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Large Language Models (LLMs)

Content Creation AI Agents

AI co-pilot Summarization



Transformers

Attention mechanism

[A. Vaswani et al, Attention is all you need, NeurIPS’17]

Key 𝐾

Query 𝑄



Contextual Sparsity happens beyond Attention

Key Observation 

Keeping only high activation (contextual!) in 
attention/MLP

• results in 85% structured sparsity
o 80% attention, 95% MLP 

• leads to 7× potential parameter reduction for 
each input

• maintains same accuracy

Contextual sparsity widely exists in pre-trained models, 
e.g., OPT /LLaMA /Bloom/GPT 

[Z. Liu et al, Deja vu: Contextual sparsity for efficient LLMs at inference time, ICML’23 (oral)]



Part I 
Understanding Learning Mechanism of Transformer



Understanding Attention in 1-layer Setting

Contextual tokens

𝑥! 𝑥" 𝑥#$! 𝑥# 𝑥#%!
Last/query token Next token

Self-attention

Normalization

Decoding & Softmax

"𝒖# = %
&'!

#$!

𝑏&#𝒖(! = 𝑈#𝑋#𝒃#

Self-attention

𝑈 = 𝒖!, 𝒖", …𝒖) #:  token embedding matrix

Normalized version ,𝒖# = 𝑈#LN(𝑋#𝒃#)

max
#!,#",##,%

𝐽 = 𝔼& 𝒖'$%&	
) 𝑊*)𝒖) − log.

+

exp(𝒖+	)𝑊*)𝒖))
Objective:

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurIPS’23]



Reparameterization

• Parameters 𝑊1 ,𝑊2 ,𝑊3 , 𝑈 makes the dynamics complicated. 

• Reparameterize the problem with independent variable 𝑌 and 𝑍
• 𝑌 = 𝑈𝑊*

)𝑈)

• 𝑍 = 𝑈𝑊,𝑊-
)𝑈) (pairwise logits of self-attention matrix)

• Then the dynamics becomes easier to analyze



Training dynamics of Y and Z

Here 𝑍	 = 𝒛., 𝒛/, … , 𝒛0 ), each 𝒛1 ∈ ℝ0 is the attention score for query/last token 𝑚:

Training Dynamics:

𝑍 = 𝒛!

𝒛!: All logits of the contextual tokens 
when attending to last token 𝑥" = 𝑚�̇� = 𝜂*LN 𝑋#𝒃# 𝒙#%! − 𝜶 #

�̇� = 𝜂+𝒙# 𝒙#%! − 𝜶 #𝑌#
𝑃,"𝒃"
.

𝑋#𝒃# "
𝑋#diag 𝒃# 𝑋



Major Assumptions

• No positional encoding
• Sequence length 𝑇 → +∞
• Learning rate of decoder 𝑌 larger than self-attention layer Z (𝜂@ ≫ 𝜂A) 
• Other technical assumptions 



Data Distribution

ℙ(𝑙|𝑚#, 𝑛#)
𝑚#

𝑛#
𝑛$

𝑚$
𝑛%
𝑛&

Last token 𝑥"  Next token 𝑥"'# 
Contextual tokens 𝑥( (1 ≤ 𝑡 ≤ 𝑇 − 1)

Sequence 
Classes

Question: Given the data distribution, how does the self-attention layer behave?

Assumption: 𝑚 = 𝜓(𝑛), i.e., no next token shared among different last tokens

ℙ 𝑙 𝑚, 𝑛 = ℙ 𝑙 𝑛  is the 
conditional probability of 
token 𝑙 given last token 𝑥! = 𝑚 
and 𝑥!"# = 𝑛 

𝑥( ∈ [𝑀] for 1 ≤ 𝑡 ≤ 𝑇
𝑥"'# ∈ [𝐾]
𝐾 ≪ 𝑀

Common tokens: There exists multiple 𝑛 so that ℙ(𝑙|𝑛) > 0
Distinct tokens: There exists unique 𝑛 so that ℙ(𝑙|𝑛) > 0



Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛#)	

Seq class
(𝑚, 𝑛$)	

Distinct 
Token

Common 
Token

�̃�+|D&

�̃�+|D.

�̃�+|D& : = ℙ 𝑙 𝑚, 𝑛. exp(𝑧1+)

At initialization

Initial condition: 𝑧1+ 0 = 0

𝑍 = 𝒛!

𝒛!: All logits of the contextual tokens 
when attending to last token 𝑥" = 𝑚

Co-occurrence probability 



Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛#)	

Seq class
(𝑚, 𝑛$)	

�̃�+|D&

�̃�+|D.

Common Token Suppression

(a) ̇𝑧JK < 0, for common token 𝑙



Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛#)	

Seq class
(𝑚, 𝑛$)	

�̃�+|D&

�̃�+|D.

(a) ̇𝑧JK < 0, for common token 𝑙

(b) ̇𝑧JK > 0, for distinct token 𝑙

Winners-emergence

Learnable TF-IDF (Term Frequency, 
Inverse Document Frequency)



Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛#)	

Seq class
(𝑚, 𝑛$)	

�̃�+|D&

�̃�+|D.

Winners-emergence

(a) ̇𝑧JK < 0, for common token 𝑙

(b) ̇𝑧JK > 0, for distinct token 𝑙

(c) 𝑧JK(𝑡) grows faster with 
larger ℙ 𝑙 𝑚, 𝑛

Attention looks for discriminative tokens that 
frequently co-occur with the query.



Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛#)	

Seq class
(𝑚, 𝑛$)	

�̃�+|D&

�̃�+|D.

Theorem 3 Relative gain 𝑟)/)!|, 𝑡 ≔
̃."|$
% (
̃."!|$
% (

− 1 has a 

close form:

𝑟+/+/|D 𝑡 = 𝑟+/+/|D 0 𝜒+(𝑡)

If 𝑙/ is the dominant token: 𝑟)&/)|, 0 > 0 for all 𝑙 ≠ 𝑙/ 
then
 

𝑒/L012
. (M)N0 O ≤	𝜒+2(𝑡) ≤ 𝑒/N0 O

where 𝐵, 𝑡 ≥ 0 monotonously increases, 𝐵, 0 = 0

(c) 𝑧1+(𝑡) grows faster with larger ℙ 𝑙 𝑚, 𝑛
Winners-emergence



Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛#)	

Seq class
(𝑚, 𝑛$)	

�̃�+|D&

�̃�+|D.

Theorem 3 Relative gain 𝑟)/)!|, 𝑡 ≔
̃."|$
% (
̃."!|$
% (

− 1 has a 

close form:

𝑟+/+/|D 𝑡 = 𝑟+/+/|D 0 𝜒+(𝑡)

If 𝑙/ is the dominant token: 𝑟)&/)|, 0 > 0 for all 𝑙 ≠ 𝑙/ 
then
 

𝑒/L012
. (M)N0 O ≤	𝜒+2(𝑡) ≤ 𝑒/N0 O

where 𝐵, 𝑡 ≥ 0 monotonously increases, 𝐵, 0 = 0

(c) 𝑧1+(𝑡) grows faster with larger ℙ 𝑙 𝑚, 𝑛Contextual 
Sparsity
(query-dependent)

Winners-emergence



Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛#)	

Seq class
(𝑚, 𝑛$)	

�̃�+|D&

�̃�+|D.

Attention frozen
Theorem 4 When 𝑡 → +∞, 

𝐵/ 𝑡 ∼ ln 𝐶0 + 2𝐾
𝜂1
𝜂*
ln"

𝑀𝜂*𝑡
𝐾

Attention scanning: 
          When training starts, 𝐵/ 𝑡 = 𝑂(ln 𝑡)

Attention snapping: 
           When 𝑡 ≥ 𝑡0 = 𝑂 "2 34)

5$
, 𝐵/ 𝑡 = 𝑂(ln ln 𝑡)

(1) 𝜂0 and 𝜂1 are large, 𝐵, 𝑡  is large and attention is sparse

(2) Fixing 𝜂0, large 𝜂1 leads to slightly small 𝐵, 𝑡  and 
denser attention 

Contextual 
Sparsity
(query-dependent)



Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛#)	

Seq class
(𝑚, 𝑛$)	

�̃�+|D&

�̃�+|D.

Attention frozen

Larger learning rate 𝜂% leads to faster phase transition

𝐵, 𝑡 ∼ ln 𝐶/ + 2𝐾
𝜂0
𝜂1
ln$

𝑀𝜂1𝑡
𝐾



Simple Real-world Experiments

WikiText2 
(original parameterization)

Further study of sparse attention 
    à Deja Vu, H2O and StreamingLLM

[Z. Liu et al, Deja vu: Contextual sparsity for efficient LLMs at inference time, ICML’23 (oral)]
[Z. Zhang et al, H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models, NeurIPS’23]
[G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]



How to get rid of the assumptions?

• A few annoying assumptions in the analysis
• No residual connections
• No embedding vectors
• The decoder needs to learn faster than the self-attention (𝜂Y ≫ 𝜂Z). 
• Single layer analysis

• How to get rid of them?

• New research work: JoMA



JoMA: JOint Dynamics of MLP/Attention layers

[Y. Tian et al, JoMA: Demystifying Multilayer Transformers via JOint Dynamics of MLP and Attention, ICLR’24]

Modified MLP 
(lower layer)

Activation 𝜙

MLP 
(lower layer)

Self-
attention

Activation 𝜙 

JoMA

Main Contributions:

1. Find a joint dynamics that connects 
     MLP with self-attention. 
2. Understand self-attention behaviors for 
     linear/nonlinear activations. 
3. Explain how data hierarchy is learned in 
     multi-layer Transformers. 



JoMA Settings
ℎ6 = 𝜙(𝒘6

7𝒇)

𝒇 = 𝑈8𝒃 + 𝒖9 
        𝑈8 and 𝒖9	are embeddings

𝒃 = 𝜎 𝒛9 ∘ 𝒙/𝐴
Self-

attention

Nonlinearity 𝜙(⋅)

MLP 
(lower layer)

𝒙

𝒖2
𝑥2  

𝒃

ExpAttn: 𝑏: = 𝑥:𝑒1&'

SoftmaxAttn: 𝑏: =
(';

(&'

∑' (';
(&'

LinearAttn: 𝑏: = 𝑥:𝑧9:

𝒇

“This is an apple”

𝒘3
4𝒇

ℎ3



Assumption (Orthogonal Embeddings [𝑈! , 𝑢"])
Cosine similarity between embedding vectors at different layers.



JoMA Dynamics

There is residual connection.
Joint dynamics works for any learning rates between self-attention and MLP layer.
No assumption on the data distribution. 



Verification of JoMA dynamics

𝒛1 𝑡 : Real attention logits
L𝒛1 𝑡 : Estimated attention logits by JoMA L𝒛1 𝑡 =

1
2
.
b

𝒗b/ 𝑡 − 𝒗b 𝑡 /
/P𝒃1 + 𝒄

L𝒛1. 𝑡 L𝒛1/ 𝑡



Linear case (𝜙 = Id, 𝐾 = 1)

Key idea: folding self-attention into MLP 
            à A Transformer block becomes a modified MLP

Modified MLP 
(lower layer)

Activation 𝜙

MLP 
(lower layer)

Self-attention

Activation 𝜙 
JoMA

Nonlinear case (𝜙 nonlinear, 𝐾 = 1)

Most salient feature takes all
(Attention becomes sparser) 

Most salient feature grows, and others catch up
(Attention becomes sparser and denser)

Saliency is defined as Δ:= = 𝔼 𝑔 𝑙,𝑚 ⋅ ℙ 𝑙 𝑚

𝐃𝐢𝐬𝐜𝐫𝐢𝐦𝐢𝐧𝐚𝐧𝐜𝐲 𝐂𝐨𝐎𝐜𝐜𝐮𝐫𝐫𝐞𝐧𝐜𝐞

Implication of Theorem 1

Δ)! ≈ 0: Common tokens
Δ)!  large: Distinct tokens



JoMA for Linear Activation

Attention becomes sparser
(Consistent with Scan&Snap)

Modified 
MLP 

(lower layer)

Linear

�̇� = 𝚫= ∘ exp
𝒗"

2

erf 𝑣)(𝑡)/2
Δ)!

=
erf 𝑣)!(𝑡)/2

Δ)!!
We can prove erf 𝑥 =

2
𝜋
G
$

%
𝑒&'!d𝑡 ∈ [−1,1]

Only the most salient token 𝑙∗ = argmax	|Δ*+| of 𝒗 goes to +∞ 
other components stay finite.

Theorem 2

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurIPS’23]



What if we have more nodes (𝐾	 > 	1)?

• 𝑉	 = 	𝑈op𝑊 ∈ ℝq!×1  and the dynamics becomes

�̇� =
1
𝐴
diag exp

𝑉 ∘ 𝑉
2

𝟏 Δ Δ = Δ#, Δ$, … , Δ5 , 	 Δ3 = 𝔼[𝑔3𝒙]

We can prove that 𝑉 gradually becomes low rank 
• The growth rate of each row of 𝑉 varies widely. 

Due to exp *∘*
/

, the weight gradient �̇� can be even more low-rank à GaLore 

𝑉(𝑡) →



What does the dynamics look like? 

If 𝒙 is sampled from a mixture of 𝐶 isotropic distributions, 
(i.e., “local salient/non-salient map”), then 

�̇� =
1
𝒗 "

%
>

𝑎>𝜃! 𝑟> y𝒙> +
1
𝒗 "

?%
>

𝑎>𝜃" 𝑟> 𝒗

Here 𝑎> ≔ 𝔼9'=,> 𝑔A, ℙ 𝑐 , 𝑟> = 𝒗7y𝒙> + ∫0
&𝔼9'= 𝑔A,ℎ6

B d𝑡, 
and 𝜃! and 𝜃" depends on nonlinearity

q𝒙#

q𝒙$

q𝒙%

�̇� = 𝝁 − 𝒗 ∘ exp
𝒗"

2
𝝁 ∼ y𝒙>	: Critical point due to nonlinearity 
(one of the cluster centers) 

JoMA for Nonlinear Activation
Theorem 3



JoMA for Nonlinear activation Modified 
MLP 

(lower layer)

Nonlinear

�̇� = 𝝁 − 𝒗 ∘ exp
𝒗"

2

Salient components grow much faster than non-salient ones:

ConvergenceRate(𝑗)
ConvergenceRate(𝑘)

~
exp 𝜇C"/2
exp 𝜇6"/2

ConvergenceRate 𝑗 ≔ 	 ln 1/𝛿C(𝑡)
𝛿C 𝑡 ≔ 1 − 𝑣C(𝑡)/𝜇C

Theorem 4

#iterations



JoMA for Nonlinear activation Modified 
MLP 

(lower layer)

Nonlinear

�̇� = 𝝁 − 𝒗 ∘ exp
𝒗"

2

Attention becomes sparser 
and then denser!

“bounce back”



Real-world Experiments

Wikitext2

Wikitext103



Real-world Experiments

Stable Rank of the lower layer of MLP shows the “bouncing back” effects as well.



Why is this “bouncing back” property useful? 

It seems that it only slows down the training?? 

Not useful in 1-layer, but useful in multiple Transformer layers!



Data Hierarchy & Multilayer Transformer

𝑙′

𝑦/

𝑙

𝑦6
ℙ[𝑚|𝑧-]

𝑦7

𝑚

Class label 
(observed)

Tokens 
(observed)

Latent binary 
variables 
(not observed)

Strong attention

Weak attention

CLA(m, l)

CLA(m, l’)



Data Hierarchy & Multilayer Transformer

𝑙′

𝑦/

𝑙

𝑦6
ℙ[𝑚|𝑧-]

𝑦7

𝑚

Class label 
(observed)

Tokens 
(observed)

Latent binary 
variables 
(not observed)

Strong attention

Weak attention

ℙ 𝑙 𝑚 ≈ 1 −
𝐻
𝐿

𝐻: height of the common latent 
     ancestor (CLA) of 𝑙 & 𝑚

𝐿: total height of the hierarchy

CLA(m, l)

CLA(m, l’)
Theorem 5



Deep Latent Distribution

𝑙′ 𝑚′

𝑦t/  

𝑦M

𝑙

𝑦t

𝑦u

𝑚

CLA(𝑙’, 𝑚)

CLA(𝑙,𝑚)CLA(𝑙′, 𝑚′)

Strong Attention

Weak Attention

Learning the current hierarchical structure by 
slowing down the association of tokens that are not directly correlated



Shallow Latent Distribution

𝑦u

𝑙′ 𝑚′ 𝑙 𝑚

𝑦M 

Strong Attention

Weak Attention

𝑙′ 𝑚′

𝑦t/  

𝑦M

𝑙

𝑦t

𝑦u

𝑚

CLA(𝑙’, 𝑚)

CLA(𝑙,𝑚)CLA(𝑙′, 𝑚′)



Shallow Latent Distribution

𝑦u

𝑙′ 𝑚′ 𝑙 𝑚

𝑦M 

Strong Attention

Weak Attention

𝑙′ 𝑚′

𝑦t/  

𝑦M

𝑙

𝑦t

𝑦u

𝑚

CLA(𝑙’, 𝑚)

CLA(𝑙,𝑚)CLA(𝑙′, 𝑚′)

Self-attention enables Hierarchy-agnostic Learning!

Condition? We need deep Transformers à MobileLLM 



Future Work
• How embedding vectors are learned?
• In both Scan&Snap and JoMA, we assume embeddings are constant. 

• Positional Encoding
• Formulate the dynamics of Multi-layer Transformers
• How intermediate latent concept gets learned during training?
• Why we need over-parameterization?



Part II 
Applications based on Properties of Transformers



Attention Sinks: Initial tokens draw a lot of attentions

First few tokens!!
Average attention logits in Llama-2-7B over 256 sentences

• Observation: Initial tokens have large attention scores, even if they're not semantically significant. 
• Attention Sink: Tokens that disproportionately attract attention irrespective of their relevance.

[G. Xiao, Y. Tian, et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]



StreamingLLM

[G. Xiao, Y. Tian, et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]



StreamingLLM



Window 
Attention

StreamingLLM

Window 
Attention 
(Re-compute)

Dense Attn



Impact of StreamingLLM



GaLore: Pre-training 7B model on RTX 4090 (24G)

Third-party evaluation by @llamafactory_ai

* SVD takes around 10min for 7B model, but runs every T=500-1000 steps.

[J. Zhao et al, GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection, arXiv’24]



Full-rank Training
Adam (needs running momentum 𝑀'  and 
variance 𝑉'  as optimizer states) 

Memory Usage Weight (𝑊) Optim States (𝑀( , 𝑉() Projection (𝑃) Total

Full-rank 𝑚𝑛 2𝑚𝑛 0 3𝑚𝑛
Low-rank adaptor 𝑚𝑛 +𝑚𝑟 + 𝑛𝑟 2(𝑚𝑟 + 𝑛𝑟) 0 𝑚𝑛 + 3(𝑚𝑟 + 𝑛𝑟)
GaLore 𝑚𝑛 2𝑛𝑟 𝑚𝑟 𝑚𝑛 +𝑚𝑟 + 2𝑛𝑟



Low-rank Adaptor (LoRA)

Memory Usage Weight (𝑊) Optim States (𝑀( , 𝑉() Projection (𝑃) Total

Full-rank 𝑚𝑛 2𝑚𝑛 0 3𝑚𝑛
Low-rank adaptor 𝑚𝑛 +𝑚𝑟 + 𝑛𝑟 2(𝑚𝑟 + 𝑛𝑟) 0 𝑚𝑛 + 3(𝑚𝑟 + 𝑛𝑟)
GaLore 𝑚𝑛 2𝑛𝑟 𝑚𝑟 𝑚𝑛 +𝑚𝑟 + 2𝑛𝑟

And we optimize 𝐵. and 𝐴. using Adam

𝐵"  𝐴"  𝑊/	
𝐵"  𝐴"  

Adam (needs running momentum 𝑀'  and 
variance 𝑉'  as optimizer states) 



Memory Saving with GaLore

Memory Usage Weight (𝑊) Optim States (𝑀( , 𝑉() Projection (𝑃) Total

Full-rank 𝑚𝑛 2𝑚𝑛 0 3𝑚𝑛
Low-rank adaptor 𝑚𝑛 +𝑚𝑟 + 𝑛𝑟 2(𝑚𝑟 + 𝑛𝑟) 0 𝑚𝑛 + 3(𝑚𝑟 + 𝑛𝑟)
GaLore 𝑚𝑛 2𝑛𝑟 𝑚𝑟 𝑚𝑛 +𝑚𝑟 + 2𝑛𝑟

𝐺& ← −∇D𝜙(𝑊&)
If	t	%	T	==	0:	
								Compute	𝑃& = SVD 𝐺& ∈ ℝ=×F	
𝑅& ← 𝑃&#𝐺&     {project}
�𝑅& ← 𝜌 𝑅&     {Adam in low-rank}
�𝐺& ← 𝑃& �𝑅&       {project-back}
𝑊&%! ← 𝑊& + 𝜂 �𝐺&

GaLore

𝑅( 𝑊(	 𝑃( 



Why gradient is low-rank?
Reversible models [Y. Tian. DDN, arXiv’20]

There exists 𝐾(𝒙;𝑊) so that 

1. [Forward] 𝒚	 = 	𝐾(𝒙;𝑊)𝒙 
2. [Backward] 𝒈𝒙 =	𝐾4 𝒙;𝑊 𝒈𝒚

Here 𝐾(𝒙;𝑊) depends on the input 𝑥 and 
weight 𝑊 in the network 𝒩.

𝐺O =
1
𝑁
.
��.

�

𝒂� − 𝐵�𝑊O𝒇� 𝒇��

For reversible models trained with ℓ$ loss or softmax

Property of Reversible models

Example: Linear, ReLU / LeakyReLU, polynomials

Here 𝐵;  are PSD matrices 

Gradient becomes low-rank (sr ⋅  is stable rank):

sr 𝐺O ≤ sr 𝐺O2
# + 𝑂

1 − 𝜂𝜆/
1 − 𝜂𝜆.

/(O�O2)

𝜆# < 𝜆$ are two smallest distinct eigenvectors of 𝑆 ≔ #
<
∑;=#< 𝒇;𝒇;4⊗𝐵;



Transformer Case

• 𝑉	 = 	𝑈op𝑊 ∈ ℝq!×1  and the dynamics becomes

�̇� =
1
𝐴
diag exp

𝑉 ∘ 𝑉
2

𝟏 Δ Δ = Δ#, Δ$, … , Δ5 , 	 Δ3 = 𝔼[𝑔3𝒙]

We can prove that 𝑉(𝑡) gradually becomes low rank 
• The growth rate of each row of 𝑉 varies widely. 

Due to exp *∘*
/

, the weight gradient �̇� can be even more low-rank

𝑉(𝑡) →

MLP 
(lower layer 𝑊)

Self-attention

Activation 𝜙 



Convergence Analysis

𝐺 = ∑; 𝐴; −∑;𝐵;𝑊𝐶;  

For gradient in the following form

Let 𝑅 = 𝑃/𝐺𝑄 be projected gradient, then  

𝑅( > ≤ 1 − 𝜂𝑀 𝑅(?# > → 0

Where 𝑀 ≔ #
(
∑)min' 𝜆*+, Y𝐵)' 𝜆*+, [𝐶)' − 𝐿- − 𝐿.𝐿/𝐷0

Does that mean it works? 
No… 𝑅( → 0 just means the gradient within the 
subspace vanishes.

How to continue optimization? 
Change the projection from time to time!

𝑊& = 𝑊0 +%
G

Δ𝑊#0

𝑃& = SVD 𝐺& ∈ ℝ=×F
If	t	%	T	==	0:	



Pre-training Results (LLaMA 7B)

* Experiments are conducted on 8 x 8 A100  

* On LLaMA 1B, ppl is better (~14.97) with ½ rank (1024/2048)



Compare with Adafactor

[J. W. Rae, Scaling Language Models: Methods, Analysis & Insights from Training Gopher]



Fine-tuning Results

Method Exact Match F1

Full-parameter 80.83 88.41

GaLore (r=16) 80.52 88.29

LoRA (r=16) 77.99 86.11

SQuAD (Bert-Base)

Method Gemma-2b Phi-2 LLaMA-7B

Full-parameter 4.53 3.81 2.98

GaLore (r=128) 4.51 3.83 2.95

LoRA (r=128) 4.56 4.24 2.94

Oaast-SFT (Reporting Perplexity)

Method Gemma-2b Phi-2 LLaMA-7B

Full-parameter 5.44 2.66 2.27

GaLore (r=128) 5.35 2.62 2.28

LoRA (r=128) 5.37 2.75 2.30

Belle-1M (Reporting Perplexity)



Impact of GaLore



On-device LLM use cases

[Z. Liu et al, MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases, arXiv’24]

Small model matters for on-device use cases!

How to reduce memory usage of LLMs? 



MobileLLM
Zero-shot commonsense reasoning



Design Choices of MobileLLM

(FC → ReLU → FC)



Deep and Thin Network



Embedding Sharing



Layer Sharing



Layer Sharing (Latency)

125M (2x30, adjacent sharing)

125M (30 layers)

Memory IO is much slower than compute! 



Final Results (zero-shot performance)



Final Results (chat)



Thanks!


