 1
| 1 1 1
0' 1 T 1 T 0 - 1 T 1 T
0 5 10 0 5 10

Solution order

Solution order



Why? (0



Nice algebraic structures exist for the solutions

/'\ /
\/ \r__/‘

/ \\\
afeyYale )

L/" ANYANS

s s X X )

) | |
/ \_ "’ N/

Z Z,

£ = U §Z°q: All 2-layer networks with different number of hidden nodes
q=0
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Nice algebraic structures exist for the solutions

. N
7 '\I N
N/ l\r_,/(
\/

}'\,._.X
AN
. N
X ,/‘*\1 N TN

- AR, Y,

Z

o X X

£ = U §Z°q: All 2-layer networks with different number of hidden nodes
q=0

Ring addition +: Concatenate hidden nodes
Ring multiplication *: Kronecker production along the hidden dimensions

(Z,+,*)is asemi-ring



Ring Homomorphism

A function r(z) : Z — Cis a ring homomorphism, if
r(1)=1
r(z,+12,) =rz,)+rz,)
r(z, * z,) = r(z))r(z,)



Ring Homomorphism

< v kk(z)and r, . (z) are ring homomorphisms'!



Ring Homomorphism

MSE Loss )

fk(z)=—2”kkk+z Fi kok 2"‘% Z er,k’,—k’,k +%Z Z

ki k, p€lab} k' m#0 pe{a,b}

2

Z Fpk'm—k' k

k/




Ring Homomorphism

MSE Loss )

fk(z)=—2”kkk+z Fi kok 2"‘% Z er,k’,—k’,k +%Z Z

ki k, p€lab} k' m#0 pe{a,b}

Z ok, m—k' k

k/

Partial solution z, satisfies r, , ,(z) =0

Partial solution z, satisfies




Ring Homomorphism

MSE Loss
2 2
2 1] 1
C1(2) = = 2rp + Z Pk | T 4 Z Z Fpk k| T 4 Z Z Z Pk sm—k' k
ki k, p€lab} k' m#0 pe{a,b} k'
Partial solution z, satisfies r, , ,(z) =0
Z = z, * 2z, satisfies both r, , ,(2) = =0
%2

Partial solution z, satisfies



Composing Global Solutions from Partial Ones

Partial Solution #1
z)) € R.NR, but zJ) & R.

Partial Solution #2
Zg{) o~ R*



Composing Global Solutions from Partial Ones

Compositing
solutions using
ring multiplication

7

Partial Solution #1 Better Solution
z)) € R.NR, but zJ) & R. 2 ¥z € R.NR, N R,

Partial Solution #2
ng) o~ R*

facebook Artificial Intellicence [Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, NeurlPS’25]



Composing Global Solutions from Partial Ones

Compositing Compositing
solutions using solutions using
ring multiplication = ring addition +

Partial Solution #1 Better Solution Global Solutions to MSE loss!
z)) € R.NR, but zJ) & R. 2 ¥z € R.NR, N R, 1 3 2550
1%

Zre = 3 syn
Vo

Partial Solution #2
ng) - R*

facebook Artificial Intelli gence [Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, Neur|PS’25]



Optimal solutions can be constructed

(d—1)/2
Order-6 7z (2*3) Zpg = Z (k) 4 z(k) * Y,

syn



Optimal solutions can be constructed

, (@-1/2
Order-6 z (2*3) Zpe = 7 Z 25 % 20« yy
k=1
(d—1)/2
Order-4 z 6 (2*2) NGO
ZFa/6 = S=2p¢ T S
(mixed with order-6) / V6 P V4 k:%ko



Optimal solutions can be constructed

Order-6 Zz¢ (2*3)

Order-4 Zp 6 (2%2)
(mixed with order-6)

Perfect memorization
(order-d per frequency)

(d—1)/2
ZE6 — Z zs(’;r)l b S Z(k) * Y
1 1 (d—1)/2
s (ko) (k)
ZF4/6 = 3=2F6 T /- Z ZF4
6 V4 k=1,k+£kq
d—1 | d—1
Za=) U 2= U



Gradient Descent solutions matches with construction

d Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
order-4/6| order-4 | order-6 || order-4 | order-6 z,(/’“:)i * zék) z,(/k:)i * zs(’;r)l,a 5 25 « zs(;fr)l others
23 || 0.040.0 {0.0040.00|5.71+5.71{|0.054+0.01|4.80+0.96||47.07+1.88| 11.31+1.76 [39.80+2.11|1.82+1.82
71 || 0.040.0 {0.0040.00[{0.00+0.00{[0.03+0.00|5.024+0.25|| 72.57+0.70| 4.00+1.14 [21.14+2.14(2.294+1.07
127( 0.04+0.0 {1.5040.92(0.004+0.00[[{0.2640.14|0.93+0.18(|82.96+0.39| 2.25+0.64 [14.13+0.87|0.66+0.66

g=512, wd=5-107



Gradient Descent solutions matches with construction

d Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
order-4/6| order-4 | order-6 || order-4 | order-6 z,(/"”:)i * zék) z,(/k:)i * zs(’;r)l,a 5 25 « zs(’;r)l others
23 || 0.0+0.0 10.00+0.00|5.71+5.71{|0.05+0.01|4.80+0.96||47.07+1.88| 11.31+1.76 [39.80+2.11|1.82+1.82
71 1| 0.040.0 0.0040.00[{0.00+0.00{[0.03+0.00|5.024+0.25||72.57+0.70| 4.00+1.14 [21.14+2.14(2.294+1.07
1270 0.0+0.0 |1.5040.92(0.004+0.00[{0.264+0.14|0.93+0.18(|82.96+0.39| 2.25+0.64 [14.13+0.87/0.66+0.66

100% of the per-freq
solutions are order-4/6




Gradient Descent solutions matches with construction

d Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
order-4/6| order-4 | order-6 || order-4 | order-6 z,(/"”:)i * zék) z,(/k:)i * zs(’;r)l,a 5 25 « zs(’;r)l others
23 || 0.040.0 10.0040.00|5.71+5.71|0.054+0.01|4.80+0.96||47.07+1.88| 11.31+1.76 [39.80+2.11|1.82+1.82
71 || 0.040.0 |0.0040.00[{0.00+0.000l{0.03+0.00|5.024+0.25|| 72.57+0.70| 4.00+1.14 [21.14+2.14(2.294+1.07
127( 0.0+0.0 |1.5040.92{0.00+0.00[[0.26+0.14|0.93+0.18(|82.96+0.39| 2.25+0.64 |14.13+0.87|0.66+0.66

95% of the solutions are
factorizable into “2*3” or “2*2”




Gradient Descent solutions matches with construction

d Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
order-4/6| order-4 | order-6 || order-4 | order-6 z,(/"”:)i * zék) z,(/"”:)i * zs(’;r)l,a 5 25 « zs(’;r)l others
23 || 0.040.0 {0.0040.00|5.71+5.71(]0.05+0.01|4.80+0.96)|47.07+1.88| 11.31+1.76 [39.80+2.11|1.82+1.82
71 || 0.040.0 {0.0040.00[{0.00+0.00{]0.03+0.00|5.024+0.25|| 72.57+0.70| 4.00+1.14 [21.14+2.14(2.294+1.07
127( 0.04+0.0 {1.5040.92{0.004+0.00[]0.264+0.14|0.93+0.18|82.96+0.39| 2.25+0.64 [14.13+0.87|0.66+0.66

Factorization error is very small




Gradient Descent solutions matches with construction

d Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
order-4/6| order-4 | order-6 || order-4 | order-6 z,(/"”:)i * zék) z,(/"”:)i * zs(’;r)l,a 5 25 « zs(’;r)l others
23 || 0.040.0 {0.0040.00|5.71+5.71{|0.054+0.01|4.80+0.96||47.07+1.88| 11.31+1.76 [39.80+2.11|1.82+1.82
71 || 0.040.0 {0.0040.00[{0.00+0.00{[0.03+0.00|5.024+0.25)| 72.57+0.70| 4.00+1.14 [21.14+2.14(2.294+1.07
127( 0.04+0.0 {1.5040.92(0.004+0.00[{0.2640.14|0.93+0.18)| 82.96+0.39| 2.25+0.64 |14.13+0.87/0.66+0.66

98% of the solutions can be
factorizable into the constructed forms




Gradient Descent solutions matches with construction

Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
d ®) L B ), (&) | k), (k)
order-4/6| order-4 ‘ order-6 || order-4 ‘ order-6 |z, * 2. |2, * 2.5 5|20~ * Zsyn| others
23 || C | | ) ' +0.96([47.07+1.88| 11.31+1.76 [39.80+2.11(1.82+1.82
71| C ) | +0.25)| 72.57+0.70| 4.00+1.14 (21.14+2.14|2.29+1.07
127(| C x +0.18)|82.96+0.39| 2.25+0.64 [14.13+0.87|0.66+0.66

98% of the solutions can be
factorizable into the constructed forms

Emerging Symbolic structure
from neural network training

facebook Artificial Intelligence



How about Gradient Dynamics?

Theorem [The Occam’s Razer] If z = y % 2" and both z and z’ are global
optimal, then there exists a path of zero loss connecting z and z’".

>@®
. . e x 2z .

[(z) =0

Z=y*z e=1[1,0,0, .., 0]
is a “pseudo” identity




How about Gradient Dynamics?

Theorem [The Occam’s Razer] If z = y % 2" and both z and z’ are global
optimal, then there exists a path of zero loss connecting z and z’".

>@®
. . ex2z .

I(z)=0

Z=yx%x2z

L2 regularization will push the solution to e * z’ (simpler solutions),
H / /
since ||e * Z ||2 < Hy * Z H2



Limitation of the analysis

How such solutions are achieved — No analysis with gradient dynamics
Only apply to a combination of MSE loss + all data + quadratic activation

Next work is to crack the grokking behaviors from gradient dynamics



Understanding Grokking Behavior

Grokking (Delayed Generalization)

| |
. 1
1.0 - N | —}— train_acc — —— :
sl i ! — testace [0 ... Weight Initialization
. I, h : 0.8 Memorization { (1) Ridge Regression on
g 061 : \ \ : —}- train_loss | 0.6 (Sharp Optima) Random Features
S \ \
-1~ test loss r :
E 0.4 : \{ t = 0.4 (Il) Feature Learning on
I I ' L
o ] i 1\ Generalization Independent Neurons
. I RN - 0.2 (Flat Optima)
I 1 e .
0.0 - ! To—g--—--T T L 0.0 | (1ll) Neuron Interactions
1 | | 1 I 1 1 T 1 T T
0O 150 100 150 200 250 300 350 400
1 I Epoch

Memorization Generalization

[Y. Tian, Provable Scaling Laws of Feature Emergence from Learning Dynamics of Grokking, arXiv’25]



Stages of Grokking Behaviors

target Y

T

Random V

Al
|

Frandom| , Gprandom

Random W

A

(a) Initialization

target Y

!
I/ridge

A

G carries

F random . ~
ando info of Y

e = - -

Random W

A

(b) After Lazy learning

target Y
I
V updated

G carries

F updated -
Hpdate info of Y—f/

P —

Learned W

A

(c) After Independent
Feature Learning

Y =6(XW)V

A~
Y=Y

—

V updated

Al
|

G~ 0

[l
A 4

Complete W

A

(d) After Interactive
Feature learning




Stages |: NTK regime (Lazy Learning)

target Y
Objective function (Y € R™>M X € R™9) VT
ridge
I pl i G carries
I‘rll%)‘lll ||P (Y G(XW)V)”F Frandom i info of 7
Rando'm w
Ridge Regression (with weight decay 7) i |
Y="PlY

Videe = F'F+)~'F'Y F=0(XW) F=P}F

Here P =1,—11"/nis

the zero-mean projection



The backpropagated Gradient G

target Y
1
At Ridge regression solution Vridge ‘4§§§e
F random i i(ri?ocg;r’)ifs
Gr=n(FF" + D) 'YY'F(F'F + nI)™! :
F — 7]( H H Random W

T

Looks complicated... any interesting properties?



The backpropagated Gradient G

Lemma 1 (Structure of backpropagated gradient G ). Assume that (1) entries of W follow normal
distribution, (2) ||x;||2 have the same norm, (3) x, x;; = p forall i # i’ and (4) large width K, then

both FTF and FF7 becomes a multiple of identity and Egn. 5 becomes:

n T
Gr = YY ' F 6
= Kei + 1) (nea + 1) ©)

Key insights
If weight decay n = 0, then G = 0 (no feature learning)
If weight decay is large, then G — 0
If number of hidden nodes K — + oo, then G — O (NTK regime)



The regime that feature learning happens

Network Width K

K small K large K— + o0
n=0 G, = 0, Memorization, no feature learning
____________ . G noisy '
Gr#0 Gy 0
Weight » _
Decayy, "1smal Underitting feature learning Memorization
happens no feature learning
n large ' G, ~ 0, Underfitting, nofeature learning

NTK regime



Stage II: The Energy Function &(w)

Component-wise
dynamics

GF X ﬂYYTF q Wj = XTngj, g; X T]Y/Y/TO’(XWJ)

Theorem 1 (The energy function £ for independent feature learning). The dynamics (Eqn. 7) of
independent feature learning is exactly the gradient ascent dynamics of the energy function & w.r.t.

W, a nonlinear canonical-correlation analysis (CCA) between the input X and target Y :

1 -
E(w;) = IV "o (Xw;)l5 ®)



Connect Emerging Features with Data / Architecture

We discover that there exists an energy function &(w) that governs the feature learning process

Learned features as multiple

local maxima of &(w)

/\ Nonlinearity g () /\/\/\

glinear (W)

E(w)

) ata
S\,\ﬂ'\C\e“t v
\
nSUffIClent Data

Landscape is
maintained

Landscape collapses into
Memorization features



Group Representation Theory

The decomposition of group representation. The representation theory of finite group (Fulton &
Harris, 2013; Steinberg, 2009) says that the regular representation R; admits a decomposition into
complex irreducible representations (or irreps):

K(H) my

Rn=Q | & PCrh) | Q" )

k=0 r=1

where x(H) is the number of nontrivial irreps (i.e., not all A map to identity), Cy(h) € C%*d* is
the k-th irrep block of Ry, () is the unitary matrix (and (™ is its conjugate transpose) and my is the
multiplicity of the k-th irrep. This means that in the decomposition of R}, there are m; copies of
dr-dimensional irrep, and these copies are isomorphic to each other. So the k-th irrep subspace H;.
has dimension mxd}.



Emerging Features are Symbolic!

/\/\/\ E(w) = %Z(RmS)% = dk)Ztr

E(w) h ? 7

Theorem 2 (Local maxima of £ for group input). For group arithmetics tasks with o(z) = x2,

& has multiple local maxima w* = [u;tPu]. Either it is in a real irrep of dimension dj (with
E* = M /8dy and u € Hy), or in a pair of complex irrep of dimension dy, (with £* = M /16dy and
u € Hy ® Hy). These local maxima are not connected. No other local maxima exist.

What is that specifically?

Corollary 2 (Modular addition). For modular addition with odd M, all local maxima are single
frequency u;, = ay [cos(kmw) M= 4 by [sin(kmw)|M =3 where w := 21 /M with £* = M/16. For
even M, upr/9 o< [(—1 ) M- has E* = M /8. Different local maxima are disconnected.




Emerging Features are More Efficient!

Theorem 3 (Target Reconstruction). Assume (1) £ is optimized in complex domain C, (2) for each
irrep k, there are mid2 pairs of learned weights w = [u; &+ Pu| whose associated rank-1 matrices

{uu*} form a complete bases for Hy, and (3) the top layer V also learns with n = 0, then Y =Y.

From the theorem, we know that K = 23", ,,mid; < 2 [(M — k(H))? 4 k(H) — 1] suffice. In
particular, for Abelian group, x(H) = M — 1 and This is much more efficient than
a pure memorization solution that would require M nodes, i.e., each node memorizes a single pair
(hl,hQ) € Hx H.



How much is sufficient? Provable Scaling Laws

H = Zy;, M prime H = Zjy;, M composite
i T 1.0 0.7 H’ 1.0
0.6 -0.8 0.6 1 -0.8
i\' § 051 & §
© l 0.6 5 ® 0.6 s
g 0.4 b g £ 044 :
= I l - 0.4 45 “~ 0.3 0.4 4%'
R | S [
0.2 - ¢ !I' l - 0.2 0.2 1 - 0.2
44 - I 0.1
; ; ; ; ; ; 0.0 0.0
20 40 60 80 100 120
M
Product group e.g., Z4 ® Z~
0.4 Tl.o 0.35 4 H’l.o
r0.8 0.30] £% o - 0.8
0.3 1 9 025 88 e >
| © 25 4 9%% L @©
° a i 0.6 s L DX o 0.6 5
= ‘ g < S
o 88" ® € 0.20 2 ®
S 0.2 o B 044 s F0.4 &
| N ] 4
F 0.15 4 "
I ..... o | [ho2 H 0.2
oxd4 %" ® T ' l 0.10 A
0.0 0

T T T T T T T T T T T .0
40 60 80 100 120 140 40 60 80 100 120
} % OM log M)

Theorem 4 (Amount of samples to maintain local optima). If we select n 2 d2 M log(M/§) data
sample from H x H uniformly at random, then with probability at least 1 — 6, the empirical energy

facebook JUnction £ keeps local maxima for di-dimensional irreps (Thm. 2).



Boundary between Memorization and Generalization

At the boundary,
large Learning rate leads

to memorization (higher &)

E(w)

facebook Artificial Intelligence

£=3.27 £=3.23 £=3.34 £=2.87

WA o

£=3.32 £=3.50 £=3.29 £=3.37

Y SN W

£=3.27 £=3.39 £=3.20 £=3.31

o o UL

£=3.16 £=3.09 £=3.39 £=3.54

™, T

Small learning rate 0.001

£=3.39 £=4.59 £=3.35 £=3.25

M Y P e

£=4.16 £=3.37 £=3.41 £=3.43

T W U e

£=3.84 £=2.98 £=3.67 £=3.47

My 1 T

£=3.41 £=3.29 £=3.37 £=3.49

i oty i

Mid learning rate 0.002

£=4.72 £=4.11 £=4.40 £=4.94

bhah (bt et s

£=4.33 £=4.48 £=4.00 £=5.07

ik degah R -

£=5.47 £=3.74 £=5.54 £=4.12

s

£=3.57 £=4.59 £=3.89 £=4.46

ol T PR

Large learning rate 0.005



Test accuracy

Boundary between Memorization and Generalization

Modular addition (M=23)

10 1%== ) — T —— wd=2e-4 |
08 - --- wd=le-4
0.6

0.4 A

0.2 A

0.0

0.00010.0005 0.001 0.005 0.01 0.05 0.1

Learning rate
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Modular addition (M=71)
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Stage lll: Interactive Feature Learning g

V updated

G carries

F updated -
Hpaate info on—i\f

Learned W

A

Theorem 7 (Top-down Modulation). For group arithmetic tasks with o(x) = 2, if the hidden layer
learns only a subset S of irreps, then the backpropagated gradient Gr x (Ps® 1) (Ps®1p)*F
(see proof for the definition of ®s), which yields a modified Es that only has local maxima on the
missing irreps k ¢ S.



Possible Implications

Do neural networks end up learning more efficient
symbolic representations that we don’t know?

Here this work is just a tiny step.
Does gradient descent lead to a solution that

can be reached by advanced algebraic operations?  Next Step: Scale it to more complicated
tasks and architectures

Will gradient descent become obsolete, eventually?



Thanks
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