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Large Language Models (LLMs)
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Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of % / ’ 3
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many .
tennis balls does he have now? tennis balls does he have now? 4 ’,
A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls > ‘ 3

gach is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to

do they have? make lunch and bought 6 more, how many apples o
Kdo they have? ) g "
N — G
A: The answer is 27. x )
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Reasoning Planning

Cnswer is 9.
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The Progress of Large Models
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The Data Usage

Projections of the stock of public text and data usage

Effective stock (number of tokens)
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Comparison between Human and SOTA LMs

Question: Is our Al as strong as humans yet?

Training Data efficiency Power Consumption Adaptation to New Tasks How to make decision?

Human Brain < 10B text tokens, a lot of Learning: ~20W Learn with a few examples By casual relationships and
sensory inputs Inference/Thinking: ~20W P deep understanding
Sota LMs ~10T-50T tokens Learning: at least @ MWh Hundreds / Thousands of data Correlation & Pattern

Inference/Thinking: 1W-30W points. May fail to generalize =~ Matching

Estimated #tokens consumed by human in the life time: 70 years * 300 days / year * 12 hours / day * 3600 seconds / hours * 10 tokens / second =9.1B
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& Andrej Karpathy & (A e

'w @karpathy

My pleasure to come on Dwarkesh last week, | thought the questions
and conversation were really good.

| re-watched the pod just now too. First of all, yes | know, and I'm sorry
that | speak so fast :). It's to my detriment because sometimes my
speaking thread out-executes my thinking thread, so | think | botched a
few explanations due to that, and sometimes | was also nervous that I'm
going too much on a tangent or too deep into something relatively
spurious. Anyway, a few notes/pointers:

AGI timelines. My comments on AGI timelines looks to be the most
trending part of the early response. This is the "decade of agents" is a
reference to this earlier tweet x.com/karpathy/statu... Basically my Al
timelines are about 5-10X pessimistic w.r.t. what you'll find in your
neighborhood SF Al house party or on your twitter timeline, but still quite
optimistic w.r.t. arising tide of Al deniers and skeptics. The apparent
conflict is not: imo we simultaneously 1) saw a huge amount of progress
in recent years with LLMs while 2) there is still a lot of work remaining
(grunt work, integration work, sensors and actuators to the physical
world, societal work, safety and security work (jailbreaks, poisoning,
etc.)) and also research to get done before we have an entity that you'd
prefer to hire over a person for an arbitrary job in the world. | think that
overall, 10 years should otherwise be a very bullish timeline for AGI, it's
only in contrast to present hype that it doesn't feel that way.



How we should do our research from now on?

e The “Data Wall problem”
« We may have used all the available data on the Internet.
« How to deal with corner cases / personalization / private data?
e Human is still much more efficient than current Al

e Everyone is GPU poor
« What are new axes to scale? GPUs are never enough.
e Data itself cannot extrapolate, only human insights can.



The New (ak.a. Old) Scaling Axis

Human
insights

The exponential
search space

The exponential
search space

The exponential
search space

Question: Can we scale the scaling laws?
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Parameters

How we get Scaling Laws?

1T Approach Coeff. a where N,,; o« C*  Coeff. b where D,p o ct
1. Minimum over training curves 0.50 (0.488,0.502) 0.50 (0.501,0.512)
2. IsoFLOP profiles 0.49 (0.462,0.534) 0.51 (0.483,0.529)
100B —— Approach 1 3. Parametric modelling of the loss 0.46 (0.454, 0.455) 0.54 (0.542,0.543)
Approach 2 Kaplan et al. (2020) 0.73 0.27
—— Approach 3
10B --- Kaplan et al (2020)
% Chinchilla (70B) Steps:
1.0B Y Gopher (280B)
' % GPT-3(175B) :
% Megatron-Turing NLG (530B) 1. Collect the experiments
100M 2. Form hypothesis (linear, power-law, etc)

3. Extrapolate

1017 1019 1021 1023 1025

FLOPs Still pure statistics and need exponential data.
(No leverage of the knowledge of architecture/data)



How does deep learning work?

mmmmm) Output

This is an apple “Some Nonlinear Transformation”
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Black-box versus White-box

Black box White box
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What routes should we take?

Generalization

Expressibility

Optimization

Architecture X

training dynamics X

Architecture V'
training dynamics X

Architecture X

training dynamics v

How about

Architecture V'

training dynamics v




Start From the First Principle

e Training follows Gradient and its variants (SGD, Adams, etc)

, dw vV Jw)
w = — = — w
ds v

* First principle 2 Understand the behavior of the neural networks by
checking the gradient dynamics induced by the neural architectures.

e Sounds complicated.. Is that possible? Yes

Architecture V'

training dynamics 4
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What Gradient Descent gives us?

Short-term: Long-term:
Finding Simple Structures How the representation is learned
(Low-rank, sparsity) (Key to the success of deep models)

Leverage Them in Practical Algorithms



Short-term: Finding Nice Structures



Attention Sparsity

Contextual
Sparsity

Seq class — (query-dependent)

(m,ny) /

i Attention = Learnable TF-IDF (Term
[ ] Frequency, Inverse Document Frequency)

Cl|n1

=
Seq class

(m’ n2)

cl n,

R . Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurlPS’23
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Attention Sinks: Initial tokens draw a lot of attentions

Layer 0 Head 0
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First few tokens!!
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1.8
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Average attention logits in Llama-2-7B over 256 sentences

« Observation: Initial tokens have large attention scores, even if they're not semantically significant.
« Attention Sink: Tokens that disproportionately attract attention irrespective of their relevance.

facebook Artificial Intelligence [G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]



Understanding Attention Sinks

« Why? Attention scores have to sum up to 1 for all contextual tokens. (SoftMax-
Off-by-One, Miller et al. 2023)

eli

N :
err + ijz e’

SoftMax(x); = , T1>x;,j€2,...,N

- Why initial tokens? Their visibility to subsequent tokens, rooted in
autoregressive language modeling.

« The model learns a bias towards their absolute

position rather than the semantics. 0+1024 (window) 5158.07
4+1024 5.40
4”"\n"+1020 5.6

facebook Artificial Intelligence [G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]



StreamingLLM

(a) Dense Attention (b) Window Attention

Current Token

<4—— T cached tokens —» T-L evicted L cached
tokens tokens

O(TL) v PPL: 5158x

Breaks when initial
tokens are evicted.

O(T?x PPL: 5641X

Has poor efficiency and
performance on long text.

facebook Artificial Intelligence

(c) Sliding Window

w/ Re-computation (d) StreamingLLLM (ours)

previous tokens
are truncated

t o
Attention Sink

L cached
tokens

<<Lre computed
tokens

evicted
tokens

O(TL)v PPL:540v

O(TL»)Xx PPL: 5.43v

Has to re-compute cache
for each incoming token.

Can perform efficient and stable
language modeling on long texts.

[G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]



StreaminglLLM

Generating

Token7 [0 |1 [2 13[4 ]15|[6 |7

Generating
Token 8

Generating |
Token 9

Attention Sinks  Evicted Tokens Rolling KV Cache

Key design: Position Rolling
For all tokens, use their positions within cache to compute positional encoding!
- Token distance never exceeds pre-trained context window!



StreaminglLLM

w/ StreamingLLM

(streaming) guangxuan@l29:~/workspace/streaming-11m$ CUDA_VISIBLE_DEVICE|(streaming) guangxuan@l29:~/workspace/streaming-1lm$ CUDA_VISIBLE_DEVICES=1 p
=0 python examples/run_streaming_llama.py thon examples/run_streaming_llama.py -—enable_streaming

Loading model from msys/vicuna-13b-v1.3 ... Loading model from lmsys/vicuna-13b-v1.3 ...

Loading checkpoint shards: 67%| B | 2/3 [00:09<00:04, 4.94s/it]||Loading checkpoint shards: 67% | NENERNNEN | 2/3 [00:09<00:04, 4.89s/it]




StreaminglLLM: stable PPL, constant VRAM

Log4%erplexity & VRAM usage of Llama 2 7B as a function of input lengths

Perplexity (log), lower is better
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22x faster

Latency (ms)

Latency (ms)
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. StreamingLLM
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Understanding Attention Sinks

e Pre-train with a Dedicated Attention Sink Token

2.8
—— Vanilla Cache

" —— + Sink Token Config 0+1024 1+1023 2+1022 4+1020
a2.7 Vanilla 27.87 18.49 18.05 18.05
E Zero Sink 29214 19.90 18.27 18.01
'g 2.6 Learnable Sink 1235 18.01 18.01 18.02

2.5 0 20 40 60 80 100 120 140 4 + 1020

k Steps A A
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Impact

Attention: Following GPT-3, attention blocks alternate between banded window and fully
dense patterns [8|[9]|, where the bandwidth is 128 tokens. Each layer has 64 query heads of

dimension 64, and uses Grouped Query Attention (GQA [10][11]) with 8 key-value heads. We
apply rotary position embeddings [12] and extend the context length of dense layers to 131,072

tokens using YaRN [13]. Each attention head has a learned bias in the denominator of the
softmax, similar to off-by-one attention and attention sinks [14][15], which enables the attention

mechanism to pay no attention to any tokens.

» 900+ citations
« Used in GPT OSS models in pre-training
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Galore: Pre-training 7B model on RTX 4090 (24G)

Memory Comparsion

60 1 BFl6 — Rank Retaingrad Memory Token/s
50 - 1 Adafactor — 8-bit Adamw Yes 40GB 1434
g [ 8-bit Adam 8-bit GaLlore 16 Yes 28GB 1532
< 40 + EEZA 8-bit GaLore (retaining grad) ‘
§ BEE $-bit Galore 8-bit GalLore 128 Yes 29GB 1532
> 307 = 16-bit GaLore 128  Yes 30GB 1615
Q —
g 20 - 16-bit GalLore 128 No 18GB 1587
=
10 8-bit GalLore 1024 Yes 36GB 1238
* SVD takes around 10min for 7B model, but runs every T=500-1000 steps.
0 .
350M IB 3B ) . .
Model Size Third-party evaluation by @llamafactory_ai

facebook Artificial Intelligence [J. Zhao et al, Galore: Memory-Efficient LLM Training by Gradient Low-Rank Projection, ICML 24 (Oral)]



Memory Saving with Gal.ore

Gal.ore
Algorithm 1: Gal.ore, PyTorch-like
for weight in model.parameters() : Gt «— — VW¢(W/t)
grad.= | weight.grad Ift% T ==
# original space —-> compact space 9
lor_grad = project (grad) Compute Pt = SVD(Gt) e R™
# update by Adam, Adafactor, etc. .
lor_update = update(lor_grad) R, < PTG {prO/eCt}
# compact spa.ice —-> original space Rt - p(Rt) {Adam in /OW-I’GI’)/(}
update = project back (lor_update) - _
weight.data += update Gt «— l)th {project_back}

Wi < W/t_l_nét

Full-rank
Low-rank adaptor  p+mr+nr 2mr+2nr 0 2mn+3mr+3nr
Galore mn mr+2nr : mr N mn+2mr+2nr

A
|
facebook Artificial Intelligence W, R, P,



Params Hidden Intermediate Heads Layers Steps Data amount

60M 512 1376 8 8 10K 1.3B
. M 124 a6 16 2% &K 78D
Pre-training Results (LLaMA 7B) & & & & @ & f
Mem | 40K 80K 120K 150K
(€Y 8-bit GaLore | 18G | 17.94 1539 1495 14.65
8-bit Adam 26G | 18.09 1547 14.83 14.61
Tokens (B) 5.2 10.5 15.7 19.7
* Experiments are conducted on 8 x 8 A100
60M 130M 350M 1B
Full-Rank 34.06 (0.36G) 25.08 (0.76G) 18.80 (2.06G)  15.56 (7.80G)
GaLore 34.88 (0.24G) 25.36 (0.52G) 18.95(1.22G) 15.64 (4.38G)
Low-Rank 78.18 (0.26G) 45.51 (0.54G) 37.41(1.08G) 142.53 (3.57G)
LoRA 34.99 (0.36G) 33.92 (0.80G) 25.58 (1.76G) 19.21 (6.17G)
ReLoRA 37.04 (0.36G) 29.37 (0.80G) 29.08 (1.76G)  18.33 (6.17G)
T/ dmodel 128 /256 256 /768 256 /1024 512 /2048
Training Tokens 1.1B 2.2B 6.4B 13.1B

* On LLaMA 1B, ppl is better (~14.97) with % rank (1024/2048)



Pre-training Results (LLaMA 7B)

1.3 x 10 Y
1.25 x 10! \

1.2 x 10! 1

—_
—_
ot
X
—_
=
o
—

1.1 x 10! 1

1.05 x 10! 1

Validation Perplexity

10] J

9.5 x 10V 1

9 x 101

= (GaLore
== == Baseline(Adam-8bit)

0B ' 100B
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2008 300B
Training Tokens

500B

Commonsense and
ontextual Reasoning

Pataphrase and
ntic Similarity

Language Understanding
and Reasoning

Factual Accuracy

—@— Galore

-®-- Baseline Academic and

Professional Exams

[D. Su et al, GalLore 2: Large-Scale LLM Pre-Training by Gradient Low-Rank Projection]



Long-term: How Network finds Representation



Type of Representations

(Traditional) Symbolic ~ "&%  ©wi
/ . V-H=0 (Gauss'Law for Magnetism)
representation Vxteu  (RuntaysLon

CE
VxH=J+¢ =5 (Ampere's Law)

Representation <

\ Neural
Representation

uuuuuuuuuu
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CoConut (Chain of Continuous Thought)

Chain of thoughts Chain of continuous thoughts (Coconut)
Last hidden states are used
output token X, | X1 X Xiyj  [Answer] as input embeddings [Answer]

(sampling)

last hidden state . . .

Large Language Model Large Language Model

input embedding . . .

input token [Question] | . X; Xiv1  Xig2 Xitj [Question] <bot>

RO E

[S. Hao et al, Training Large Language Models to Reason in a Continuous Latent Space, COLM’25]

<eot>
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How to train Coconut?

Language CoT

=" [Question] [Step 1] [Step 2] [Step 3] --- [Step N] [Answer] [Thought] : continuous thought
(training data)

[ ---]: sequence of tokens
<---> : special token

Stage O [Question] <bot> <eot> [Step 1] [Step 2] --- [Step N] [Answer .-~ : calculating loss

Stage 1 [Question] <bot> |Rlieli[:31d} <eot> [Step 2] [Step 3] --- [Step N] [Answer]
Stage 2 [Question] <bot> (Ralelt=1a) (RG] <eot> [Ste

Stage N [Question] <bot> |BRalelf={zid) (REalelt={pid) -~ (RIaeliF={3id) <eot> [Answer]
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Interpreting the embeddings

@ ~Root node Question:

. Target node Every jells is a worpus. Sam is a jumpus. Every gwompus is a

. Distractive node rompus. -- Every lumps is a yumpus. Question: Is Alex a
_ gorpus or bompus?
Neighbor

to the root

Second-order
neighbor
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Ground Truth Solutions

‘ Root node
‘ Target node

. Distractive node

Neighbor

to the root
Second-order
neighbor

facebook Artificial Intelligence

Question:

Every jells is a worpus. Sam is a jumpus. Every gwompus is a

rompus. -- Every lumps is a yumpus. Question: Is Alex a
gorpus or bompus?

Ground Truth Solution

Alex is a grimpus.

Every grimpus is a rorpus.
Every rorpus is a bompus.
#i## Alex is a bompus



Chain of thoughts lead to hallucinations

. Root node

‘ Target node

. Distractive node

Neighbor

to the root
Second-order
neighbor
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Question:

Every jells is a worpus. Sam is a jumpus. Every gwompus is a
rompus. -+ Every lumps is a yumpus. Question: Is Alex a

gorpus or bompus?

Ground Truth Solution
Alex is a grimpus.

Every grimpus is a rorpus.
Every rorpus is a bompus.

### Alex is a bompus

CoT

Alex is a lempus.

Every lempus is a scrompus.
Every scrompus is a yumpus.
Every yumpus is a rempus.
Every rempus is a gorpus.
### Alex is a gorpus I

(Hallucination)

o= ]



Continuous Thoughts

facebook Artificial Intelligence

‘ Root node

‘ Target node

. Distractive node

Neighbor

to the root
Second-order
neighbor

Question:

Every jells is a worpus. Sam is a jumpus. Every gwompus is a
rompus. -+ Every lumps is a yumpus. Question: Is Alex a
gorpus or bompus?

Ours (k=1)

<bot> [Thought] <eot>

Every lempus is a scrompus.
Every scrompus is a brimpus J§

### Alex is a brimpus €

(Wrong Target)



Two-step Continuous Thought works!

‘ Root node Question:
‘// '\ . Target node Every jells is a worpus. Sam is a jumpus. Every gwompus is a
\ . Distractive node rompus. --- Every lumps is a yumpus. Question: Is Alex a
gorpus or bompus?

/ Neighbor
\ / / to the root
Second-order

/ AN : / / neighbor

Ours (k=2)
<bot> [thought] [thought] <eot>
Every rorpus is a bompus.
### Alex is a bompus Qf

(Correct Path)

facebook Artificial Intelligence



Two-step Continuous Thought works!

//\

facebook Artificial Intelligence

‘ Root node

. Target node

‘ Distractive node

Neighbor

to the root
Second-order
neighbor

Ours (k=1)
<bot> [Thought] <eot> Ours (k=2)
Every lempus is a scrompus.

Every scrompus is a brimpus. Every rorpus is a bompus.
### Alex is a brimpus X ### Alex is a bompus

(Wrong Target) (Correct Path)

<bot> [thought] [thought] <eot>

Why the same continuous thoughts
lead to different path?!



What’s inside? Let’s probe!

Dead-end

Coconut (k=1)

<bot> [Thought] <eot>
Every lempus -

p("lempus”)

= pCIe)pCme)p(us)
0.32 =0.33
(h=2)

“lempus” is not on the right path but for step=1, it is the most promising

facebook Artificial Intelligence



, :
What’s inside?
Promising node > dead-end
Interestingly, it encodes all possible paths!

B-B

Coconut (k=2)

3
(h=0)  <bot> [Thought] [Thought] <eot>
Every rorpus ...

(h=0) p(‘rorpus”)

\*O = p(1O )PP IPCus)
= 0.87

0.87
(h=1)

facebook Artificial Intelligence



Dataset | Training ‘ Validation | Test

GSMS8k | 385,620 500 1319
ProntoQA 9,000 200 800

Performance in ProsQA ProsQa | 1msss | 300 | 0

# Nodes | # Edges ‘ Len. of Shortest Path ‘ # Shortest Paths

23.0 | 360 | 3.8 | 1.6
Final answer Reasoning Process
Ours (k=6) NG Ours (k=6) H Category
Ours (k=5) NG Ours (k=5) n —
Correct Path
Ours (k=4) NN Ours (k=4) e mmm Incorrect Label
Longer path
Ours (k=3) NN Ours (k=3) NN
8 ( ) B ( ) . Wrong Target
% Oours (k=2) NS % Ours (k=2) ] mmm Hallucination
= Ours (k=1) = ours (k=1) E—
Ours (k=0) Ours (k=0) ]
no-CoT Il no-CoT I .
CoT N CoT P
70 80 90 100 0 100 200 300 400 500
Accuracy (%) Count
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CoConut

GSMS8k ProntoQA ProsQA
Method
Acc. (%) # Tokens Acc. (%) # Tokens Acc. (%) # Tokens
CoT 42.9 +o0.2 25.0 98.8 +0.8 92.5 77.5 +£1.9 49.4
No-CoT 16.5 +0.5 2.2 93.8 +o0.7 3.0 76.7 +1.0 8.2
iCoT 30.0* 2.2 99.8 +0.3 3.0 98.2 +0.3 8.2
Pause Token 16.4 +1.8 2.2 77.7 £21.0 3.0 75.9 0.7 8.2
CocoNUT (Ours) [34.1 1.5 8.2 99.8 +0.2 9.0 97.0 +0.3 142 |
- w/o curriculum  14.4 +0.8 8.2 52.4 +0.4 9.0 76.1 +0.2 14.2
- w/o thought 21.6 +0.5 2.3 99.9 +0.1 3.0 95.5 +1.1 8.2
- pause as thought 24.1 +o.7 2.2 100.0 +o0.1 3.0 96.6 +0.8 8.2

Better performance than No-CoT
Shorter thinking process than CoT



CoConut

GSMS8k ProntoQA ProsQA
Method
Acc. (%) # Tokens Acc. (o) # Tokens Acc. (%) # Tokens
CoT 42.9 +o0.2 25.0 98.8 +0.8 92.5 77.5 +£1.9 49.4
No-CoT 16.5 +0.5 2.2 93.8 +0.7 3.0 76.7 +1.0 8.2
iCoT 30.0* 2.2 99.8 +0.3 3.0 98.2 +0.3 8.2
Pause Token 16.4 +1.8 2.2 77.7 £21.0 3.0 75.9 0.7 8.2
CocoNUT (Ours) [34.1 1.5 8.2 99.8 +0.2 9.0 97.0 +0.3 142 |
- w/o curriculum  14.4 +0.8 8.2 52.4 +0.4 9.0 76.1 +0.2 14.2
- w/o thought 21.6 +0.5 2.3 99.9 +0.1 3.0 95.5 +1.1 8.2
- pause as thought 24.1 +o.7 2.2 R e ARe oo
Cons

Better performance than No-CoT
Shorter thinking process than CoT

1. Latent tokens are not interpretable
2. Only tested on GSM8k



Token Assorted

(T )
Regular CoT X Prompt |  CoT 1 CoT 2... CoT32 | CoT33 ... CoTN Solution
|
I\\\___________________7__/,
- P —— §
Assorted CoT X Prompt | [boLatent] z1 z2 [eoLatent] CoT 33 e CoTN Solution

_____________________________________

[boLatent] = [eoLatent] Special delimiters that encode the start / end of the latent tokens

Z Discrete latent tokens

CoTN The n-th CoT textual tokens

[D. Su et al, Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning, ICML 25]



Token Assorted

Prompt =  CoT Solution
X
) /
/ \ f enc
¥
How the latent codes g B D U D U
are constructed? o U

)

Using VQVAE - l l D D

/ fdec L

|
LITIETTT]

Reconstructed X
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Better Performance

Model In-Domain Out-of-Domain Average
Math GSMBK Gaokao-Math-2023 DM-Math College-Math  Olympia-Math TheoremQA  All Datasets
Sol-Only 47 6.8 0.0 10.4 53 1.3 3.9 4.6
CoT 10.5 42.7 10.0 34 17.1 1.5 9.8 14.1
iCoT 8.2 10.5 3.3 113 7.6 2.1 10.7 7.7
Llama-3.2-1B o e Token 5.1 53 2.0 14 0.5 0.0 0.6 2.1
Latent (ours) 14.7 (1 +4.2) 487 (1+6)  10.0 14.6 (1 +33) 20.5(1+34) 18 11.3 (1 +0.6) 17.8 (1 +3.7)
Sol-Only 6.1 8.1 3.3 14.0 7.0 1.8 6.8 6.7
CoT 21.9 69.7 16.7 27.3 30.9 22 11.6 25.2
Llama32.3g  iCOT 12.6 17.3 33 16.0 142 4.9 13.9 117
ama-2. Pause Token  25.2 53.7 4.1 74 11.8 0.7 1.0 14.8
Latent (ours) 26.1 (1 +4.2) 73.8(1+4.1) 23.3 (1 +6.6) 27.1 329 (1+2) 42 13.5 28.1 (1 +2.9)
Sol-Only 115 11.8 3.3 17.4 13.0 3.8 6.7 9.6
CoT 32.9 80.1 16.7 39.3 41.9 7.3 15.8 33.4
Llama.3.1.88 €T 17.8 29.6 16.7 20.3 21.3 7.6 14.8 183
: Pause Token  39.6 79.5 6.1 25.4 25.1 1.3 4.0 25.9
Latent (ours) 37.2 84.1 (1 +4.0) 30.0 (+ +13.3) 413 (1+2) 440 (1 +21) 102 (1+2.6) 18.4 (1 +2.6) 37.9 (1 +4.5)

facebook Artificial Intelligence



Shorter CoT

Model In-Domain (# of tokens) Out-of-Domain (# of tokens) Average
Math GSM8K Gaokao-Math-2023 DM-Math College-Math Olympia-Math TheoremQA All Datasets
Sol-Only 4.7 6.8 0.0 10.4 5.3 1.3 3.9 4.6
CoT 646.1 190.3 842.3 578.7 505.6 1087.0 736.5 655.2
Ll 32.1B iCoT 328.4 39.8 354.0 170.8 278.7 839.4 575.4 369.5
ama-3.2%% " Pause Token 638.8 176.4 416.1 579.9 193.8 471.9 988.1 495
Latent (ours) 501.6 (| -22%) 181.3 (| -5%) 760.5 (| -11%) 380.1 (| -34%) 387.3(] -23%) 840.0(] -22%) 5755(]-22%) 518 (| -21%)
Sol-Only 6.1 8.1 33 14.0 7.0 1.8 6.8 6.7
CoT 649.9 212.1 823.3 392.8 495.9 1166.7 759.6 642.9
Llama-3.2-3B iCoT 344 4 60.7 564.0 154.3 224.9 697.6 363.6 3442
) Pause Token 307.9 162.3 108.9 251.5 500.96 959.5 212.8 354.7
Latent (ours) 516.7 (| -20%) 198.8 (1 -6%) 618.5 (| -25%) 340.0 (| -13%) 418.0(] -16%) 832.8 (] -29%) 670.2 (] -12%) 513.6 (| -20%)
Sol-Only 11.5 11.8 33 17.4 13.0 3.8 6.7 9.6
CoT 624.3 209.5 555.9 321.8 474.3 1103.3 760.1 578.5
Llama-3.1-8B iCoT 403.5 67.3 4448 137.0 257.1 797.1 430.9 362.5
: Pause Token 469.4 119.0 752.6 413.4 357.3 648.2 600.1 480

Latent (ours)

57119 (-9 %)

193.9 (| -8 %)

545.8 (1 -2 %)

292.1 (] -10%)

440.3 (| -8%)

913.7 (| -17 %)

637.2 (1 -16 %)

513.7 ( -10%)

facebook Artif



Main Theorem

Theorem (informal)

For n-vertex directed graphs, a 2-layer transformer with
continuous CoT can solve reachability using O(n) decoding
steps with O(n) embedding dimensions.

< 4

Best known results for discrete CoT: O(n?)

Secret Sauce: Superposition of the embeddings!

[H. Zhu et al, Reasoning by Superposition: A Theoretical Perspective on Chain of Continuous Thought, NeurlPS’25]



Continuous CoT: Decoding as search

Frontier nodes

|7 1(9)| ve7,

The embedding contains superposition

facebook Artificial Intelligence [H. Zhu et al, Reasoning by Superposition: A Theoretical Perspective on Chain of Continuous Thought, NeurlPS’25]



Mechanism of Emerged Representation

(Traditional) Symbolic
/ representation

Representation 4 Conclusions

We have extended the GLU family of layers and proposed their use in Transformer. In a transfer-learning
setup, the new variants seem to produce better perplexities for the de-noising objective used in pre-training,
as well as better results on many downstream language-understanding tasks. These architectures are simple
to implement, and have no apparent computational drawbacks. We offer no explanation as to why these
architectures seem to work; we attribute their success, as all else, to divine benevolence.

\ Neural
] - Shall we just acknowledge that
Re prese ntation's’ as “divine benevolence”?



Mechanism of Emerged Representation

(Traditional) Symbolic
/ representation

Representation <

\_ Neural

Representation(®) Emerging Symbolic
Structure

facebook Artificial Intelligence



Modular Addition

a+ b=cmodd

Does neural network have an implicit table to do retrieval?



Modular Addition

Logits for Top Fourier Components

6 —— Period 520.00 _

E —— Period 47.27

a + b — C mOd d 4 Period 10.00
Period 5.00
Period 2.00

Magnitude
(@)

Learned representation = Fourier basis @/ Y

85 90 95 100 108 115 120 125
Number Space

W hy? @ (a) Final logits for top Fourier components

[T. Zhou et al, Pre-trained Large Language Models Use Fourier Features to Compute Addition, NeurlPS'24]

e . [S. Kantamneni, Language Models Use Trigonometry to Do Addition, arXiv’25]
facebook Artificial Intelligence
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Minimal Problem Setup

MSE Loss: Min HOutput — one—hot(c)”2

Top layer w
A .
J
“"@"@"é--@--@-—(}——— g hidden nodes

/1 V\ (Quadratic Activation)

Bottom layer waj w b

¢J

One-hot(a) One-hot(b) a—+ b=cmodd

[Y. Tian, Composing Global Solutions to Reasoning Tasks via Algebraic Objects in Neural Nets, Neur|PS’25]



What a Gradient Descent Solution look like?

|Za| d="17,q=20
0
A
2
X
4
6
Frequency 0 2 4 6 8 10 12 14 16 18

J
» Hidden node index

[Y. Tian, Composing Global Solutions to Reasoning Tasks via Algebraic Objects in Neural Nets, Neur|PS’25]



What a Gradient Descent Solution look like?

Order-6
solutions

Symmetry due to
Hermitianconditon 0 2 4 6 8 10 12 14 16 18

J



What a Gradient Descent Solution look like?

|zc| at t=2900

Order-6
Order-4

0 2 4 6 8 10 12 14 16 18
J



More Statistics on Gradient Descent Solutions

Training/test loss/accuracy ford = 23

1.2 1 1.0
1.0 A - 0.8
- ——=- test_loss

3 08 - L 0.6 O
S ~ == train_loss ©
w 0.6 1 R =
2 N tes.t_acc L 04 S

0.4 - TSae ——— train_acc <

0.2 - -~ ~~~~~ B 0-2

0.0 —+0.0

0 50 100 150 200
Epoch

Grokking Behaviors!

facebook Artificial Intelligence

Count

Distribution of Solution order at 10k epochs

Order-4 and order-6
solutions really happen!

0 2

B

4 6 8 10

Solution order at all frequencies



Fffect of Weight Decay

Counts

Counts

Counts

Stronger

d=23, wd=1e-05

40 A

20 A

d=71, wd=1e-05

50 A1

d=127, wd=1e-05

200 A

100 A

Solution order

facebook Artificial Intelligence

d=23, wd=5e-05

20 A

d=23, wd=0.0001

20 A

10 -

100 -

50 A

d=71, wd=5e-05

100 A

50 1

d=71, wd=0.0001

d=127, wd=5e-05

200 -

100 A

0 5 10
Solution order

d=127, wd=0.0001

100 A

Solution order

d=23, wd=0.0002

> weight decay

d=23, wd=0.0005

20 A 20 -
0 0
d=71, wd=0.0002 d=71, wd=0.0005
"B H
100 - ! P
| ool
50 + 1 1 1
1 1
1 1
0 0 - I
d=127, wd=0.0002 d=127, wd=0.0005
HE HE
1 1 1 1
200 - b 200 - Lo
| 1 1 1
| 1 1 1
| 1 1 1
| 1 1 1
0' 1 T 1 T 0 - 1 T 1 T

0 5 10
Solution order

5 10

Solution order



Theory to explicitly construct such solutions

(d—1)/2
Order-6 z ¢ (2*3) Zpe = Z (k) 4 z(k) % Yy

syn



Theory to explicitly construct such solutions

Order-6 z 5 (2*3)

Order-4 z g (2*2)
(mixed with order-6)

(d—1)/2

1
ZF6 = G Z zs(l;r)l * 2, x yy
k=1

(d—1)/2

seue= > s
Fa/6 = %ZFG + Vi ZF4
k



Theory to explicitly construct such solutions

Order-6 z 5 (2*3)

Order-4 z g (2*2)
(mixed with order-6)

Perfect memorization
(order-d per frequency)

(d—1)/2
ZE6 — Z zs(’}fr)l b S Z(k) * Y
1 1 (d—1)/2
~ (ko) (k)
ZF4/6 = 5=%F6 T a7 Z ZF4
6 \/Z kzl,kgéko
d—1 | d—1
Zo=) Uy Bm= ) w



Gradient Descent solutions matches with construction

d Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
order-4/6| order-4 | order-6 || order-4 | order-6 z,(/’“:)i * zék) z,(/k:)i * zs(’;r)l,a 5 25 « zs(;fr)l others
23 || 0.040.0 {0.0040.00|5.71+5.71{|0.054+0.01|4.80+0.96||47.07+1.88| 11.31+1.76 [39.80+2.11|1.82+1.82
71 || 0.040.0 {0.0040.00[{0.00+0.00{[0.03+0.00|5.024+0.25|| 72.57+0.70| 4.00+1.14 [21.14+2.14(2.294+1.07
127( 0.04+0.0 {1.5040.92(0.004+0.00[[{0.2640.14|0.93+0.18(|82.96+0.39| 2.25+0.64 [14.13+0.87|0.66+0.66

g=>512, wd=5-107>



Gradient Descent solutions matches with construction

d Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
order-4/6| order-4 | order-6 || order-4 | order-6 z,(/"”:)i * zék) z,(/k:)i * zs(’;r)l,a 5 25 « zs(’;r)l others
23 || 0.0+0.0 10.00+0.00|5.71+5.71{|0.05+0.01|4.80+0.96||47.07+1.88| 11.31+1.76 [39.80+2.11|1.82+1.82
71 1| 0.040.0 0.0040.00[{0.00+0.00{[0.03+0.00|5.024+0.25||72.57+0.70| 4.00+1.14 [21.14+2.14(2.294+1.07
1270 0.0+0.0 |1.5040.92(0.004+0.00[{0.264+0.14|0.93+0.18(|82.96+0.39| 2.25+0.64 [14.13+0.87/0.66+0.66

100% of the per-freq
solutions are order-4/6




Gradient Descent solutions matches with construction

d Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
order-4/6| order-4 | order-6 || order-4 | order-6 z,(/"”:)i * zék) z,(/"”:)i * zs(’;r)l,a 5 25 « zs(’;r)l others
23 || 0.040.0 10.0040.00|5.71+5.71|0.054+0.01|4.80+0.96||47.07+1.88| 11.31+1.76 [39.80+2.11|1.82+1.82
71 || 0.040.0 |0.0040.00[{0.00+0.000l{0.03+0.00|5.024+0.25|| 72.57+0.70| 4.00+1.14 [21.14+2.14(2.294+1.07
127( 0.0+0.0 |1.5040.92{0.00+0.00[[0.26+0.14|0.93+0.18(|82.96+0.39| 2.25+0.64 |14.13+0.87|0.66+0.66

95% of the solutions are
factorizable into “2*3” or “2*2”




Gradient Descent solutions matches with construction

d Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
order-4/6| order-4 | order-6 || order-4 | order-6 z,(/"”:)i * zék) z,(/"”:)i * zs(’;r)l,a 5 25 « zs(’;r)l others
23 || 0.040.0 {0.0040.00|5.71+5.71(]0.05+0.01|4.80+0.96)|47.07+1.88| 11.31+1.76 [39.80+2.11|1.82+1.82
71 || 0.040.0 {0.0040.00[{0.00+0.00{]0.03+0.00|5.024+0.25|| 72.57+0.70| 4.00+1.14 [21.14+2.14(2.294+1.07
127( 0.04+0.0 {1.5040.92{0.004+0.00[]0.264+0.14|0.93+0.18|82.96+0.39| 2.25+0.64 [14.13+0.87|0.66+0.66

Factorization error is very small




Gradient Descent solutions matches with construction

d Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
order-4/6| order-4 | order-6 || order-4 | order-6 z,(/"“:)i * zék) z,(/"”:)i * zs(’;r)l,a 5 25 « zs(’;r)l others
23 || 0.040.0 {0.0040.00|5.71+5.71{|0.054+0.01|4.80+0.96||47.07+1.88| 11.31+1.76 [39.80+2.11|1.82+1.82
71 1] 0.040.0 {0.0040.00/0.00+0.00({0.03+0.00|5.02+0.25}| 72.57+0.70| 4.00+1.14 [21.1442.14|2.2941.07
127( 0.04+0.0 {1.5040.92(0.004+0.00[{0.2640.14|0.93+0.18)| 82.96+0.39| 2.25+0.64 |14.13+0.87/0.66+0.66

98% of the solutions can be
factorizable into the constructed forms




Understanding Grokking

Grokking (Delayed Generalization)

I I
- 1
1.0 L~ 7 —}— train_acc T S——— :
sl L ! — testace [0 ... Weight Initialization
. I, h : 0.8 Memorization { (1) Ridge Regression on
S 0.6 - : \ \ : —}- train_loss | 0.6 (Sharp Optima) Random Features
S \ \
| \ -+~ test loss r :
E 0.4 - I { u - 0.4 (Il) Feature Learning on
| I ' L.
o ] i 1\ Generalization Independent Neurons
. I RN - 0.2 (Flat Optima)
I I . .
0.0 - ! D S imae L 0.0 | (Il) Neuron Interactions
1 | | 1 I 1 1 1 1 1 Ll
0O 150 100 150 200 250 300 350 400
1 I Epoch

Memorization Generalization

facebook Artificial Intelligence [Y. Tian, Provable Scaling Laws of Feature Emergence from Learning Dynamics of Grokking, arXiv’25]



Stages of Grokking Behaviors

Y =o(XW)V
target Y target Y target Y Y~V
Random V Vridge V updated V updated
A : 4 : A : A :
! I Gp carries ! G carries :
F random | Gr random F random ' info of T F updated ' infoof 7 — 7 | Gr =0
: : : :
Random W Random W Learned W Complete W
(a) Initialization (b) After Lazy learning (¢) After Indep en.dent (a) After Intera(;tzve
Feature Learning Feature learning
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Connect Emerging Features with Data / Architecture

We discover that there exists an energy function &(w) that governs the feature learning process

Learned features as multiple

local maxima of &(w) “\c\ef\‘Data ;
. 3 u I,
/\ Nonlinearity o (-) /\/\/\ S
e
SUffIClent Data

Landscape is
maintained

Landscape collapses into
Memorization features

‘Slinear (W) 8(W)

[Y. Tian, Provable Scaling Laws of Feature Emergence from Learning Dynamics of Grokking, arXiv’25]



EFmerging Features are Symbolic!

2

EW) = 5 S (Bn S)p = 5 3 | o tr(Ser)

h k=0

E(w)

Theorem 2 (Local maxima of £ for group input). For group arithmetics tasks with o(z) = x2,

& has multiple local maxima w* = [u;+£Pu]. Either it is in a real irrep of dimension dj (with
E* = M /8dy, and u € Hy), or in a pair of complex irrep of dimension dy, (with E* = M /16dy, and
u € Hy ® Hy). These local maxima are not connected. No other local maxima exist.



How much is sufficient? Provable Scaling Laws

0.6 1

train%
o
N

0.2 1

0.4 1

0.3 A

train%

0.11

H =7y, M prime

facebook Artificial Intelligence

- |
M
=}

T T
< o o
IN o ©

Test accuracy

o
[N

Test accuracy

train%

train%

0.7 4
0.6
051 o\
0.4
0.3
0.2

0.1 1

H = Zy;, M composite

40 60 80 100 120

—=

T
o o
o 0

o
>

Test accuracy

|
o o
o N

Test accuracy

For Group Arithmetic tasks
Predict hl hg,

O([H| log [H]) data sample suffice to learn
generalizable features

Next Step: Scale it to more complicated tasks

and architectures

given hy,hy € H



Test accuracy

Boundary between Memorization and Generalization

Modular addition (M=23) Modular addition (M=71) Modular addition (M=127)

train%

el e — — wd=2e-4 o ' EN — wd=2e-4 ' N \ — wd=2e-4
= --- wd=le-4 37% S --- wd=le-4 18% AN -—- wd le-4 16%
0.8 - 36% 0.8 - 0.8 A N\NT
> >
° S 17% S ‘S 15%
0.6 - 35% X 5 0.6 1 X 5 0.6 1 n
£ 9 17% £ 9 \ 15% -
0.4 1 34% 5 5041 5 5 04- \
33% @ 16% Q@ \\ 14%
0.2 - 0.2 - 0.2 \‘-.—
32% 16% v 14%
0'0 T T T T T T T 31% 0.0 T T T T T T T 15% O.o T T T T T T T 13%
0.00010.0005 0.001 0.005 0.01 0.05 0.1 0.00010.0005 0.001 0.005 0.01 0.05 0.1 0.00010.0005 0.001 0.005 0.01 0.05 0.1
Learning rate Learning rate Learning rate
£=3.27 £=3.23 £=3.34 £=2.87 £=3.39 £=4.59 £=3.35 £=3.25 £=472 £=4.11 £=4.40 £=4.94
£=3.32 £=3.50 £=3.29 £=3.37 £=4.16 £=3.37 £=341 £=3.43 £=4.33 £=4.48 £=4.00 £=5.07
£=3.27 £=3.39 £=3.20 £=3.31 £=3.84 £=2.98 £=3.67 £=3.47 £=5.47 £=374 £=5.54 £=4.12
£=3.16 £=3.09 £=3.39 £=3.54 £=341 £=3.29 £=3.37 £=3.49 £=3.57 £=4.59 £=3.89 £=4.46

™ T
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Possible Implications

Do neural networks end up learning more efficient
symbolic representations that we don’t know?

Does gradient descent lead to a solution that
can be reached by advanced algebraic operations?

Will gradient descent become obsolete, eventually?
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