
Practical Algorithms from in-depth
understanding of LLM behaviors

Yuandong Tian
Research Scientist Director

Meta Superintelligence Lab
(FAIR)

Large Language Models (LLMs)

Conversational AI Content Generation AI Agents

Reasoning Planning

The Progress of Large Models

The Data Usage

Comparison between Human and SoTA LMs

Training Data efficiency Power Consumption Adaptation to New Tasks How to make decision?

Human Brain
< 10B text tokens, a lot of
sensory inputs

Learning: ~20W
Inference/Thinking: ~20W

Learn with a few examples
By casual relationships and
deep understanding

Sota LMs ~10T-50T tokens
Learning: at least @ MWh
Inference/Thinking: 1W-30W

Hundreds / Thousands of data
points. May fail to generalize

Correlation & Pattern
Matching

Estimated #tokens consumed by human in the life time: 70 years * 300 days / year * 12 hours / day * 3600 seconds / hours * 10 tokens / second = 9.1B

Question: Is our AI as strong as humans yet?

How we should do our research from now on?

• The “Data Wall problem”
• We may have used all the available data on the Internet.
• How to deal with corner cases / personalization / private data?
• Human is still much more efficient than current AI

• Everyone is GPU poor
• What are new axes to scale? GPUs are never enough.
• Data itself cannot extrapolate, only human insights can.

The New (a.k.a. Old) Scaling Axis

The exponential
search space

The exponential
search space

Human
insights

The exponential
search space

Laws
GPUs

Question: Can we scale the scaling laws?

How we get Scaling Laws?

1. Collect the experiments
2. Form hypothesis (linear, power-law, etc)
3. Extrapolate

Steps:

Still pure statistics and need exponential data.
(No leverage of the knowledge of architecture/data)

How does deep learning work?

Input Output

“Some Nonlinear Transformation”This is an apple

Black-box versus White-box

Black box White box

What routes should we take?

Expressibility

Optimization

Generalization

+ -
+- Architecture ✓

training dynamics ✘

Architecture ✘
training dynamics ✓

Architecture ✘
training dynamics ✘

How about

Architecture ✓

training dynamics ✓

Start From the First Principle

• Training follows Gradient and its variants (SGD, Adams, etc)

• First principle  Understand the behavior of the neural networks by
checking the gradient dynamics induced by the neural architectures.

• Sounds complicated.. Is that possible? Yes

𝒘̇ ≔
d𝒘
d𝑡

= − ∇𝒘𝐽(𝒘)

Architecture ✓

training dynamics ✓

What Gradient Descent gives us?

Short-term:
Finding Simple Structures
(Low-rank, sparsity)

Long-term:
How the representation is learned
(Key to the success of deep models)

Leverage Them in Practical Algorithms

Short-term: Finding Nice Structures

Attention Sparsity

Seq class
(𝑚, 𝑛1)

Seq class
(𝑚, 𝑛2)

 ~𝑐𝑙|𝑛1

 ~𝑐𝑙|𝑛2

Contextual
Sparsity
(query-dependent)

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurIPS’23]

Attention = Learnable TF-IDF (Term
Frequency, Inverse Document Frequency)

Attention Sinks: Initial tokens draw a lot of attentions

First few tokens!!
Average attention logits in Llama-2-7B over 256 sentences

• Observation: Initial tokens have large attention scores, even if they're not semantically significant.
• Attention Sink: Tokens that disproportionately attract attention irrespective of their relevance.

 [G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]

Understanding Attention Sinks

• Why? Attention scores have to sum up to 1 for all contextual tokens. (SoftMax-
Off-by-One, Miller et al. 2023)

• Why initial tokens? Their visibility to subsequent tokens, rooted in
autoregressive language modeling.

• The model learns a bias towards their absolute
 position rather than the semantics.

Llama-2-13B PPL (↓)
0+1024 (window) 5158.07

4+1024 5.40
4”\n”+1020 5.6

 [G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]

StreamingLLM

 [G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]

StreamingLLM

Key design: Position Rolling
	 For all tokens, use their positions within cache to compute positional encoding!
	  Token distance never exceeds pre-trained context window!

StreamingLLM

StreamingLLM: stable PPL, constant vRAM

Stable PPL

Constant vRAM

Sliding Window with Re-computation
StreamingLLM22x faster

Understanding Attention Sinks

• Pre-train with a Dedicated Attention Sink Token

Cache
Config

PPL (↓)
0+1024 1+1023 2+1022 4+1020

Vanilla 27.87 18.49 18.05 18.05
Zero Sink 29214 19.90 18.27 18.01

Learnable Sink 1235 18.01 18.01 18.02

4 + 1020

Impact

• 900+ citations
• Used in GPT OSS models in pre-training

GaLore: Pre-training 7B model on RTX 4090 (24G)

Third-party evaluation by @llamafactory_ai

* SVD takes around 10min for 7B model, but runs every T=500-1000 steps.

[J. Zhao et al, GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection, ICML’24 (Oral)]

Memory Saving with GaLore

Memory Usage Weight Optim States Projection Total

Full-rank mn 2mn 0 3mn
Low-rank adaptor mn+mr+nr 2mr+2nr 0 2mn+3mr+3nr
GaLore mn mr+2nr mr mn+2mr+2nr

If t % T == 0:
 Compute

 {project}
 {Adam in low-rank}

 {project-back}

𝐺𝑡 ← − ∇W𝜙(𝑊𝑡)

𝑃𝑡 = SVD(𝐺𝑡) ∈ ℝ𝑚×𝑟

𝑅𝑡 ← 𝑃𝑇
𝑡 𝐺𝑡~𝑅𝑡 ← 𝜌(𝑅𝑡)

~𝐺𝑡 ← 𝑃𝑡
~𝑅𝑡

𝑊𝑡+1 ← 𝑊𝑡 + 𝜂 ~𝐺𝑡

GaLore

 𝑅𝑡 𝑊𝑡 𝑃𝑡

Pre-training Results (LLaMA 7B)

* Experiments are conducted on 8 x 8 A100

* On LLaMA 1B, ppl is better (~14.97) with ½ rank (1024/2048)

Pre-training Results (LLaMA 7B)

[D. Su et al, GaLore 2: Large-Scale LLM Pre-Training by Gradient Low-Rank Projection]

Long-term: How Network finds Representation

Type of Representations

Neural
Representation

Representation

(Traditional) Symbolic
representation

CoConut (Chain of Continuous Thought)

[S. Hao et al, Training Large Language Models to Reason in a Continuous Latent Space, COLM’25]

How to train Coconut?

Interpreting the embeddings

Ground Truth Solutions

Chain of thoughts lead to hallucinations

(Hallucination)

Hallucination
edge

1
2
3
4
5

1

2
3

5

4

Continuous Thoughts

(Hallucination)

(Wrong Target)

Wrong
target

1

1
2
3

2

3

Two-step Continuous Thought works!

(Correct Path)

1 2

1

2

3

3

Two-step Continuous Thought works!

1

2

1

Why the same continuous thoughts
lead to different path?!

1

1 2

1

3

2

3

What’s inside?
Dead-end

1

Let’s probe!

“lempus” is not on the right path but for step=1, it is the most promising

What’s inside?
Promising node  dead-end

Interestingly, it encodes all possible paths!

1 2

Performance in ProsQA

CoConut

Better performance than No-CoT
Shorter thinking process than CoT

CoConut

Better performance than No-CoT
Shorter thinking process than CoT

Cons
1. Latent tokens are not interpretable
2. Only tested on GSM8k

Token Assorted

[D. Su et al, Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning, ICML’25]

Regular CoT

Assorted CoT

Token Assorted

How the latent codes
are constructed?

Using VQVAE

Better Performance

Shorter CoT

Main Theorem

For -vertex directed graphs, a 2-layer transformer with
continuous CoT can solve reachability using decoding

steps with embedding dimensions.

𝑛
𝑂(𝑛)

𝑂(𝑛)

Theorem (informal)

Secret Sauce: Superposition of the embeddings!

Best known results for discrete CoT: O(n2)

[H. Zhu et al, Reasoning by Superposition: A Theoretical Perspective on Chain of Continuous Thought, NeurIPS’25]

Continuous CoT: Decoding as search

s

t

s

t

s

t

[𝑡1] =
1

𝒱1(𝑠)
∑

𝑣∈𝒱1

→𝑢 𝑣

Frontier nodes

[𝑡2] =
1

𝒱2(𝑠)
∑

𝑣∈𝒱2

→𝑢 𝑣

[H. Zhu et al, Reasoning by Superposition: A Theoretical Perspective on Chain of Continuous Thought, NeurIPS’25]

The embedding contains superposition

Mechanism of Emerged Representation

Representation

Neural
Representation🤔

(Traditional) Symbolic
representation

Shall we just acknowledge that
as “divine benevolence”?

Mechanism of Emerged Representation

Emerging Symbolic
Structure

(Traditional) Symbolic
representation

Neural
Representation🤔

Representation

Modular Addition

𝑎 + 𝑏 = 𝑐 mod 𝑑

Does neural network have an implicit table to do retrieval?

Learned representation = Fourier basis 🤯

Why? 🤔
[T. Zhou et al, Pre-trained Large Language Models Use Fourier Features to Compute Addition, NeurIPS’24]
[S. Kantamneni, Language Models Use Trigonometry to Do Addition, arXiv’25]

𝑎 + 𝑏 = 𝑐 mod 𝑑

Does neural network have an implicit table to do retrieval?

Modular Addition

Minimal Problem Setup

One-hot(a) One-hot()𝒃 𝒂 + 𝒃 = 𝒄 mod 𝑑

 hidden nodes
(Quadratic Activation)
𝑞

Bottom layer

Top layer

MSE Loss: 𝑀𝑖𝑛 Output – one−hot(𝒄)
2

𝒘𝑎𝑗 𝒘𝑏𝑗

𝒘𝑐𝑗

𝑗

[Y. Tian, Composing Global Solutions to Reasoning Tasks via Algebraic Objects in Neural Nets, NeurIPS’25]

What a Gradient Descent Solution look like?

Frequency

Hidden node index

𝑑 = 7, 𝑞 = 20

[Y. Tian, Composing Global Solutions to Reasoning Tasks via Algebraic Objects in Neural Nets, NeurIPS’25]

Symmetry due to
Hermitian condition

Order-6
solutions

What a Gradient Descent Solution look like?

Order-6
Order-4

What a Gradient Descent Solution look like?

Order-4 and order-6
solutions really happen!

More Statistics on Gradient Descent Solutions

Grokking Behaviors!

Stronger
weight decay

Effect of Weight Decay

Order-6 (2*3)𝒛𝐹6

Order-4 (2*2, mixed with order-6)

Perfect memorization
(order-d per frequency)

Theory to explicitly construct such solutions

Order-4 (2*2)
(mixed with order-6)

𝒛𝐹4/6

Perfect memorization
(order-d per frequency)

Order-6 (2*3)𝒛𝐹6

Theory to explicitly construct such solutions

Perfect memorization
(order-d per frequency)

Order-4 (2*2)
(mixed with order-6)

𝒛𝐹4/6

Order-6 (2*3)𝒛𝐹6

Theory to explicitly construct such solutions

Gradient Descent solutions matches with construction

𝑞 = 512, 𝑤𝑑 = 5 ⋅ 10−5

Gradient Descent solutions matches with construction

100% of the per-freq
solutions are order-4/6

Gradient Descent solutions matches with construction

95% of the solutions are
factorizable into “2*3” or “2*2”

Gradient Descent solutions matches with construction

Factorization error is very small

Gradient Descent solutions matches with construction

98% of the solutions can be
factorizable into the constructed forms

Grokking (Delayed Generalization)

Memorization Generalization

Understanding Grokking

[Y. Tian, Provable Scaling Laws of Feature Emergence from Learning Dynamics of Grokking, arXiv’25]

Stages of Grokking Behaviors

Connect Emerging Features with Data / Architecture

[Y. Tian, Provable Scaling Laws of Feature Emergence from Learning Dynamics of Grokking, arXiv’25]

We discover that there exists an energy function that governs the feature learning processℰ(w)

Learned features as multiple
local maxima of ℰ(w)

Landscape is
maintained

Landscape collapses into
Memorization features

Emerging Features are Symbolic!

How much is sufficient? Provable Scaling Laws

For Group Arithmetic tasks

<latexit sha1_base64="mSQjCFpUpAkLBB83ZTf4aAGHGKw=">AAACJXicbVDLSgNBEJz1GeNr1aOXwSB4CGE3SPTgIeglxwjmAdkQZmc7yZDZ2XVmNhCW/IwXf8WLB4MInvwVJw9BEwsaiqpuurv8mDOlHefTWlvf2Nzazuxkd/f2Dw7to+O6ihJJoUYjHsmmTxRwJqCmmebQjCWQ0OfQ8Ad3U78xBKlYJB70KIZ2SHqCdRkl2kgd+8YLie7LMK1KCBjVYw/3O66pYh57jwkJfvweG4KYu3njekzgSsfOOQVnBrxK3AXJoQWqHXviBRFNQhCacqJUy3Vi3U6J1IxyGGe9REFM6ID0oGWoICGodjr7cozPjRLgbiRNCY1n6u+JlIRKjULfdE5vVsveVPzPayW6e91OmYgTDYLOF3UTjnWEp5HhgEmgmo8MIVQycyumfSIJ1SbYrAnBXX55ldSLBbdUKN1f5sq3izgy6BSdoQvkoitURhVURTVE0RN6QW9oYj1br9a79TFvXbMWMyfoD6yvb7g9pMA=</latexit>

Predict h1h2, given h1, h2 → H

O(|H| log |H|) data sample suffice to learn
generalizable features

<latexit sha1_base64="ezqwVA24rVve3uWT1IC0twHine8=">AAACDHicbVDLSgMxFM34rPVVdekmWAQXUmZEqhuh6KabQgX7wM5QMmmmDU0yQ5IRytAPcOOvuHGhiFs/wJ1/Y2Y6C209EDiccy659/gRo0rb9re1tLyyurZe2Chubm3v7Jb29tsqjCUmLRyyUHZ9pAijgrQ01Yx0I0kQ9xnp+OOb1O88EKloKO70JCIeR0NBA4qRNlK/VK5fuRzpke8n99N+4xS6sJEJkicujCTlZGpSdsXOABeJk5MyyNHsl77cQYhjToTGDCnVc+xIewmSmmJGpkU3ViRCeIyGpGeoQJwoL8mOmcJjowxgEErzhIaZ+nsiQVypCfdNMt1TzXup+J/Xi3Vw6SVURLEmAs8+CmIGdQjTZuCASoI1mxiCsKRmV4hHSCKsTX9FU4Izf/IiaZ9VnGqlenterl3ndRTAITgCJ8ABF6AG6qAJWgCDR/AMXsGb9WS9WO/Wxyy6ZOUzB+APrM8f5UCa7A==</latexit>

H = ZM , M prime
<latexit sha1_base64="frz/4LIkdyrGApwscMcF7sdCsZA=">AAACEHicbVC7SgNBFJ2NrxhfUUubwSBaSNgViTZC0CZNIIJ5YDYss5PZZMjMzjIzK4Qln2Djr9hYKGJraeffONlsoYkHLhzOuZd77/EjRpW27W8rt7S8srqWXy9sbG5t7xR391pKxBKTJhZMyI6PFGE0JE1NNSOdSBLEfUba/uhm6rcfiFRUhHd6HJEeR4OQBhQjbSSveFy7cjnSQ99P7ide/RS6sJ4KkicuxIJHQlFNJl6xZJftFHCROBkpgQwNr/jl9gWOOQk1ZkiprmNHupcgqSlmZFJwY0UihEdoQLqGhogT1UvShybwyCh9GAhpKtQwVX9PJIgrNea+6Zzequa9qfif1411cNlLaBjFmoR4tiiIGdQCTtOBfSoJ1mxsCMKSmlshHiKJsDYZFkwIzvzLi6R1VnYq5crteal6ncWRBwfgEJwAB1yAKqiBBmgCDB7BM3gFb9aT9WK9Wx+z1pyVzeyDP7A+fwBID5zK</latexit>

H = ZM , M composite

<latexit sha1_base64="6MateJZr0Cgrl5VnRbrSoE3C45M=">AAACK3icbVDLSsNAFJ34rPUVdelmsAguJCRSWpelblxWsA9sSplMp+3QSSbM3Agl9H/c+CsudOEDt/6Hk7aL2nrgwuGce7n3niAWXIPrflpr6xubW9u5nfzu3v7BoX103NAyUZTVqRRStQKimeARqwMHwVqxYiQMBGsGo5vMbz4ypbmM7mEcs05IBhHvc0rASF276ocEhipMa0r2Ego+HiiZxD5mzsC5nPgYTxuCIH2YdIvYl8BDphfFctcuuI47BV4l3pwU0By1rv3q9yRNQhYBFUTrtufG0EmJAk4Fm+T9RLOY0BEZsLahETEbO+n01wk+N0oP96UyFQGeqosTKQm1HoeB6cxu1MteJv7ntRPoX3dSHsUJsIjOFvUTgUHiLDjc44pREGNDCFXc3IrpkChCwcSbNyF4yy+vksaV45Wc0l2xUKnO48ihU3SGLpCHyqiCblEN1RFFT+gFvaMP69l6s76s71nrmjWfOUF/YP38AjXpp6s=</latexit>

Product group e.g., Z4 → Z7
<latexit sha1_base64="2GpTct890kNh6eJLFNciV4U1fpU=">AAACBXicbVC7SgNBFJ2Nrxhfq5ZaDAbBKuyKRMuojZVEMA/ILmF2MkmGzGOZmRXCksbGX7GxUMTWf7Dzb5xNttDEAwOHc+69c++JYka18bxvp7C0vLK6VlwvbWxube+4u3tNLROFSQNLJlU7QpowKkjDUMNIO1YE8YiRVjS6zvzWA1GaSnFvxjEJORoI2qcYGSt13cOAIzNUPL2VIoCXkR2ELBkomcSTrlv2Kt4UcJH4OSmDHPWu+xX0JE44EQYzpHXH92ITpkgZihmZlIJEkxjhERqQjqUCcaLDdHrFBB5bpQf7UtknDJyqvztSxLUe88hWZjvreS8T//M6ielfhCkVcWKIwLOP+gmDRsIsEtijimDDxpYgrKjdFeIhUggbG1zJhuDPn7xImqcVv1qp3p2Va1d5HEVwAI7ACfDBOaiBG1AHDYDBI3gGr+DNeXJenHfnY1ZacPKeffAHzucPmAOYpw==</latexit>

Non Abelian group

Next Step: Scale it to more complicated tasks
and architectures

Boundary between Memorization and Generalization

Possible Implications
Do neural networks end up learning more efficient
symbolic representations that we don’t know?

Does gradient descent lead to a solution that
can be reached by advanced algebraic operations?

Will gradient descent become obsolete, eventually?

Thanks!
75

