Demystifying Attention in Multi-layer Transformer and its application for Large Language Models

Yuandong Tian Research Scientist and Manager

Meta AI (FAIR)

Large Language Models (LLMs)

Content Creation

AI Agents

AI co-pilot

Summarization

facebook Artificial Intelligence [A. Vaswani et al, Attention is all you need, NeurIPS'17]

Contextual Sparsity happens beyond Attention

Key Observation

Keeping only **high activation (contextual!)** in attention/MLP

- results in 85% structured sparsity
 80% attention, 95% MLP
- leads to 7× potential parameter reduction for each input
- maintains same accuracy

Contextual sparsity widely exists in pre-trained models, e.g., OPT /LLaMA /Bloom/GPT

[Z. Liu et al, Deja vu: Contextual sparsity for efficient LLMs at inference time, ICML'23 (oral)]

Part I Understanding Learning Mechanism of Transformer

Understanding Attention in 1-layer Setting

 $U = [\boldsymbol{u}_1, \boldsymbol{u}_2, ..., \boldsymbol{u}_M]^T$: token embedding matrix

facebook Artificial Intelligence

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurIPS'23]

Reparameterization

- Parameters W_K , W_Q , W_V , U makes the dynamics complicated.
- Reparameterize the problem with independent variable *Y* and *Z* • $Y = UW_V^T U^T$
 - $Z = UW_Q W_K^T U^T$ (pairwise logits of self-attention matrix)
- Then the dynamics becomes easier to analyze

Training dynamics of
$$Y$$
 and Z

Training Dynamics:

 $\dot{Y} = \eta_Y \text{LN}(X^T \boldsymbol{b}_T) (\boldsymbol{x}_{T+1} - \boldsymbol{\alpha})^T$ $\dot{Z} = \eta_Z \boldsymbol{x}_T (\boldsymbol{x}_{T+1} - \boldsymbol{\alpha})^T Y^T \frac{P_X^{\top} \boldsymbol{b}_T}{\|X^T \boldsymbol{b}_T\|_2} X^T \text{diag}(\boldsymbol{b}_T) X$

 z_m : All logits of the contextual tokens when attending to last token $x_T = m$

Here $Z = [\mathbf{z}_1, \mathbf{z}_2, ..., \mathbf{z}_M]^T$, each $\mathbf{z}_m \in \mathbb{R}^M$ is the attention score for query/last token m:

$$\dot{\boldsymbol{z}}_{m} = \eta_{Z} X^{\top}[i] \operatorname{diag}(\boldsymbol{b}_{T}[i]) X[i] \frac{P_{X^{\top}[i]\boldsymbol{b}_{T}[i]}^{\perp}}{\|X^{\top}[i]\boldsymbol{b}_{T}[i]\|_{2}} Y(\boldsymbol{x}_{T+1}[i] - \boldsymbol{\alpha}[i])$$

Major Assumptions

- No positional encoding
- Sequence length $T \to +\infty$
- Learning rate of decoder Y larger than self-attention layer Z ($\eta_Y \gg \eta_Z$)
- Other technical assumptions

Distinct tokens: There exists unique n so that $\mathbb{P}(l|n) > 0$ **Common tokens:** There exists multiple n so that $\mathbb{P}(l|n) > 0$

 $\mathbb{P}(l|m,n) = \mathbb{P}(l|n)$ is the conditional probability of token l given last token $x_T = m$ and $x_{T+1} = n$

Assumption: $m = \psi(n)$, i.e., no next token shared among different last tokens

Question: Given the data distribution, how does the self-attention layer behave?

At initialization

facebook Artificial Intelligence

Co-occurrence probability $\tilde{c}_{l|n_1} := \mathbb{P}(l|m, n_1) \exp(z_{ml})$

Initial condition: $z_{ml}(0) = 0$

 z_m : All logits of the contextual tokens when attending to last token $x_T = m$

Common Token Suppression

(a) $\dot{z_{ml}} < 0$, for common token l

Winners-emergence

(a) $\dot{z_{ml}} < 0$, for common token l

(b) $\dot{z_{ml}} > 0$, for distinct token l

Learnable TF-IDF (Term Frequency, Inverse Document Frequency)

Winners-emergence

(a) $\dot{z_{ml}} < 0$, for common token l

(b) $\dot{z_{ml}} > 0$, for distinct token l

(c) $z_{ml}(t)$ grows faster with larger $\mathbb{P}(l|m, n)$

Attention looks for **discriminative** tokens that **frequently co-occur** with the query.

Winners-emergence

(c) $z_{ml}(t)$ grows faster with larger $\mathbb{P}(l|m, n)$

Theorem 3 Relative gain $r_{l/l'|n}(t) \coloneqq \frac{\tilde{c}_{l|n}^2(t)}{\tilde{c}_{l'|n}^2(t)} - 1$ has a close form:

$$r_{l/l'|n}(t) = r_{l/l'|n}(0)\chi_l(t)$$

If l_0 is the dominant token: $r_{l_0/l|n}(0) > 0$ for all $l \neq l_0$ then

$$e^{2f_{nl_0}^2(0)B_n(t)} \le \chi_{l_0}(t) \le e^{2B_n(t)}$$

where $B_n(t) \ge 0$ monotonously increases, $B_n(0) = 0$

Contextual $\tilde{c}_{l|n_1}$ **Sparsity** (query-dependent) Seq class (m, n_1) Seq class (m, n_2)

Winners-emergence

(c) $z_{ml}(t)$ grows faster with larger $\mathbb{P}(l|m, n)$

Theorem 3 Relative gain $r_{l/l'|n}(t) \coloneqq \frac{\tilde{c}_{l|n}^2(t)}{\tilde{c}_{l'|n}^2(t)} - 1$ has a close form:

$$r_{l/l'|n}(t) = r_{l/l'|n}(0)\chi_l(t)$$

If l_0 is the dominant token: $r_{l_0/l|n}(0) > 0$ for all $l \neq l_0$ then

$$e^{2f_{nl_0}^2(0)B_n(t)} \le \chi_{l_0}(t) \le e^{2B_n(t)}$$

where $B_n(t) \ge 0$ monotonously increases, $B_n(0) = 0$

Attention frozen

Theorem 4 When $t \to +\infty$, $B_n(t) \sim \ln\left(C_0 + 2K\frac{\eta_z}{\eta_Y}\ln^2\left(\frac{M\eta_Y t}{K}\right)\right)$ Attention scanning:

When training starts, $B_n(t) = O(\ln t)$

Attention **snapping**:

When $t \ge t_0 = O\left(\frac{2K \ln M}{\eta_Y}\right)$, $B_n(t) = O(\ln \ln t)$

(1) η_z and η_Y are large, $B_n(t)$ is large and attention is sparse

(2) Fixing η_z , large η_Y leads to slightly small $B_n(t)$ and denser attention

facebook Artificial Intelligence

Larger learning rate η_{z} leads to faster phase transition

$$B_n(t) \sim \ln\left(C_0 + 2K\frac{\eta_z}{\eta_Y}\ln^2\left(\frac{M\eta_Y t}{K}\right)\right)$$

Simple Real-world Experiments

Figure 7: Attention patterns in the lowest self-attention layer for 1-layer (top) and 3-layer (bottom) Transformer trained on WikiText2 using SGD (learning rate is 5). Attention becomes sparse over training.

Further study of sparse attention → Deja Vu, H2O and StreamingLLM

WikiText2

(original parameterization)

[Z. Liu et al, Deja vu: Contextual sparsity for efficient LLMs at inference time, ICML'23 (oral)]
[Z. Zhang et al, H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models, NeurIPS'23]
[G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR'24]

How to get rid of the assumptions?

- A few annoying assumptions in the analysis
 - No residual connections
 - No embedding vectors
 - The decoder needs to learn faster than the self-attention ($\eta_Y \gg \eta_Z$).
 - Single layer analysis
- How to get rid of them?
- New research work: **JoMA**

JoMA: <u>JO</u>int Dynamics of <u>MLP/A</u>ttention layers

Main Contributions:

- 1. Find a joint dynamics that connects MLP with self-attention.
- 2. Understand self-attention behaviors for linear/nonlinear activations.
- 3. Explain how data hierarchy is learned in multi-layer Transformers.

JoMA Settings

 $f = U_C b + u_q$ U_C and u_q are embeddings

 $h_k = \phi(\boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{f})$

$$\boldsymbol{b} = \sigma(\boldsymbol{z}_q) \circ \boldsymbol{x}/A$$

$$\begin{cases} \text{SoftmaxAttn: } b_l = \frac{x_l e^{z_q l}}{\sum_l x_l e^{z_q l}} \\ \text{ExpAttn: } b_l = x_l e^{z_q l} \\ \text{LinearAttn: } b_l = x_l z_{ql} \end{cases}$$

Assumption (Orthogonal Embeddings $[U_{\mathcal{C}}, u_q]$)

Cosine similarity between embedding vectors at different layers.

JoMA Dynamics

Theorem 1 (JoMA). Let $v_k := U_C^\top w_k$, then the dynamics of Eqn. 3 satisfies the invariants:

• <u>Linear attention</u>. The dynamics satisfies $\boldsymbol{z}_m^2(t) = \sum_k \boldsymbol{v}_k^2(t) + \boldsymbol{c}$.

- Exp attention. The dynamics satisfies $\boldsymbol{z}_m(t) = \frac{1}{2} \sum_k \boldsymbol{v}_k^2(t) + \boldsymbol{c}$.
- Softmax attention. If $\bar{\mathbf{b}}_m := \mathbb{E}_{q=m}[\mathbf{b}]$ is a constant over time and $\mathbb{E}_{q=m}\left[\sum_k g_{h_k} h'_k \mathbf{b} \mathbf{b}^{\top}\right] = \bar{\mathbf{b}}_m \mathbb{E}_{q=m}\left[\sum_k g_{h_k} h'_k \mathbf{b}\right]$, then the dynamics satisfies $\mathbf{z}_m(t) = \frac{1}{2}\sum_k \mathbf{v}_k^2(t) \|\mathbf{v}_k(t)\|_2^2 \bar{\mathbf{b}}_m + \mathbf{c}$.

Under zero-initialization ($\boldsymbol{w}_k(0) = 0$, $\boldsymbol{z}_m(0) = 0$), then the time-independent constant $\boldsymbol{c} = 0$.

There is residual connection.

Joint dynamics works for any learning rates between self-attention and MLP layer. No assumption on the data distribution.

Verification of JoMA dynamics

 $z_m(t)$: Real attention logits $\hat{z}_m(t)$: Estimated attention logits by JoMA

$$\hat{\boldsymbol{z}}_{m}(t) = \frac{1}{2} \sum_{k} \boldsymbol{v}_{k}^{2}(t) - \|\boldsymbol{v}_{k}(t)\|_{2}^{2} \overline{\boldsymbol{b}}_{m} + \boldsymbol{c}$$

$$\hat{\boldsymbol{z}}_{m1}(t) \qquad \hat{\boldsymbol{z}}_{m2}(t)$$

Implication of Theorem 1

Key idea: folding self-attention into MLP → A Transformer block becomes a modified MLP

Saliency is defined as
$$\Delta_{lm} = \mathbb{E}[g|l,m] \cdot \mathbb{P}[l|m]$$

Nonlinear case (ϕ nonlinear, K = 1)

Most salient feature grows, and others catch up (Attention becomes sparser and denser)

 $\Delta_{lm} \approx 0$: **Common** tokens $|\Delta_{lm}|$ large: **Distinct** tokens

facebook Artificial Intelligence

Discriminancy

CoOccurrence

JoMA for Linear Activation

Theorem 2

We can prove
$$\frac{\operatorname{erf}(v_l(t)/2)}{\Delta_{lm}} = \frac{\operatorname{erf}(v_{l'}(t)/2)}{\Delta_{l'm}} \qquad \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt \in [-1,1]$$

Only the most salient token $l^* = \operatorname{argmax} |\Delta_{lm}|$ of $\boldsymbol{\nu}$ goes to $+\infty$ other components stay finite.

facebook Artificial Intelligence

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurIPS'23]

Linear

Modified

MLP (lower layer)

 $\dot{\boldsymbol{v}} = \boldsymbol{\Delta}_m \circ \exp\left(\frac{\boldsymbol{v}^2}{2}\right)$

Attention becomes sparser

What if we have more nodes (K > 1)?

• $V = U_C^{\top} W \in \mathbb{R}^{M_C \times K}$ and the dynamics becomes

$$\dot{V} = \frac{1}{A} \operatorname{diag}\left(\exp\left(\frac{V \circ V}{2}\right) \mathbf{1}\right) \Delta \qquad \Delta = [\Delta_1, \Delta_2, \dots, \Delta_K], \qquad \Delta_k = \mathbb{E}[g_k \mathbf{x}]$$

We can prove that V gradually becomes low rank

• The growth rate of each row of V varies widely.

Due to $\exp\left(\frac{V \circ V}{2}\right)$, the weight gradient \dot{V} can be even more low-rank \rightarrow **GaLore**

JoMA for Nonlinear Activation

Theorem 3

If x is sampled from a mixture of C isotropic distributions, (i.e., "local salient/non-salient map"), then

$$\dot{\boldsymbol{v}} = \frac{1}{\|\boldsymbol{v}\|_2} \sum_c a_c \theta_1(r_c) \overline{\boldsymbol{x}}_c + \frac{1}{\|\boldsymbol{v}\|_2^3} \sum_c a_c \theta_2(r_c) \boldsymbol{v}$$

Here $a_c \coloneqq \mathbb{E}_{q=m,c}[g_{h_k}]\mathbb{P}[c], r_c = \boldsymbol{v}^\top \overline{\boldsymbol{x}}_c + \int_0^t \mathbb{E}_{q=m}[g_{h_k}h'_k] dt$, and θ_1 and θ_2 depends on nonlinearity

What does the dynamics look like?

$$\dot{\boldsymbol{v}} = (\boldsymbol{\mu} - \boldsymbol{v}) \circ \exp\left(\frac{\boldsymbol{v}^2}{2}\right)$$

 $\mu \sim \overline{x}_c$: Critical point due to nonlinearity (one of the cluster centers)

facebook Artificial Intelligence

0 0 \overline{x}_{2}

0

 \bigcirc

JoMA for Nonlinear activation

$\dot{\boldsymbol{v}} = (\boldsymbol{\mu} - \boldsymbol{v}) \circ \exp\left(\frac{\boldsymbol{v}^2}{2}\right) \begin{array}{l} \text{Modified} \\ \text{MLP} \\ \text{(lower layer)} \end{array}$

Theorem 4

Salient components grow much faster than non-salient ones:

 $\frac{\text{ConvergenceRate}(j)}{\text{ConvergenceRate}(k)} \sim \frac{\exp(\mu_j^2/2)}{\exp(\mu_k^2/2)}$

ConvergenceRate(j) := $\ln 1/\delta_j(t)$ $\delta_j(t) := 1 - v_j(t)/\mu_j$

JoMA for Nonlinear activation

Real-world Experiments

Real-world Experiments

facebook Artificial Intelligence

Stable Rank of the lower layer of MLP shows the "bouncing back" effects as well.

Why is this "bouncing back" property useful?

It seems that it only slows down the training??

Not useful in 1-layer, but useful in multiple Transformer layers!

Data Hierarchy & Multilayer Transformer

Data Hierarchy & Multilayer Transformer

Theorem 5
$$\mathbb{P}[l|m] \approx 1 - \frac{H}{L}$$

H: height of the common latent ancestor (CLA) of l & m

L: total height of the hierarchy

Learning the current hierarchical structure by

facebook Artificial Intelligence

slowing down the association of tokens that are not directly correlated

Shallow Latent Distribution

Future Work

- How embedding vectors are learned?
 - In both Scan&Snap and JoMA, we assume embeddings are constant.
- Positional Encoding
- Formulate the dynamics of Multi-layer Transformers
 - How intermediate latent concept gets learned during training?
 - Why we need over-parameterization?

Part II Applications based on Properties of Transformers

Attention Sinks: Initial tokens draw a lot of attentions

- Observation: Initial tokens have large attention scores, even if they're not semantically significant.
- Attention Sink: Tokens that disproportionately attract attention irrespective of their relevance.

facebook Artificial Intelligence

[G. Xiao, Y. Tian, et al, Efficient Streaming Language Models with Attention Sinks, ICLR'24]

StreamingLLM

[G. Xiao, Y. Tian, et al, Efficient Streaming Language Models with Attention Sinks, ICLR'24]

Massachuse Institute of

📨 SUBSCRIB

...

GaLore: Pre-training 7B model on RTX 4090 (24G)

	Rank	Retain grad	Memory	Token/s
8-bit AdamW		Yes	40GB	1434
8-bit GaLore	16	Yes	28GB	1532
8-bit GaLore	128	Yes	29GB	1532
16-bit GaLore	128	Yes	30GB	1615
16-bit GaLore	128	No	18GB	1587
8-bit GaLore	1024	Yes	36GB	1238

* SVD takes around 10min for 7B model, but runs every T=500-1000 steps.

Third-party evaluation by @llamafactory_ai

Full-rank Training

Regular full-rank training. At time step t, $G_t = -\nabla_W \varphi_t(W_t) \in \mathbb{R}^{m \times n}$ is the backpropagated (negative) gradient matrix. Then the regular pre-training weight update can be written down as follows (η is the learning rate):

$$W_T = W_0 + \eta \sum_{t=0}^{T-1} \tilde{G}_t = W_0 + \eta \sum_{t=0}^{T-1} \rho_t(G_t) \quad (1)$$

Adam (needs running momentum M_t and variance V_t as optimizer states)

 $M_t = \beta_1 M_{t-1} + (1 - \beta_1) G_t$ $V_t = \beta_2 V_{t-1} + (1 - \beta_2) G_t^2$ $\tilde{G}_t = M_t / \sqrt{V_t + \epsilon}$

Memory Usage	Weight (W)	Optim States (M_t, V_t)	Projection (<i>P</i>)	Total
Full-rank	mn	2mn	0	3mn

Low-rank Adaptor (LoRA)

Low-rank updates. For a linear layer $W \in \mathbb{R}^{m \times n}$, LoRA and its variants utilize the low-rank structure of the update matrix by introducing a low-rank adaptor AB:

$$W_T = W_0 + B_T A_T, \tag{5}$$

And we optimize B_T and A_T using Adam

Adam (needs running momentum M_t and variance V_t as optimizer states)

$$M_t = \beta_1 M_{t-1} + (1 - \beta_1) G_t$$
$$V_t = \beta_2 V_{t-1} + (1 - \beta_2) G_t^2$$
$$\tilde{G}_t = M_t / \sqrt{V_t + \epsilon}$$

Memory Usage	Weight (W)	Optim States (M_t, V_t)	Projection (<i>P</i>)	Total
Full-rank	mn	2 <i>mn</i>	0	3 <i>mn</i>
Low-rank adaptor	mn + mr + nr	2(mr + nr)	0	mn + 3(mr + nr)
	$\begin{matrix} I & I & \uparrow \\ W_0 & B_T & A_T \end{matrix}$	$B_T^{I} = A_T^{I}$		

Memory Saving with GaLore

Algorithm 1: GaLore, PyTorch-like

facebook

```
for weight in model.parameters():
    grad = weight.grad
    # original space -> compact space
    lor_grad = project(grad)
    # update by Adam, Adafactor, etc.
    lor_update = update(lor_grad)
    # compact space -> original space
    update = project_back(lor_update)
    weight.data += update
```


<u>GaLore</u>

 $\begin{array}{l} G_t \leftarrow -\nabla_W \phi(W_t) \\ \text{If t } \% \text{ T} == 0: \\ \text{Compute } P_t = \text{SVD}(G_t) \in \mathbb{R}^{m \times r} \\ R_t \leftarrow P_t^T G_t \quad \{\text{project}\} \\ \tilde{R}_t \leftarrow \rho(R_t) \quad \{\text{Adam in low-rank}\} \\ \tilde{G}_t \leftarrow P_t \tilde{R}_t \quad \{\text{project-back}\} \\ W_{t+1} \leftarrow W_t + \eta \tilde{G}_t \end{array}$

	Memory Usage	Weight (W)	Optim States (M_t, V_t)	Projection (<i>P</i>)	Total
	Full-rank	mn	2mn	0	3mn
	Low-rank adaptor	mn + mr + nr	2(mr + nr)	0	mn + 3(mr + nr)
	GaLore	mn	2nr	mr	mn + mr + 2nr
A	rtificial Intelligence	$\mathbf{\hat{f}}_{W_t}$	$\begin{bmatrix} \mathbf{I} \\ R_t \end{bmatrix}$	$\mathbf{\hat{P}}_{t}$	

Why gradient is low-rank?

Reversible models [Y. Tian. DDN, arXiv'20]

There exists $K(\mathbf{x}; W)$ so that

- 1. [Forward] y = K(x; W)x
- 2. [Backward] $\boldsymbol{g}_{\boldsymbol{x}} = \boldsymbol{K}^{\top}(\boldsymbol{x}; \boldsymbol{W}) \boldsymbol{g}_{\boldsymbol{y}}$

Here K(x; W) depends on the input x and weight W in the network \mathcal{N} .

Example: Linear, ReLU / LeakyReLU, polynomials

Property of Reversible models

For reversible models trained with ℓ_2 loss or softmax

$$G_t = \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{a}_i - B_i W_t \boldsymbol{f}_i) \boldsymbol{f}_i^{\mathsf{T}}$$

Here B_i are PSD matrices

Gradient becomes low-rank (sr(\cdot) is stable rank):

$$\operatorname{sr}(G_t) \le \operatorname{sr}(G_{t_0}^{\#}) + O\left[\left(\frac{1 - \eta \lambda_2}{1 - \eta \lambda_1}\right)^{2(t - t_0)}\right]$$

 $\lambda_1 < \lambda_2$ are two smallest distinct eigenvectors of $S \coloneqq \frac{1}{N} \sum_{i=1}^{N} f_i f_i^{\mathsf{T}} \otimes B_i$

Transformer Case

• $V = U_C^{\top} W \in \mathbb{R}^{M_C \times K}$ and the dynamics becomes

$$\dot{V} = \frac{1}{A} \operatorname{diag}\left(\exp\left(\frac{V \circ V}{2}\right) \mathbf{1}\right) \Delta \qquad \Delta = [\Delta_1, \Delta_2, \dots, \Delta_K], \qquad \Delta_k = \mathbb{E}[g_k \mathbf{x}]$$

We can prove that V(t) gradually becomes low rank

• The growth rate of each row of *V* varies widely.

Due to
$$\exp\left(\frac{V \circ V}{2}\right)$$
, the weight gradient \dot{V} can be even more low-rank

Activation ϕ MLP (lower layer W) ► Self-attention

 $V(t) \rightarrow$

For gradient in the following form

 $G = \sum_i A_i - \sum_i B_i W C_i$

Let $R = P^{\top}GQ$ be projected gradient, then

 $||R_t||_F \le (1 - \eta M) ||R_{t-1}||_F \to 0$

Where $M \coloneqq \frac{1}{N} \sum_{i} \min_{t} \lambda_{\min}(\hat{B}_{it}) \lambda_{\min}(\hat{C}_{it}) - L_A - L_B L_C D^2$

Does that mean it works?

No... $R_t \rightarrow 0$ just means the gradient within the subspace vanishes.

How to continue optimization? Change the projection from time to time!

Params	Hidden	Intermediate	Heads	Layers	Steps	Data amount
60M	512	1376	8	8	10K	$1.3\mathrm{B}$
130M	768	2048	12	12	20K	$2.6~\mathrm{B}$
350M	1024	2736	16	24	60K	$7.8~\mathrm{B}$
$1 \mathrm{B}$	2048	5461	24	32	100K	$13.1 \mathrm{B}$
7 B	4096	11008	32	32	150K	$19.7~\mathrm{B}$

Pre-training Results (LLaMA 7B)

		Mem	40K	80K	120K	150K
C	8-bit GaLore	18 G	17.94	15.39	14.95	14.65
	8-bit Adam	26G	18.09	15.47	14.83	14.61
-	Tokens (B)		5.2	10.5	15.7	19.7

* Experiments are conducted on 8 x 8 A100

	60M	130M	350M	1B
Full-Rank	34.06 (0.36G)	25.08 (0.76G)	18.80 (2.06G)	15.56 (7.80G)
GaLore	34.88 (0.24G)	25.36 (0.52G)	18.95 (1.22G)	15.64 (4.38G)
Low-Rank	78.18 (0.26G)	45.51 (0.54G)	37.41 (1.08G)	142.53 (3.57G)
LoRA	34.99 (0.36G)	33.92 (0.80G)	25.58 (1.76G)	19.21 (6.17G)
ReLoRA	37.04 (0.36G)	29.37 (0.80G)	29.08 (1.76G)	18.33 (6.17G)
r/d_{model}	128 / 256	256 / 768	256 / 1024	512 / 2048
Training Tokens	1.1 B	2.2B	6.4B	13.1B

facebook Artificial Intelligence

* On LLaMA 1B, ppl is better (~14.97) with ½ rank (1024/2048)

Compare with Adafactor

[J. W. Rae, Scaling Language Models: Methods, Analysis & Insights from Training Gopher]

Fine-tuning Results

SQuAD (Bert-Base)

Method	Exact Match	F1
Full-parameter	80.83	88.41
GaLore (r=16)	80.52	88.29
LoRA (r=16)	77.99	86.11

Oaast-SFT (Reporting Perplexity)

Method	Gemma-2b	Phi-2	LLaMA-7B
Full-parameter	4.53	3.81	2.98
GaLore (r=128)	4.51	3.83	2.95
LoRA (r=128)	4.56	4.24	2.94

Belle-1M (Reporting Perplexity)

Method	Gemma-2b	Phi-2	LLaMA-7B
Full-parameter	5.44	2.66	2.27
GaLore (r=128)	5.35	2.62	2.28
LoRA (r=128)	5.37	2.75	2.30

On-device LLM use cases

How to reduce memory usage of LLMs?

MobileLLM

Zero-shot commonsense reasoning

Design Choices of MobileLLM

Deep and Thin Network

Embedding Sharing

Model	# Params	ARC-e	ARC-c	BoolQ	PIQA	SIQA	HS	OBQA	WinoGrande	Avg.
Without emb-share	135M	43.6	26.1	58.0	62.5	42.6	36.5	37.5	51.5	44.8
+ emb-share	119 M	44.4	26.0	56.2	62.8	43.1	35.9	36.0	52.6	44.6
+ emb-share, \uparrow depth	125M	43.3	26.4	54.4	64.7	43.5	36.9	38.5	52.6	45.0

Layer Sharing

Model	Sharing method	ARC-e	ARC-c	BoolQ	PIQA	SIQA	HellaSwag	OBQA	WinoGrande	Avg.
	baseline	41.6	25.7	61.1	62.4	43.1	34.4	36.9	51.6	44.6
125M	Immediate block-wise share	43.9	27.9	61.5	64.3	41.5	35.5	35.1	50.2	45.0
123111	Repeat-all-over share	43.6	27.1	60.7	63.4	42.6	35.5	36.9	51.7	45.2
	Reverse share	43.8	26.0	58.9	62.9	42.2	35.2	36.8	52.2	44.8
	baseline	50.8	30.6	62.3	68.6	43.5	45.1	43.8	52.4	49.6
350M	Immediate block-wise share	51.5	30.8	59.6	68.2	43.9	47.7	44.7	55.0	50.2
550111	Repeat-all-over share	53.5	33.0	61.2	69.4	43.2	48.3	42.2	54.6	50.7
	Reverse share	50.7	32.2	61.0	68.8	43.8	47.4	43.1	53.8	50.1

Layer Sharing (Latency)

		Load	Init	Execute
125M (30 layers)	MobileLLM	39.2 ms	1361.7 ms	15.6 ms
125M (2x30, adjacent sharing)	MobileLLM-LS	43.6 ms	1388.2 ms	16.0 ms
	60-layer non-shared	68.6 ms	3347.7 ms	29.0 ms

Memory IO is much slower than compute!

Final Results (zero-shot performance)

Table 3: Zero-shot performance on Common Sense Reasoning tasks. MobileLLM denotes the proposed baseline model and MobileLLM-LS is integrated with layer sharing with the #layer counting layers with distinct weights.

Model	#Layers	#Params	ARC-e	ARC-c	BoolQ	PIQA	SIQA	HellaSwag	OBQA	WinoGrande	Avg.
Cerebras-GPT-111M	10	111 M	35.8	20.2	62.0	58.0	39.8	26.7	29.0	48.8	40.0
LaMini-GPT-124M	12	124M	43.6	26.0	51.8	62.7	42.1	30.2	29.6	49.2	41.9
Galactica-125M	12	125M	44.0	26.2	54.9	55.4	38.9	29.6	28.2	49.6	40.9
OPT-125M	12	125M	41.3	25.2	57.5	62.0	41.9	31.1	31.2	50.8	42.6
GPT-neo-125M	12	125M	40.7	24.8	61.3	62.5	41.9	29.7	31.6	50.7	42.9
Pythia-160M	12	162M	40.0	25.3	59.5	62.0	41.5	29.9	31.2	50.9	42.5
RWKV-169M	12	169M	42.5	25.3	59.1	63.9	40.7	31.9	33.8	51.5	43.6
MobileLLM- $125 \mathrm{M}$	30	125M	43.9	27.1	60.2	65.3	42.4	38.9	39.5	53.1	46.3
MobileLLM-LS- $125M$	30	125M	45.8	28.7	60.4	65.7	42.9	39.5	41.1	52.1	47.0
Cerebras-GPT-256M	14	256M	37.9	23.2	60.3	61.4	40.6	28.3	31.8	50.5	41.8
OPT-350M	24	331M	41.9	25.7	54.0	64.8	42.6	36.2	33.3	52.4	43.9
RWKV-430M	24	430M	48.9	32.0	53.4	68.1	43.6	40.6	37.8	51.6	47.0
Pythia-410M	24	405M	47.1	30.3	55.3	67.2	43.1	40.1	36.2	53.4	46.6
BLOOM-560M	24	559M	43.7	27.5	53.7	65.1	42.5	36.5	32.6	52.2	44.2
Cerebras-GPT-590M	18	590M	42.6	24.9	57.7	62.8	40.9	32.0	33.2	49.7	43.0
MobileLLM- $350 \mathrm{M}$	32	345M	53.8	33.5	62.4	68.6	44.7	49.6	40.0	57.6	51.3
MobileLLM-LS-350M	32	345M	54.4	32.5	62.8	69.8	44.1	50.6	45.8	57.2	52.1

Final Results (chat)

Table 5: Benchmark results on AlpacaEval (Evaluator: GPT-4; Reference model: text-davinci-001) and MT-Bench.

Model	MT-Bench _(score)	Alpaca Eval _(win %)				
number of parameters < 200M						
OPT-125M	1.21	3.91				
GPT-Neo-125M	1.06	1.01				
Pythia-160M	1.01	0.63				
MobileLLM- $125M$	2.33	24.07				
MobileLLM-LS-125M	2.52	23.79				
200M < number of parameters < 1B						
OPT-350M	1.37	6.80				
Pythia-410M	1.62	13.87				
BLOOM-560M	1.73	10.29				
MobileLLM- $350M$	3.28	47.08				
MobileLLM-LS- $350M$	3.16	48.20				
number of parameters > 1B						
Pythia-1B	1.70	16.62				
BLOOM-1.1B	2.37	19.90				
Falcon-1.3B	2.54	30.38				
OPT-1.3B	2.24	38.84				

