
Towards Better Understanding of
Representation Collapsing in Representation

Learning

Yuandong Tian

Research Scientist

Meta AI (FAIR)

Great Empirical Success of Deep Models

A sharp difference between theory and practice
Empirical
achievements of
Deep Models

Theoretical
Understanding of
Deep Models

Progress

Time
O

2012

AlexNet

2016

AlphaGo

2018

BERT

2017

Transformer

2020

GPT-3

2019

GPT-2

2022

ChatGPT

2023

GPT-4

2024

???

Neural Tangent
Kernel

ResNet
Properties of
Transformers

Properties of
Representations

A sharp difference between theory and practice
Progress

Time
O

2012

AlexNet

2016

AlphaGo

2018

BERT

2017

Transformer

2020

GPT-3

2019

GPT-2

2022

ChatGPT

2023

GPT-4

2024

???

Neural Tangent
Kernel

ResNet Representation
Collapsing

Empirical
achievements of
Deep Models

Theoretical
Understanding of
Deep Models

What Deep Learning Brings?

Before deep learning era

Linear Regression

Deep Models

Better representation
is learned!

𝒙

𝒚

𝒙

𝒚

Deep learning era

Same loss function
Different representation

Overall Research Philosophy

• Analyze the property of training loss plus Neural architecture

• Propose novel loss / architectures that lead to empirical
improvement

Blackbox Open the Blackbox

Contrastive versus Non-contrastive Learning

Contrastive
Learning

Minimize
distance 𝑑!

Maximize
distance 𝑑!"

SamplePositive Negative

𝑥! Non-Contrastive
Learning

𝑥"𝑥!#
Minimize
distance 𝑑!

Current Positive

𝑥!𝑥!#

Data Augmentation
𝑥!, 𝑥" ∼ 𝑝#$%(⋅ |𝑥)

LossDataset

Network 1

Network 2

Good representation
for downstream tasks

𝑥 ∼ 𝑝(⋅)

𝑥!

𝑥"

Formulation of Contrastive Learning

Positive pairs:
Minimize distance 𝑑!

Negative pairs:
Maximize distance 𝑑!"

𝒇[𝑖]

𝒇[𝑖′]

𝒇[𝑗]

Intra-view distance 𝑑!" = 𝒇 𝑖 − 𝒇 𝑖# "
"/2

Inter-view distance 𝑑!$" = 𝒇 𝑖 − 𝒇 𝑗 "
"/2

InfoNCE loss:

ℒ%&' ≔ −𝜏,
!()

*

log
exp(−𝑑!"/𝜏)

𝜖 exp −𝑑!"/𝜏 + ∑$+! exp(−𝑑!$" /𝜏)
Sample 𝑖

Sample 𝑗

Representation Collapses in Contrastive Learning
Shouldn’t contrastive learning make full use of all dimensions? The answer is No…

DirectCLR [L. Jing, P. Vincent, Y. LeCun, Y. Tian, Understanding Dimensional Collapse in Contrastive Self-supervised Learning, ICLR’22]

If things are collapsed during training, why not just pick a subset of the dimensions directly?

Representation Collapses in Contrastive Learning

A family of contrastive losses

General Loss function we consider (𝜙,𝜓 are monotonous increasing functions)

Intra-view distance 𝑑!, = 𝒇 𝑖 − 𝒇 𝑖# ,
,/2

Inter-view distance 𝑑!", = 𝒇 𝑖 − 𝒇 𝑗 ,
,/2

𝒙[𝑖] 𝒙[𝑖′]

𝒇[𝑖] 𝒇[𝑖′]

𝒙[𝑗]

𝒇[𝑗]

𝑑!" 𝑑!$"

ℒ<,>

Multi-layer network 𝜽
min
𝜽
ℒ<,>(𝜽) ≔0

@AB

C

𝜙 0
DE@

𝜓(𝑑@F − 𝑑@DF)

[Y. Tian, Understanding Deep Contrastive Learning via Coordinate-wise Optimization, NeurIPS’22]

Example: InfoNCE

𝜙 𝑥 = 𝜏 log(𝜖 + 𝑥)

= 𝜏0
@AB

C

log 𝜖 +0
DE@

exp
𝑑@F − 𝑑@DF

𝜏

𝜓 𝑥 = exp 𝑥/𝜏

ℒGHI ≔ −𝜏0
@AB

C

log
exp(−𝑑@F/𝜏)

𝜖 exp −𝑑@F/𝜏 + ∑DE@ exp(−𝑑@DF /𝜏)

Coordinate-wise Optimization

Max-player 𝜽
 Learns the representation to maximize contrastiveness.

Min-player 𝜶
 Find distinct sample pairs that share similar representation (hard negative pairs)

Minimizing contrastive loss ℒ<,> ó Coordinate-wise optimization:

𝛼! ≔ argmin
"∈𝒜

ℰ" 𝜽! −ℛ 𝛼

𝜽!%& ≔ 𝜽! + 𝜂∇𝜽ℰ"! 𝜽!

The Energy Function ℰ! 𝜽

Σ. ≔0
!,"

𝛼!" 𝒙[𝑖] − 𝒙[𝑗] 𝒚 𝑖 − 𝒚[𝑗] 0

Σ123 ≔0
!

0
"4!

𝛼!" 𝒙[𝑖] − 𝒙[𝑖#] 𝒚[𝑖] − 𝒚[𝑖#] 0

Inter-sample

Intra-sample

The contrastive covariance ℂJ[𝒙, 𝒚]	:= ΣK − ΣLMN

The energy ℰJ is defined as the trace of contrastive covariance ℂJ:

ℰ" 𝜽 ≔ tr	ℂ"[𝒇𝜽 𝒙 , 𝒇𝜽 𝒙]

A general family

Different Losses, Same Energy Function

Different loss functions 𝜙,𝜓 corresponds to the same energy function 𝓔
How the min player 𝜶 operates are different.

How min player 𝛼 is determined?

where the feasible set

If 𝜓 𝑥 = 𝑒O/P, then we have 𝛼(𝜽) ≔ argmin
J∈𝒜

ℰJ 𝜽 − ℛ 𝛼

and entropy regularization term ℛ 𝛼 ≔ 2𝜏∑!567 𝐻(𝛼!⋅) 𝜉! ≔,
$+!

𝜓(𝑑!" − 𝑑!$")

𝒜 ≔ 𝛼:	 ∀𝑖,,
$+!

𝛼!$ = 𝜏,)𝜉!𝜙# 𝜉! , 𝛼!$ ≥ 0	

For infoNCE with 𝜖 = 0, solving the optimization problem yields:

𝛼!"(𝜽) =
exp −𝑑!", /𝜏

∑"4! exp −𝑑!", /𝜏
We put more weights on small 𝒅𝒊𝒋, i.e., distinct samples with similar representations

Feature Collapsing! Deep linear case with fixed 𝛼
If 𝒇𝜽(𝒙) = 𝑊:𝑊:;6…𝑊6𝑥, then almost all local optima are global and it is PCA

1. Nearby weights align
2. All 𝑊& has rank-1 structure

Coordinate-wise Optimization

Minimizing ℒ<,> ó Coordinate-wise optimization:

𝛼! ≔ argmin
"∈𝒜

ℰ" 𝜽! −ℛ 𝛼

𝜽!%& ≔ 𝜽! + 𝜂∇𝜽ℰ"! 𝜽!

Coordinate-wise Optimization

Minimizing ℒ<,> ó Coordinate-wise optimization:

𝛼! ≔ argmin
"∈𝒜

ℰ" 𝜽! −ℛ 𝛼

𝜽!%& ≔ 𝜽! + 𝜂∇𝜽ℰ"! 𝜽!

Proposed: Pair-weighed CL (𝜶-CL)

𝛼! = 𝛼(𝜽!) Pairwise importance

The min player 𝛼 can be optimized by a loss function, or directly
specified:

𝜽!%& ≔ 𝜽! + 𝜂∇𝜽ℰ"! 𝜽!

Experimental Results

Experimental Results

Backbone = ResNet50

More datasets

Nonlinear Setting

CL with linear model connects with classic approaches.

Where does the magic of deep models come from?

Nonlinearity!

[Y. Tian, Understanding the Role of Nonlinearity in Training Dynamics of Contrastive Learning, ICLR’23]

Overview of Nonlinear Analysis

• One and Two-layer nonlinear networks

• Homogenous activations: ℎ 𝑥 = ℎ\ 𝑥 𝑥
• Linear, ReLU, leaky ReLU and monomial activations ℎ 𝑥 = 𝑥< (with additional

constant)

• Training Dynamics / Critical Point Analysis
• Statistics of local optima.
• Dynamics of weights during training

[Y. Tian, Understanding the Role of Nonlinearity in Training Dynamics of Contrastive Learning, ICLR’23]

Nonlinear Setting

1-layer network
𝒙	

𝒘

ℎ(𝒘!𝒙)
max
𝒘 ")&

ℂ" 𝑓𝜽 = ℂ"[ℎ(𝒘*𝒙)]

One-layer nonlinear network: 𝑓𝜽(𝒙) = ℎ(𝒘_𝒙)

Nonlinear Setting

1-layer network
𝒙	

𝒘

ℎ(𝒘!𝒙)
max
𝒘 ")&

ℂ" 𝑓𝜽 = ℂ"[ℎ(𝒘*𝒙)]

One-layer nonlinear network: 𝑓𝜽(𝒙) = ℎ(𝒘_𝒙)

Homogeneity: ℂJ ℎ 𝒘_𝒙 = 𝒘_ℂJ R𝒙𝒘 𝒘
�̀�𝒘 ≔ 𝒙 ⋅ ℎ′(𝒘!𝒙) is the gated data point

Similar to covariance matrix in PCA,
but now the matrix is not constant.

Nonlinear Setting

1-layer network
𝒙	

𝒘

ℎ(𝒘!𝒙)
max
𝒘 ")&

ℂ" 𝑓𝜽 = ℂ"[ℎ(𝒘*𝒙)]

One-layer nonlinear network: 𝑓𝜽(𝒙) = ℎ(𝒘_𝒙)

Homogeneity: ℂJ ℎ 𝒘_𝒙 = 𝒘_𝐴 𝒘 𝒘
�̀�𝒘 ≔ 𝒙 ⋅ ℎ′(𝒘!𝒙) is the gated data point

max
b !AB

𝒘_𝐴 𝒘 𝒘

Training Dynamics

�̇� = 𝑃𝒘(𝐴 𝒘 𝒘

𝑃𝒘> 	≔ 𝐼 − 𝒘𝒘0 is the projection matrix

Very much like power iteration, but 𝑨(𝒘)	changes over 𝒘!

max
b !AB

𝒘_𝐴 𝒘 𝒘

1-layer 1-node nonlinear network

Const 𝐴(𝒘)

𝜙#

Changing 𝐴(𝒘)

𝜙#(𝒘)

Linear Non-linear

𝜙6(𝒘): Largest eigenvector of 𝐴 𝒘 = ℂ? L𝒙𝒘 Multiple largest eigenvectors!

�̇� = 𝑃𝒘c𝐴 𝒘 𝒘

𝒘#(0)

1-layer multiple node nonlinear network

𝒘!(0)

𝒘!
𝒘"

𝒘#

𝒘!
𝒘"

𝒘#

𝒘$
𝒘$

𝒘!(0)

𝒘"(0) 𝒘#(0)

𝒘$(0)

𝒘"(0) 𝒘$(0)

Linear model
1. Every 𝒘$ converges to the global maximal
eigenvector
2. More nodes do NOT help.

Nonlinear model
1. Each 𝒘$	can converge to different patterns
2. More nodes with diverse initialization learn more

patterns!

Why Non-contrastive Learning doesn’t collapse?

DirectPred [Y. Tian et al, Understanding Self-Supervised Learning Dynamics
without Contrastive Pairs, ICML’21 Outstanding Paper Honorable Mentions]

Data
Augmentation

Target 𝒲'(#

Online	𝒲 Predictor 𝑾𝒑

L2 Loss

No Negative Pairs !!!

Stop-Grad

𝑥 ∼ 𝑝(⋅)

𝑥!

𝑥"

𝑓

No Predictor / No Stop-Gradient do not work

No Stop-Gradient (Here	g𝑊% ≔𝑊% − 𝐼)

PSD matrix

If there is no EMA (𝑊 = 𝑊j), then the dynamics becomes:

No Predictor

PSD matrix

In both cases, 𝑊 → 0

Why Non-contrastive Learning doesn’t collapse?

STL-10 Training
(ResNet18)

Theorem 3: Under certain conditions,

𝐹𝑊% −𝑊%𝐹 → 0 when 𝑡 → 	+∞

and the eigenspace of 𝑊% and 𝐹 gradually aligns.

𝐹 ≔ 𝔼[𝒇𝒇%] is the statistics of the input before 𝑊&

Predictor 𝑾𝒑

𝑓

When eigenspace aligns, the dynamics becomes decoupled:

Where 𝑝& and 𝑠& are eigenvalues of 𝑊% and 𝐹

Invariance holds:

Why Non-contrastive Learning doesn’t collapse?

1D dynamics of the eigenvalue 𝑝& of 𝑊%:

EMA

Variance due to
data augmentation

Weight Decay

Why Non-contrastive Learning doesn’t collapse?

𝑝&'∗ 𝑝&)∗O 𝑝

Stable
Trivial

Stable
Nontrivial

Stable stationary point Unstable stationary point

1D dynamics of the eigenvalue 𝑝& of 𝑊%:

EMA

Variance due to
data augmentation

Weight Decay

Why Non-contrastive Learning doesn’t collapse?

𝑝&'∗ 𝑝&)∗O 𝑝

Stable
Trivial

Stable
Nontrivial

1D dynamics of the eigenvalue 𝑝& of 𝑊%:

EMA

Variance due to
data augmentation

Weight Decay

Stable stationary point Unstable stationary point

Trivial Basin Non-trivial Basin

𝑝"#∗ =
𝜏 − 𝜏% − 4𝜂(1 + 𝜎%)

2(1 + 𝜎%)
∼
𝜂
𝜏

Why Non-contrastive Learning doesn’t collapse?

DirectPred

• Directly setting linear 𝑊q rather than relying on gradient update.

1. Estimate Y𝐹 = 𝜌 Y𝐹 + 1 − 𝜌 𝐸[𝒇𝒇r]
2. Eigen-decompose Y𝐹 = �̂�Λs�̂�r, Λs = diag	[𝑠B, 𝑠F, … , 𝑠t]
3. Set 𝑊q following the invariance:

Guaranteed Eigenspace Alignment J

Performance of DirectPred on STL-10/CIFAR-10

Downstream Classification Top-1

Performance of DirectPred on ImageNet

Downstream classification (ImageNet):

DirectPred using linear predictor is better than SGD with linear predictor,
and is comparable with 2-layer predictor.

Let’s check Collapsing (“sparsity”) in Transformers!

[A. Vaswani et al, Attention is all you need, NeurIPS’17]

[Z. Liu et al, Deja vu: Contextual sparsity for efficient LLMs at inference time, ICML’23 (oral)]

MLP layersAttention layers

Representation Collapses (“sparsity”) in Self-Attention

Seq class
(𝑚, 𝑛&)	

Seq class
(𝑚, 𝑛%)	

Distinct
Token

Common
Token

�̃�'|)!

�̃�'|)"

At initialization

Seq class
(𝑚, 𝑛&)	

Seq class
(𝑚, 𝑛%)	

�̃�'|)!

�̃�'|)"

Common Token Suppression

Seq class
(𝑚, 𝑛&)	

Seq class
(𝑚, 𝑛%)	

�̃�'|)!

�̃�'|)"

Winners-emergence

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurIPS’23]

One layer Transformer, linear MLP

Understanding Attention in 1-layer Setting

Contextual tokens

𝑥# 𝑥* 𝑥+'# 𝑥+ 𝑥+)#
Last/query token Next token

Self-attention

Normalization

Decoding & Softmax

v𝒖+ = ,
,-#

+'#

𝑏,+𝒖.* = 𝑈+𝑋+𝒃+

Self-attention

𝑈 = 𝒖#, 𝒖*, …𝒖/ +: token embedding matrix

Normalized version �̀�+ = 𝑈+LN(𝑋+𝒃+)

max
J3,J4,J5,K

𝐽 = 𝔼L 𝒖M678	
0 𝑊OL𝒖0 − log0

P

exp(𝒖P	0𝑊OL𝒖0)
Objective:

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurIPS’23]

Reparameterization

• Parameters 𝑊� ,𝑊� ,𝑊� , 𝑈 makes the dynamics complicated.

• Reparameterize the problem with independent variable 𝑌 and 𝑍
• 𝑌 = 𝑈𝑊O

0𝑈0

• 𝑍 = 𝑈𝑊Q𝑊R
0𝑈0 (pairwise logits of self-attention matrix)

• Then the dynamics becomes easier to analyze

Major Assumptions

• No positional encoding
• Sequence length 𝑇 → +∞
• Learning rate of decoder 𝑌 larger than self-attention layer Z (𝜂� ≫ 𝜂�)
• Other technical assumptions

Data Distribution

ℙ(𝑙|𝑚!, 𝑛!)
𝑚!

𝑛!
𝑛"

𝑚"
𝑛#
𝑛$

Last token 𝑥% Next token 𝑥%*!
Contextual tokens 𝑥+ (1 ≤ 𝑡 ≤ 𝑇 − 1)

Sequence
Classes

Question: Given the data distribution, how does the self-attention layer behave?

Assumption: 𝑚 = 𝜓(𝑛), i.e., no next token shared among different last tokens

ℙ 𝑙 𝑚, 𝑛 = ℙ 𝑙 𝑛 is the
conditional probability of
token 𝑙 given last token 𝑥' = 𝑚
and 𝑥'(& = 𝑛

𝑥+ ∈ [𝑀] for 1 ≤ 𝑡 ≤ 𝑇
𝑥%*! ∈ [𝐾]
𝐾 ≪ 𝑀

Common tokens: There exists multiple 𝑛 so that ℙ(𝑙|𝑛) > 0
Distinct tokens: There exists unique 𝑛 so that ℙ(𝑙|𝑛) > 0

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛!)	

Seq class
(𝑚, 𝑛")	

Distinct
Token

Common
Token

�̃�P|_8

�̃�P|_<

�̃�P|_8 : = ℙ 𝑙 𝑚, 𝑛6 exp(𝑧`P)

At initialization

Initial condition: 𝑧`P 0 = 0

𝑍 = 𝒛,

𝒛,: All logits of the contextual tokens
when attending to last token 𝑥% = 𝑚

Co-occurrence probability

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛!)	

Seq class
(𝑚, 𝑛")	

�̃�P|_8

�̃�P|_<

Common Token Suppression

(a) ̇𝑧�� < 0, for common token 𝑙

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛!)	

Seq class
(𝑚, 𝑛")	

�̃�P|_8

�̃�P|_<

(a) ̇𝑧�� < 0, for common token 𝑙

(b) ̇𝑧�� > 0, for distinct token 𝑙

Winners-emergence

Learnable TF-IDF (Term Frequency,
Inverse Document Frequency)

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛!)	

Seq class
(𝑚, 𝑛")	

�̃�P|_8

�̃�P|_<

Winners-emergence

(a) ̇𝑧�� < 0, for common token 𝑙

(b) ̇𝑧�� > 0, for distinct token 𝑙

(c) 𝑧��(𝑡) grows faster with
larger ℙ 𝑙 𝑚, 𝑛

Attention looks for discriminative tokens that
frequently co-occur with the query.

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛!)	

Seq class
(𝑚, 𝑛")	

�̃�P|_8

�̃�P|_<

Theorem 3 Relative gain 𝑟'/'#|) 𝑡 ≔
̃/$|&
" +
̃/$#|&
" +

− 1 has a

close form:

𝑟P/P=|_ 𝑡 = 𝑟P/P=|_ 0 𝜒P(𝑡)

If 𝑙0 is the dominant token: 𝑟''/'|) 0 > 0 for all 𝑙 ≠ 𝑙0
then

𝑒,h>?@
< (.)i> j ≤	𝜒P@(𝑡) ≤ 𝑒,i> j

where 𝐵) 𝑡 ≥ 0 monotonously increases, 𝐵) 0 = 0

(c) 𝑧`P(𝑡) grows faster with larger ℙ 𝑙 𝑚, 𝑛
Winners-emergence

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛!)	

Seq class
(𝑚, 𝑛")	

�̃�P|_8

�̃�P|_<

Theorem 3 Relative gain 𝑟'/'#|) 𝑡 ≔
̃/$|&
" +
̃/$#|&
" +

− 1 has a

close form:

𝑟P/P=|_ 𝑡 = 𝑟P/P=|_ 0 𝜒P(𝑡)

If 𝑙0 is the dominant token: 𝑟''/'|) 0 > 0 for all 𝑙 ≠ 𝑙0
then

𝑒,h>?@
< (.)i> j ≤	𝜒P@(𝑡) ≤ 𝑒,i> j

where 𝐵) 𝑡 ≥ 0 monotonously increases, 𝐵) 0 = 0

(c) 𝑧`P(𝑡) grows faster with larger ℙ 𝑙 𝑚, 𝑛Contextual
Sparsity
(query-dependent)

Winners-emergence

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛!)	

Seq class
(𝑚, 𝑛")	

�̃�P|_8

�̃�P|_<

Attention frozen
Theorem 4 When 𝑡 → +∞,

𝐵0 𝑡 ∼ ln 𝐶1 + 2𝐾
𝜂2
𝜂3
ln*

𝑀𝜂3𝑡
𝐾

Attention scanning:
 When training starts, 𝐵0 𝑡 = 𝑂(ln 𝑡)

Attention snapping:
 When 𝑡 ≥ 𝑡1 = 𝑂 *4 56/

7+
, 𝐵0 𝑡 = 𝑂(ln ln 𝑡)

(1) 𝜂1 and 𝜂2 are large, 𝐵) 𝑡 is large and attention is sparse

(2) Fixing 𝜂1, large 𝜂2 leads to slightly small 𝐵) 𝑡 and
denser attention

Contextual
Sparsity
(query-dependent)

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛!)	

Seq class
(𝑚, 𝑛")	

�̃�P|_8

�̃�P|_<

Attention frozen

Larger learning rate 𝜂, leads to faster phase transition

𝐵) 𝑡 ∼ ln 𝐶0 + 2𝐾
𝜂1
𝜂2
ln"

𝑀𝜂2𝑡
𝐾

Simple Real-world Experiments

WikiText2
(original parameterization)

Further study of sparse attention
 à Deja Vu, H2O and StreamingLLM

[Z. Liu et al, Deja vu: Contextual sparsity for efficient LLMs at inference time, ICML’23 (oral)]
[Z. Zhang et al, H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models, NeurIPS’23]
[G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]

How to get rid of the assumptions?

• A few annoying assumptions in the analysis
• No residual connections
• No embedding vectors
• The decoder needs to learn faster than the self-attention (𝜂s ≫ 𝜂t).
• Single layer analysis

• How to get rid of them?

• New research work: JoMA

JoMA: JOint Dynamics of MLP/Attention layers

[Y. Tian et al, JoMA: Demystifying Multilayer Transformers via JOint Dynamics of MLP and Attention, ICLR’24]

Modified MLP
(lower layer)

Activation 𝜙

MLP
(lower layer)

Self-
attention

Activation 𝜙

JoMA

Main Contributions:

1. Find a joint dynamics that connects
 MLP with self-attention.
2. Understand self-attention behaviors for
 linear/nonlinear activations.
3. Explain how data hierarchy is learned in
 multi-layer Transformers.

JoMA Settings
ℎ$ = 𝜙(𝒘$

8𝒇)

𝒇 = 𝑈9𝒃 + 𝒖:
 𝑈9 and 𝒖:	are embeddings

𝒃 = 𝜎 𝒛: ∘ 𝒙/𝐴
Self-

attention

Nonlinearity 𝜙(⋅)

MLP
(lower layer)

𝒙

𝒖3
𝑥3

𝒃

ExpAttn: 𝑏; = 𝑥;𝑒2-.

SoftmaxAttn: 𝑏; =
..<

/-.

∑. ..<
/-.

LinearAttn: 𝑏; = 𝑥;𝑧:;

𝒇

“This is an apple”

𝒘4
5𝒇

ℎ4

Assumption (Orthogonal Embeddings [𝑈) , 𝑢*])
Cosine similarity between embedding vectors at different layers.

JoMA Dynamics

There is residual connection.
Joint dynamics works for any learning rates between self-attention and MLP layer.
No assumption on the data distribution.

Verification of JoMA dynamics

𝒛` 𝑡 : Real attention logits
h𝒛` 𝑡 : Estimated attention logits by JoMA h𝒛` 𝑡 =

1
2
0
z

𝒗z, 𝑡 − 𝒗z 𝑡 ,
,k𝒃` + 𝒄

h𝒛`6 𝑡 h𝒛`, 𝑡

Linear case (𝜙 = Id, 𝐾 = 1)

Key idea: folding self-attention into MLP
 à A Transformer block becomes a modified MLP

Modified MLP
(lower layer)

Activation 𝜙

MLP
(lower layer)

Self-attention

Activation 𝜙
JoMA

Nonlinear case (𝜙 nonlinear, 𝐾 = 1)

Most salient feature takes all
(Attention becomes sparser)

Most salient feature grows, and others catch up
(Attention becomes sparser and denser)

Saliency is defined as Δ;> = 𝔼 𝑔 𝑙,𝑚 ⋅ ℙ 𝑙 𝑚

𝐃𝐢𝐬𝐜𝐫𝐢𝐦𝐢𝐧𝐚𝐧𝐜𝐲 𝐂𝐨𝐎𝐜𝐜𝐮𝐫𝐫𝐞𝐧𝐜𝐞

Implication of Theorem 1

Δ', ≈ 0: Common tokens
Δ', large: Distinct tokens

JoMA for Linear Activation

Attention becomes sparser
(Consistent with Scan&Snap)

Modified
MLP

(lower layer)

Linear

�̇� = 𝚫> ∘ exp
𝒗*

2

erf 𝑣'(𝑡)/2
Δ',

=
erf 𝑣'#(𝑡)/2

Δ'#,
We can prove erf 𝑥 =

2
𝜋
T
)

*
𝑒#+!d𝑡 ∈ [−1,1]

Only the most salient token 𝑙∗ = argmax	|Δ&1| of 𝒗 goes to +∞
other components stay finite.

Theorem 2

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurIPS’23]

What if we have more nodes (𝐾	 > 	1)?

• 𝑉	 = 	𝑈 ¡𝑊 ∈ ℝ¢"×� and the dynamics becomes

�̇� =
1
𝐴
diag exp

𝑉 ∘ 𝑉
2

𝟏 Δ Δ = Δ!, Δ", … , Δ6 , 	 Δ4 = 𝔼[𝑔4𝒙]

We can prove that 𝑉 gradually becomes low rank
• The growth rate of each row of 𝑉 varies widely.

Due to exp O∘O
,

, the weight gradient �̇� can be even more low-rank à GaLore

𝑉(𝑡) →

What does the dynamics look like?

If 𝒙 is sampled from a mixture of 𝐶 isotropic distributions,
(i.e., “local salient/non-salient map”), then

�̇� =
1
𝒗 *

,
?

𝑎?𝜃# 𝑟? ­𝒙? +
1
𝒗 *

@,
?

𝑎?𝜃* 𝑟? 𝒗

Here 𝑎? ≔ 𝔼:->,? 𝑔B2 ℙ 𝑐 , 𝑟? = 𝒗8­𝒙? + ∫1
,𝔼:-> 𝑔B2ℎ$

C d𝑡,
and 𝜃# and 𝜃* depends on nonlinearity

�𝒙!

�𝒙"

�𝒙#

�̇� = 𝝁 − 𝒗 ∘ exp
𝒗*

2
𝝁 ∼ ­𝒙?	: Critical point due to nonlinearity
(one of the cluster centers)

JoMA for Nonlinear Activation
Theorem 3

JoMA for Nonlinear activation Modified
MLP

(lower layer)

Nonlinear

�̇� = 𝝁 − 𝒗 ∘ exp
𝒗*

2

Salient components grow much faster than non-salient ones:

ConvergenceRate(𝑗)
ConvergenceRate(𝑘)

~
exp 𝜇&*/2
exp 𝜇$*/2

ConvergenceRate 𝑗 ≔ 	 ln 1/𝛿&(𝑡)
𝛿& 𝑡 ≔ 1 − 𝑣&(𝑡)/𝜇&

Theorem 4

#iterations

JoMA for Nonlinear activation Modified
MLP

(lower layer)

Nonlinear

�̇� = 𝝁 − 𝒗 ∘ exp
𝒗*

2

Attention becomes sparser
and then denser!

“bounce back”

Real-world Experiments

Wikitext2

Wikitext103

Real-world Experiments

Stable Rank of the lower layer of MLP shows the “bouncing back” effects as well.

Why is this “bouncing back” property useful?

It seems that it only slows down the training??

Not useful in 1-layer, but useful in multiple Transformer layers!

Data Hierarchy & Multilayer Transformer

𝑙′

𝑦0

𝑙

𝑦7
ℙ[𝑚|𝑧3]

𝑦8

𝑚

Class label
(observed)

Tokens
(observed)

Latent binary
variables
(not observed)

Strong attention

Weak attention

CLA(m, l)

CLA(m, l’)

Data Hierarchy & Multilayer Transformer

𝑙′

𝑦0

𝑙

𝑦7
ℙ[𝑚|𝑧3]

𝑦8

𝑚

Class label
(observed)

Tokens
(observed)

Latent binary
variables
(not observed)

Strong attention

Weak attention

ℙ 𝑙 𝑚 ≈ 1 −
𝐻
𝐿

𝐻: height of the common latent
 ancestor (CLA) of 𝑙 & 𝑚

𝐿: total height of the hierarchy

CLA(m, l)

CLA(m, l’)
Theorem 5

Deep Latent Distribution

𝑙′ 𝑚′

𝑦�=

𝑦.

𝑙

𝑦�

𝑦?

𝑚

CLA(𝑙’, 𝑚)

CLA(𝑙,𝑚)CLA(𝑙′, 𝑚′)

Strong Attention

Weak Attention

Learning the current hierarchical structure by
slowing down the association of tokens that are not directly correlated

Shallow Latent Distribution

𝑦?

𝑙′ 𝑚′ 𝑙 𝑚

𝑦.

Strong Attention

Weak Attention

𝑙′ 𝑚′

𝑦�=

𝑦.

𝑙

𝑦�

𝑦?

𝑚

CLA(𝑙’, 𝑚)

CLA(𝑙,𝑚)CLA(𝑙′, 𝑚′)

Shallow Latent Distribution

𝑦?

𝑙′ 𝑚′ 𝑙 𝑚

𝑦.

Strong Attention

Weak Attention

𝑙′ 𝑚′

𝑦�=

𝑦.

𝑙

𝑦�

𝑦?

𝑚

CLA(𝑙’, 𝑚)

CLA(𝑙,𝑚)CLA(𝑙′, 𝑚′)

Self-attention enables Hierarchy-agnostic Learning!

Condition? We need deep Transformers à MobileLLM

Future Work
• How embedding vectors are learned?
• In both Scan&Snap and JoMA, we assume embeddings are constant.

• Positional Encoding
• Formulate the dynamics of Multi-layer Transformers
• How intermediate latent concept gets learned during training?
• Why we need over-parameterization?

GaLore: Pre-training 7B model on RTX 4090 (24G)

Third-party evaluation by @llamafactory_ai

* SVD takes around 10min for 7B model, but runs every T=500-1000 steps.

[J. Zhao et al, GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection, arXiv’24]

Full-rank Training
Adam (needs running momentum 𝑀+ and
variance 𝑉+ as optimizer states)

Memory Usage Weight (𝑊) Optim States (𝑀+ , 𝑉+) Projection (𝑃) Total

Full-rank 𝑚𝑛 2𝑚𝑛 0 3𝑚𝑛
Low-rank adaptor 𝑚𝑛 +𝑚𝑟 + 𝑛𝑟 2(𝑚𝑟 + 𝑛𝑟) 0 𝑚𝑛 + 3(𝑚𝑟 + 𝑛𝑟)
GaLore 𝑚𝑛 2𝑛𝑟 𝑚𝑟 𝑚𝑛 +𝑚𝑟 + 2𝑛𝑟

Low-rank Adaptor (LoRA)

Memory Usage Weight (𝑊) Optim States (𝑀+ , 𝑉+) Projection (𝑃) Total

Full-rank 𝑚𝑛 2𝑚𝑛 0 3𝑚𝑛
Low-rank adaptor 𝑚𝑛 +𝑚𝑟 + 𝑛𝑟 2(𝑚𝑟 + 𝑛𝑟) 0 𝑚𝑛 + 3(𝑚𝑟 + 𝑛𝑟)
GaLore 𝑚𝑛 2𝑛𝑟 𝑚𝑟 𝑚𝑛 +𝑚𝑟 + 2𝑛𝑟

And we optimize 𝐵4 and 𝐴4 using Adam

𝐵% 𝐴% 𝑊0	
𝐵% 𝐴%

Adam (needs running momentum 𝑀+ and
variance 𝑉+ as optimizer states)

Memory Saving with GaLore

Memory Usage Weight (𝑊) Optim States (𝑀+ , 𝑉+) Projection (𝑃) Total

Full-rank 𝑚𝑛 2𝑚𝑛 0 3𝑚𝑛
Low-rank adaptor 𝑚𝑛 +𝑚𝑟 + 𝑛𝑟 2(𝑚𝑟 + 𝑛𝑟) 0 𝑚𝑛 + 3(𝑚𝑟 + 𝑛𝑟)
GaLore 𝑚𝑛 2𝑛𝑟 𝑚𝑟 𝑚𝑛 +𝑚𝑟 + 2𝑛𝑟

𝐺, ← −∇D𝜙(𝑊,)
If	t	%	T	==	0:	
								Compute	𝑃, = SVD 𝐺, ∈ ℝ>×F	
𝑅, ← 𝑃,+𝐺, {project}
Ê𝑅, ← 𝜌 𝑅, {Adam in low-rank}
Ê𝐺, ← 𝑃, Ê𝑅, {project-back}
𝑊,)# ← 𝑊, + 𝜂 Ê𝐺,

GaLore

𝑅+ 𝑊+	 𝑃+

Why gradient is low-rank?
Reversible models [Y. Tian. DDN, arXiv’20]

There exists 𝐾(𝒙;𝑊) so that

1. [Forward] 𝒚	 = 	𝐾(𝒙;𝑊)𝒙
2. [Backward] 𝒈𝒙 =	𝐾5 𝒙;𝑊 𝒈𝒚

Here 𝐾(𝒙;𝑊) depends on the input 𝑥 and
weight 𝑊 in the network 𝒩.

𝐺j =
1
𝑁
0
!56

7

𝒂! − 𝐵!𝑊j𝒇! 𝒇!�

For reversible models trained with ℓ" loss or softmax

Property of Reversible models

Example: Linear, ReLU / LeakyReLU, polynomials

Here 𝐵< are PSD matrices

Gradient becomes low-rank (sr ⋅ is stable rank):

sr 𝐺j ≤ sr 𝐺j@
+ 𝑂

1 − 𝜂𝜆,
1 − 𝜂𝜆6

,(j;j@)

𝜆! < 𝜆" are two smallest distinct eigenvectors of 𝑆 ≔ !
=
∑<>!= 𝒇<𝒇<5⊗𝐵<

Transformer Case

• 𝑉	 = 	𝑈 ¡𝑊 ∈ ℝ¢"×� and the dynamics becomes

�̇� =
1
𝐴
diag exp

𝑉 ∘ 𝑉
2

𝟏 Δ Δ = Δ!, Δ", … , Δ6 , 	 Δ4 = 𝔼[𝑔4𝒙]

We can prove that 𝑉(𝑡) gradually becomes low rank
• The growth rate of each row of 𝑉 varies widely.

Due to exp O∘O
,

, the weight gradient �̇� can be even more low-rank

𝑉(𝑡) →

MLP
(lower layer 𝑊)

Self-attention

Activation 𝜙

Convergence Analysis

𝐺 = ∑< 𝐴< −∑<𝐵<𝑊𝐶<

For gradient in the following form

Let 𝑅 = 𝑃5𝐺𝑄 be projected gradient, then

𝑅+ ? ≤ 1 − 𝜂𝑀 𝑅+@! ? → 0

Where 𝑀 ≔ &
,
∑!min+ 𝜆-./ d𝐵!+ 𝜆-./ f𝐶!+ − 𝐿0 − 𝐿1𝐿2𝐷%

Does that mean it works?
No… 𝑅+ → 0 just means the gradient within the
subspace vanishes.

How to continue optimization?
Change the projection from time to time!

𝑊, = 𝑊1 +,
G

Δ𝑊+6

𝑃, = SVD 𝐺, ∈ ℝ>×F
If	t	%	T	==	0:	

Pre-training Results (LLaMA 7B)

* Experiments are conducted on 8 x 8 A100

* On LLaMA 1B, ppl is better (~14.97) with ½ rank (1024/2048)

Compare with Adafactor

[J. W. Rae, Scaling Language Models: Methods, Analysis & Insights from Training Gopher]

Fine-tuning Results

Method Exact Match F1

Full-parameter 80.83 88.41

GaLore (r=16) 80.52 88.29

LoRA (r=16) 77.99 86.11

SQuAD (Bert-Base)

Method Gemma-2b Phi-2 LLaMA-7B

Full-parameter 4.53 3.81 2.98

GaLore (r=128) 4.51 3.83 2.95

LoRA (r=128) 4.56 4.24 2.94

Oaast-SFT (Reporting Perplexity)

Method Gemma-2b Phi-2 LLaMA-7B

Full-parameter 5.44 2.66 2.27

GaLore (r=128) 5.35 2.62 2.28

LoRA (r=128) 5.37 2.75 2.30

Belle-1M (Reporting Perplexity)

Impact of GaLore

Thanks!

89

