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[A. Vaswani et al, Attention is all you need, NeurlPS’17]

Why it works?
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Problem Settings T
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VA UWQWKTUT (pairwise logits of self-attention matrix)

* Assumptions
* No positional encoding z,,.: All logits of the contextual tokens
° Sequence |ength T — 400 when attending to last token x; = m
* Learning rate of decoder Y larger than self-attn layer Z (ny > nz)

* Other technical assumptions



Xe €E[M]for1 <t<T

Data Distribution e )

K<KM
Contextual tokens x; (1 <t <T —1)
- A ~ Queryxr  Nexttoken xr.q
P(llmy,nq) nq

- -
n
Sequence 2

m;
v Ny
Distinct tokens: There exists unique n so that P(l|n) > 0 P(|m, 1) = P(|n) is the
Common tokens: There exists multiple n so that P(l|n) > 0 conditional probability of

token [ given last token x; = m
and xp,1 =n

Assumption: m = yY(n), i.e., no next token shared among different last tokens

Question: Given the data distribution, how does the self-attention layer behave?
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Overall Picture of the Training Dynamics

At initialization
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Co-occurrence probability

¥
Clin,: = P(l|m,nq) exp(zm)

Initial condition: z,,,;;(0) = 0



Overall Picture of the Training Dynamics
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(a) z,,;; < 0, for common token [



Overall Picture of the Training Dynamics

Winners-emergence
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(a) z,,; < 0, for common token [

(b) z;,,; > 0, for distinct token [

Learnable TF-IDF (Term Frequency,
Inverse Document Frequency)



Overall Picture of the Training Dynamics

Winners-emergence
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Overall Picture of the Training Dynamics

Winners-emergence

(c) z,; () grows faster with larger P(l|m, n)
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(m,ny) close form:
i N 7”1/1’|n(t) = 7”1/1’|n(0))(z(t)
! _ e ] If Iy is the dominant token: 17, /1, (0) > 0 forall I # [,
then
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where B,,(t) = 0 monotonously increases, B,(0) = 0



Overall Picture of the Training Dynamics

Winners-emergence

Cl|n1

Seq class
(m,ny)

Seq class
(m» le)

A

/

Contextual
Sparsity

"/

(query-dependent)

v

Cl|n2

= ="

»
»

(c) z,; () grows faster with larger P(l|m, n)

Efin ()

512'|n(t) — 1 hasa

Theorem 3 Relative gain 7,7, (t) =

close form:

rl/l’ln(t) = Tl/l’|n(0))(l(t)

If Iy is the dominant token: 17, /1, (0) > 0 forall I # [,
then

ezfr%lo (0)Bp(t) < X1, (t) < QZBn(t)

where B,,(t) = 0 monotonously increases, B,(0) = 0



Overall Picture of the Training Dynamics

Attention frozen
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Theorem 4 When t — +o0,

Mnyt
B.(t) ~ In CO+2K21n2( "Y)
Ny K

Attention scanning:
When training starts, B,,(t) = O(Int)

Attention snapping:

Whent =ty =0 (ZKlnM

), B, (t) = O0(Inlnt)

(1) n, and ny are large, B, (t) is large and attention is sparse

(2) Fixing n,,, large ny leads to slightly small B,,(t) and
denser attention



Overall Picture of the Training Dynamics
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Figure 6: Average entropy of ¢, (Eqn.[3) on distinct tokens versus learning rate ratio 7y /nz with more last

facebook Artificial Intelli gence tokens M/next tokens K. We report mean values over 10 seeds and standard derivation of the mean.



Visualization of ¢y,
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Simple Real-world Experiments

WikiText2 (original parameterization)
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Figure 7: Attention patterns in the lowest self-attention layer for 1-layer (top) and 3-layer (bottom) Trans-
former trained on WikiText2 using SGD (learning rate is 5). Attention becomes sparse over training.



Overall strategy of the theoretical analysis

* The power of infinite sequence length T — +o0

f
Lemma 2. Given the event {xT = m,x711 = n}, when T — 400, we have "
XTbr — €, X T diag(br)X — diag(cm.n) normalize
where Cp, r, = [C1|m,nsC2|m,ns - - - ,c]\/”m,n]T € RM. Note that c;,r%nl = 1.
TP(l|m,n) exp(zmi) B P(l|m,n) exp(zm1) I

Here Cijmn = - DY
ere Cim, Zl’ TIP’(l’|m, ’TL) eXp(Zml') Zl’ ]P’(l’lm, n) eXp(Zml/) Zl’ Cl'\m,n

Define f,:= frun:= cm,n/”cm,n”2 a £,-normalized version of ¢, .
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Overall strategy of the theoretical analysis

* Since ny > 1y, we analyze the dynamics of decoder Y first, treating the
output of Z as constant.

~ (Y £,
Y = ann(en — an)Ta Q, = 1—|e- eI:))((p(YTf)n)

* The analysis gives backpropagated gradient:

Theorem 1. If Assumption 2 holds, the initial condition Y (0) = 0, M > 100, ny satisfies

M=999 <« ny < 1, and each sequence class appears uniformly during training, then after
t > K? steps of batch size 1 update, given event T, 1[i] = n, the backpropagated gradient
gli] .= Y (xr11[i] — ali]) takes the following form:

g[’L] =7 (Lnfn - Z ﬂnn’fn’) 9

n’#n



Overall strategy of the theoretical analysis

* Given the backpropagated gradient, we can analyze the behavior of the
self-attention layer.

Theorem 2 (Fates of contextual tokens). Let Gor be the set of common tokens (CT), and Gpr(n)
be the set of distinct tokens (DT) that belong to next token n. Then if Assumption 2 holds, under the
self-attention dynamics (Eqn. 10), we have:

* (a) for any distinct token | € Gpr(n), Zm > 0 where m = ¢¥(n);

* (b) if |Gor| = 1 and at least one next token n € 1~'(m) has at least one distinct token,
then for the single common token | € Gor, zZm; < 0.



Conclusions of Scan&Snap

* Take home message
* Dynamics of self-attention leads to contextual sparsity
* Key tokens that do not co-occur a lot with the query token are suppressed.
* Application
* Predicting Contextual Sparsity for fast LLM inference
* Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time (ICML’23)

* A lot of mysteries remain.
* Why such sparsity is important for learning?
* How to add embedding back?

* What’s the role played by MLPs and how MLPs interact with Self-Attn?
* JoMA: Demystifying Multilayer Transformers via JOint Dynamics of MLP and Attention (arXiv’23)



Thanks!
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