Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer

Yuandong Tian¹ Yiping Wang^{2,4} Beidi Chen^{1,3} Simon Du²

¹Meta AI (FAIR)

²University of Washington

³Carnegie Mellon University

⁴Zhejiang University

Why it works?

[A. Vaswani et al, Attention is all you need, NeurIPS'17]

Problem Setting

 $U = [\boldsymbol{u}_1, \boldsymbol{u}_2, ... \boldsymbol{u}_M]^T$: token embedding matrix

$$\widehat{\boldsymbol{u}}_T = \sum_{t=1}^{T-1} b_{tT} \boldsymbol{u}_{x_t} = U^T X^T \boldsymbol{b}_T$$

$$b_{tT} := \frac{\exp(\boldsymbol{u}_{x_T}^\top W_Q W_K^\top \boldsymbol{u}_{x_t} / \sqrt{d})}{\sum_{t=1}^{T-1} \exp(\boldsymbol{u}_{x_T}^\top W_Q W_K^\top \boldsymbol{u}_{x_t} / \sqrt{d})}$$

Normalized version $\widetilde{\boldsymbol{u}}_T = U^T \mathrm{LN}(X^T \boldsymbol{b}_T)$

Objective:

$$\max_{W_K, W_Q, W_V, U} J = \mathbb{E}_D \left[\boldsymbol{u}_{x_{T+1}}^T W_V \widetilde{\boldsymbol{u}}_T - \log \sum_{l} \exp(\boldsymbol{u}_l^T W_V \widetilde{\boldsymbol{u}}_T) \right]$$

Reparameterization

- Parameters W_K , W_Q , W_V , U makes the dynamics complicated.
- ullet Reparameterize the problem with independent variable Y and Z
 - $Y = UW_V^T U^T$
 - $Z = UW_OW_K^TU^T$ (pairwise logits of self-attention matrix)

• Then the dynamics becomes easier to analyze

Training dynamics of Y and Z

Training Dynamics:

$$\dot{Y} = \eta_Y \text{LN}(X^T \boldsymbol{b}_T) (\boldsymbol{x}_{T+1} - \boldsymbol{\alpha})^T$$

$$\dot{Z} = \eta_Z \boldsymbol{x}_T (\boldsymbol{x}_{T+1} - \boldsymbol{\alpha})^T Y^T \frac{P_{X^T \boldsymbol{b}_T}^{\perp}}{\|X^T \boldsymbol{b}_T\|_2} X^T \text{diag}(\boldsymbol{b}_T) X$$

 z_m : All logits of the contextual tokens when attending to last token $x_T = m$

Here $Z = [\mathbf{z}_1, \mathbf{z}_2, ..., \mathbf{z}_M]^T$, each $\mathbf{z}_m \in \mathbb{R}^M$ is the attention score for query/last token m:

$$\dot{oldsymbol{z}}_m = \eta_Z X^{ op}[i] \mathrm{diag}(oldsymbol{b}_T[i]) X[i] rac{P_{X^{ op}[i]oldsymbol{b}_T[i]}^{\perp}}{\|X^{ op}[i]oldsymbol{b}_T[i]\|_2} Y(oldsymbol{x}_{T+1}[i] - oldsymbol{lpha}[i])$$

Major Assumptions

- No positional encoding
- Sequence length $T \to +\infty$
- Learning rate of decoder Y larger than self-attention layer Z $(\eta_Y \gg \eta_Z)$
- Other technical assumptions

Data Distribution

$$x_t \in [M]$$
 for $1 \le t \le T$
 $x_{T+1} \in [K]$
 $K \ll M$

Contextual tokens x_t $(1 \le t \le T - 1)$

Distinct tokens: There exists unique n so that $\mathbb{P}(l|n) > 0$

Common tokens: There exists multiple n so that $\mathbb{P}(l|n) > 0$

 $\mathbb{P}(l|m,n) = \mathbb{P}(l|n)$ is the conditional probability of token l given last token $x_T = m$ and $x_{T+1} = n$

Assumption: $m = \psi(n)$, i.e., no next token shared among different last tokens

Question: Given the data distribution, how does the self-attention layer behave?

At initialization

Co-occurrence probability

$$\tilde{c}_{l|n_1} := \mathbb{P}(l|m, n_1) \exp(z_{ml})$$

Initial condition: $z_{ml}(0) = 0$

 z_m : All logits of the contextual tokens when attending to last token $x_T = m$

Common Token Suppression

(a) z_{ml} < 0, for common token l

Winners-emergence

- (a) z_{ml} < 0, for common token l
- (b) z_{ml} > 0, for distinct token l

Learnable TF-IDF (Term Frequency, Inverse Document Frequency)

Winners-emergence

- (a) $\dot{z_{ml}} < 0$, for common token l
- (b) $\dot{z_{ml}} > 0$, for distinct token l
- (c) $z_{ml}(t)$ grows faster with larger $\mathbb{P}(l|m,n)$

Winners-emergence

(c) $z_{ml}(t)$ grows faster with larger $\mathbb{P}(l|m,n)$

Theorem 3 Relative gain $r_{l/l'|n}(t) \coloneqq \frac{\tilde{c}_{l|n}^2(t)}{\tilde{c}_{l'|n}^2(t)} - 1$ has a close form:

$$r_{l/l'|n}(t) = r_{l/l'|n}(0)\chi_l(t)$$

If l_0 is the dominant token: $r_{l_0/l|n}(0)>0$ for all $l\neq l_0$ then

$$e^{2f_{nl_0}^2(0)B_n(t)} \le \chi_{l_0}(t) \le e^{2B_n(t)}$$

where $B_n(t) \ge 0$ monotonously increases, $B_n(0) = 0$

Winners-emergence

(c) $z_{ml}(t)$ grows faster with larger $\mathbb{P}(l|m,n)$

Theorem 3 Relative gain $r_{l/l'|n}(t)\coloneqq \frac{\tilde{c}_{l|n}^2(t)}{\tilde{c}_{l'|n}^2(t)}-1$ has a close form:

$$r_{l/l'|n}(t) = r_{l/l'|n}(0)\chi_l(t)$$

If l_0 is the dominant token: $r_{l_0/l|n}(0)>0$ for all $l\neq l_0$ then

$$e^{2f_{nl_0}^2(0)B_n(t)} \le \chi_{l_0}(t) \le e^{2B_n(t)}$$

where $B_n(t) \ge 0$ monotonously increases, $B_n(0) = 0$

Attention frozen

Theorem 4 When $t \to +\infty$,

$$B_n(t) \sim \ln \left(C_0 + 2K \frac{\eta_z}{\eta_Y} \ln^2 \left(\frac{M \eta_Y t}{K} \right) \right)$$

Attention scanning:

When training starts, $B_n(t) = O(\ln t)$

Attention **snapping**:

When
$$t \ge t_0 = O\left(\frac{2K \ln M}{\eta_Y}\right)$$
, $B_n(t) = O(\ln \ln t)$

- (1) η_z and η_Y are large, $B_n(t)$ is large and attention is sparse
- (2) Fixing η_Z , large η_Y leads to slightly small $B_n(t)$ and denser attention

Attention frozen

Larger learning rate η_z leads to faster phase transition

Figure 6: Average entropy of c_n (Eqn. \Box) on distinct tokens versus learning rate ratio η_Y/η_Z with more last tokens M/next tokens K. We report mean values over 10 seeds and standard derivation of the mean.

Overall strategy of the theoretical analysis

• The power of infinite sequence length $T \to +\infty$

Lemma 2. Given the event $\{x_T = m, x_{T+1} = n\}$, when $T \to +\infty$, we have

$$X^{ op} oldsymbol{b}_T o oldsymbol{c}_{m,n}, \hspace{1cm} X^{ op} \mathrm{diag}(oldsymbol{b}_T) X o \mathrm{diag}(oldsymbol{c}_{m,n})$$

where $c_{m,n} = [c_{1|m,n}, c_{2|m,n}, \dots, c_{M|m,n}]^{\top} \in \mathbb{R}^{M}$. Note that $c_{m,n}^{\top} \mathbf{1} = 1$.

$$\text{Here } c_{l|m,n} := \frac{T\mathbb{P}(l|m,n) \exp(z_{ml})}{\sum_{l'} T\mathbb{P}(l'|m,n) \exp(z_{ml'})} = \frac{\mathbb{P}(l|m,n) \exp(z_{ml})}{\sum_{l'} \mathbb{P}(l'|m,n) \exp(z_{ml'})} = : \frac{\tilde{c}_{l|m,n}}{\sum_{l'} \tilde{c}_{l'|m,n}}$$

Define f_n : = $f_{m,n}$: = $c_{m,n}/\|c_{m,n}\|_2$ a ℓ_2 -normalized version of $c_{m,n}$.

Overall strategy of the theoretical analysis

• Since $\eta_Y \gg \eta_Z$, we analyze the dynamics of decoder Y first, treating the output of Z as constant.

$$\dot{Y} = \eta_Y oldsymbol{f}_n (oldsymbol{e}_n - oldsymbol{lpha}_n)^ op, \quad oldsymbol{lpha}_n = rac{\exp(Y^ op oldsymbol{f}_n)}{\mathbf{1}^ op \exp(Y^ op oldsymbol{f}_n)}$$

• The analysis gives backpropagated gradient:

Theorem 1. If Assumption 2 holds, the initial condition Y(0) = 0, $M \gg 100$, η_Y satisfies $M^{-0.99} \ll \eta_Y < 1$, and each sequence class appears uniformly during training, then after $t \gg K^2$ steps of batch size 1 update, given event $x_{T+1}[i] = n$, the backpropagated gradient $g[i] := Y(x_{T+1}[i] - \alpha[i])$ takes the following form:

$$\boldsymbol{g}[i] = \gamma \left(\iota_n \boldsymbol{f}_n - \sum_{n' \neq n} \beta_{nn'} \boldsymbol{f}_{n'} \right) \tag{9}$$

Overall strategy of the theoretical analysis

• Given the backpropagated gradient, we can analyze the behavior of the self-attention layer.

Theorem 2 (Fates of contextual tokens). Let G_{CT} be the set of common tokens (CT), and $G_{DT}(n)$ be the set of distinct tokens (DT) that belong to next token n. Then if Assumption 2 holds, under the self-attention dynamics (Eqn. 10), we have:

- (a) for any distinct token $l \in G_{DT}(n)$, $\dot{z}_{ml} > 0$ where $m = \psi(n)$;
- (b) if $|G_{CT}| = 1$ and at least one next token $n \in \psi^{-1}(m)$ has at least one distinct token, then for the single common token $l \in G_{CT}$, $\dot{z}_{ml} < 0$.

Visualization of c_n

Simple Real-world Experiments

WikiText2 (original parameterization)

Figure 7: Attention patterns in the lowest self-attention layer for 1-layer (top) and 3-layer (bottom) Transformer trained on WikiText2 using SGD (learning rate is 5). Attention becomes sparse over training.

More ongoing experiments

- YZ parameterization works in WikiText2
 - Work even in multi-layer setting
 - Performance drops if stacking >3 layers
 - Higher perplexity than vanilla Transformer (embedding plays important role)

- Residual connection is important
 - Local distinct / common tokens

Conclusions

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

Oral

Zichang Liu · Jue Wang · Tri Dao · Tianyi Zhou · Binhang Yuan · Zhao Song · Anshumali Shrivastava · Ce Zhang Yuandong Tian · Christopher Re · Beidi Chen

Ballroom A

[Abstract] [Livestream: Visit Oral C3 Multimodal and Pretaining]
Thu 27 Jul 3:48 p.m. — 3:56 p.m. HST (Bookmark)

Poster presentation: Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time Tue 25 Jul 2 p.m. HST — 3:30 p.m. HST (Bookmark)

[🖺 PDF

[Paper Metadata for Authors (e.g. Slide Uploads...)]

- Take home message
 - Dynamics of self-attention leads to contextual sparsity
 - Key tokens that do not co-occur a lot with the query token are suppressed.

- Future works
 - Why such sparsity is important for learning?
 - How to add embedding back?
 - Does understanding the dynamics of Transformer require understanding the dynamics of MLPs?

Thanks!