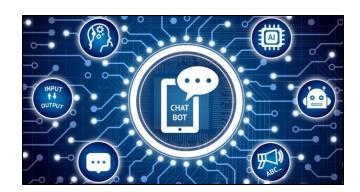
Emergence of Various Structures via the Lens of Transformer Training Dynamics

Yuandong Tian Research Scientist Director

Meta Al

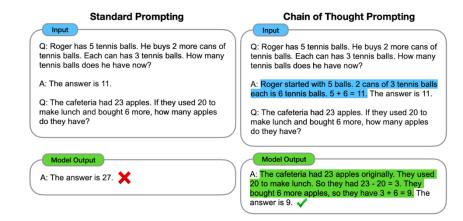
Large Language Models (LLMs)



Conversational Al

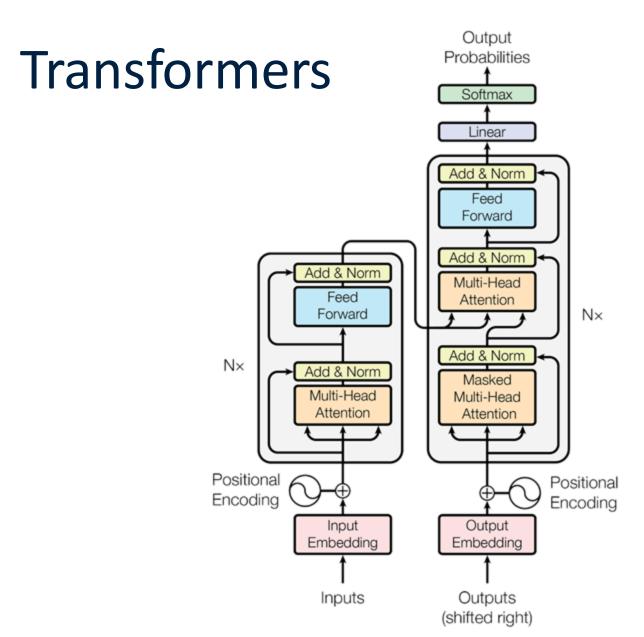
Content Generation

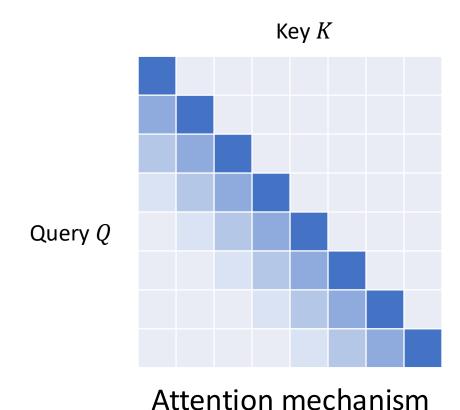
Al Agents



Reasoning

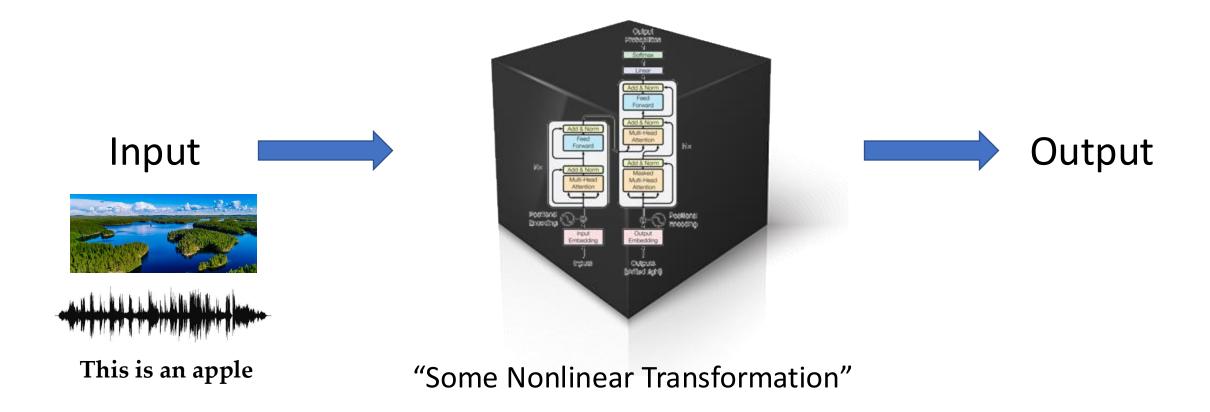
Planning



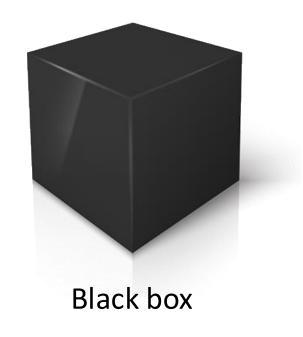


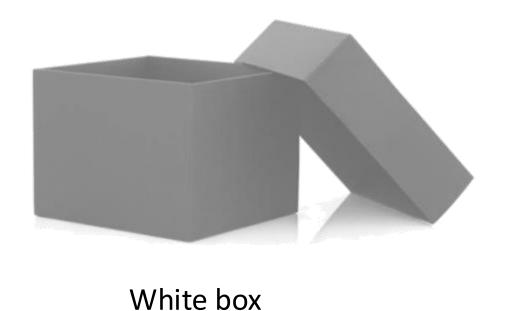
[A. Vaswani et al, Attention is all you need, NeurIPS'17]

How does Transformer work?



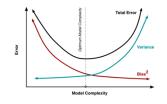
Black-box versus White-box





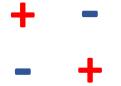
What routes should we take?

Generalization



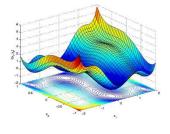
Architecture X
training dynamics X

Expressibility



Architecture ✓
training dynamics X

Optimization



Architecture X
training dynamics ✓

How about

Architecture ✓
training dynamics ✓

Training follows Gradient and its variants (SGD, Adams, etc)

$$\dot{\mathbf{w}} \coloneqq \frac{\mathrm{d}\mathbf{w}}{\mathrm{d}t} = -\nabla_{\mathbf{w}}J(\mathbf{w})$$

• Sounds complicated.. Is that possible? Yes

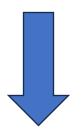
Architecture √
training dynamics √

What Gradient Descent gives us?

Simple Structures

Low-rank

More complicated structures

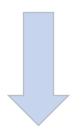


Hierarchical Representation Algebraic Structure Spectral Structure

What Gradient Descent gives us?

Simple Structures

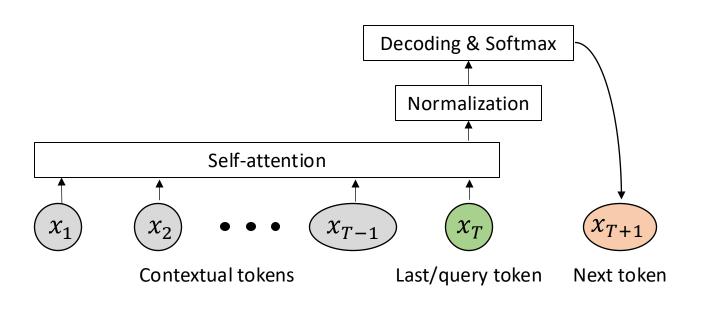
More complicated structures



Hierarchical Representation

Algebraic Structure Spectral Structure

Understanding Attention in 1-layer Setting



 $U = [\boldsymbol{u}_1, \boldsymbol{u}_2, ... \boldsymbol{u}_M]^T$: token embedding matrix

$$\widehat{m{u}}_T = \sum_{t=1}^{T-1} b_{tT}^T m{u}_{x_t} = U^T X^T m{b}_T$$

$$b_{tT} := \frac{\exp(\boldsymbol{u}_{x_T}^\top W_Q W_K^\top \boldsymbol{u}_{x_t} / \sqrt{d})}{\sum_{t=1}^{T-1} \exp(\boldsymbol{u}_{x_T}^\top W_Q W_K^\top \boldsymbol{u}_{x_t} / \sqrt{d})}$$

Normalized version $\widetilde{\boldsymbol{u}}_T = U^T \mathrm{LN}(X^T \boldsymbol{b}_T)$

Objective:

$$\max_{W_K, W_Q, W_V, U} J = \mathbb{E}_D \left[\boldsymbol{u}_{x_{T+1}}^T W_V \widetilde{\boldsymbol{u}}_T - \log \sum_{l} \exp(\boldsymbol{u}_l^T W_V \widetilde{\boldsymbol{u}}_T) \right]$$

Reparameterization

• Parameters W_K , W_Q , W_V , U makes the dynamics complicated.

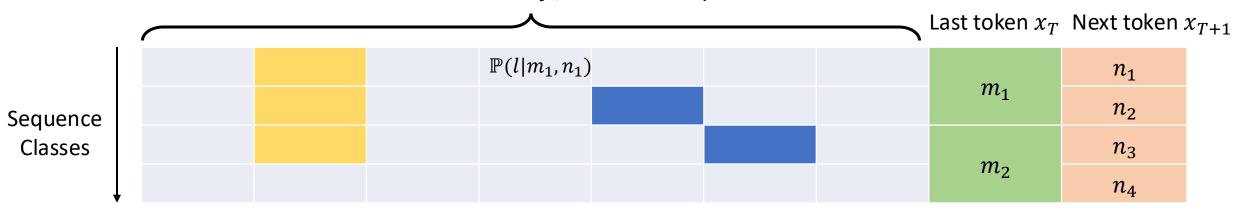
- ullet Reparameterize the problem with independent variable Y and Z
 - $Y = UW_V^T U^T$
 - $Z = UW_OW_K^TU^T$ (pairwise logits of self-attention matrix)

• Then the dynamics becomes easier to analyze

Data Distribution

 $x_t \in [M]$ for $1 \le t \le T$ $x_{T+1} \in [K]$ $K \ll M$

Contextual tokens x_t $(1 \le t \le T - 1)$



Distinct tokens: There exists unique n so that $\mathbb{P}(l|n) > 0$

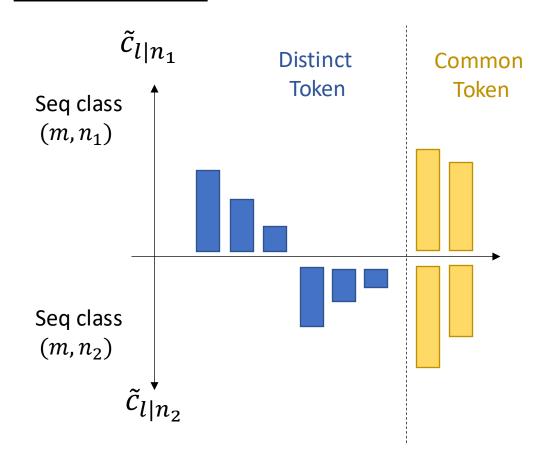
Common tokens: There exists multiple n so that $\mathbb{P}(l|n) > 0$

 $\mathbb{P}(l|m,n) = \mathbb{P}(l|n)$ is the conditional probability of token l given last token $x_T = m$ and $x_{T+1} = n$

Assumption: $m = \psi(n)$, i.e., no next token shared among different last tokens

Question: Given the data distribution, how does the self-attention layer behave?

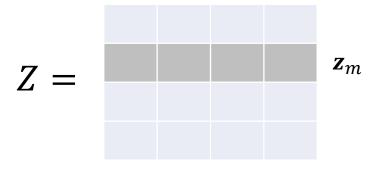
At initialization



Co-occurrence probability

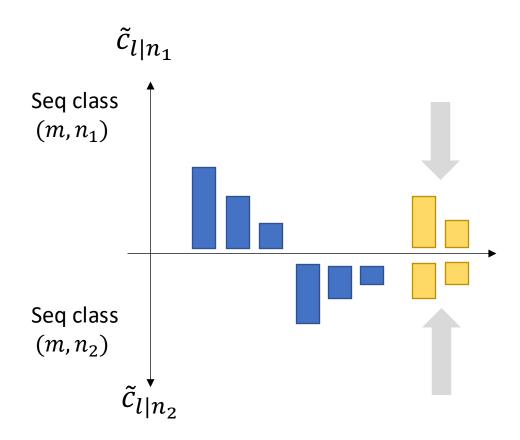
$$\tilde{c}_{l|n_1} := \mathbb{P}(l|m, n_1) \exp(z_{ml})$$

Initial condition: $z_{ml}(0) = 0$



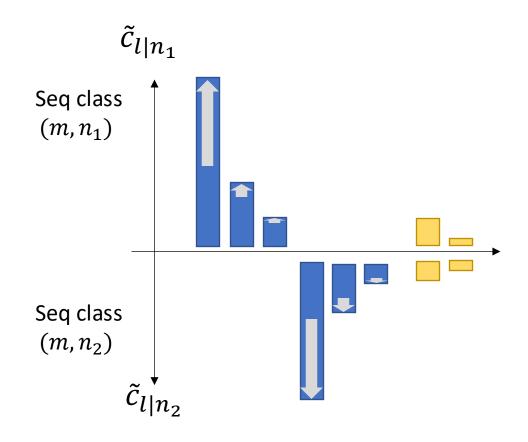
 \mathbf{z}_m : All logits of the contextual tokens when attending to last token $x_T = m$

Common Token Suppression



(a) z_{ml} < 0, for common token l

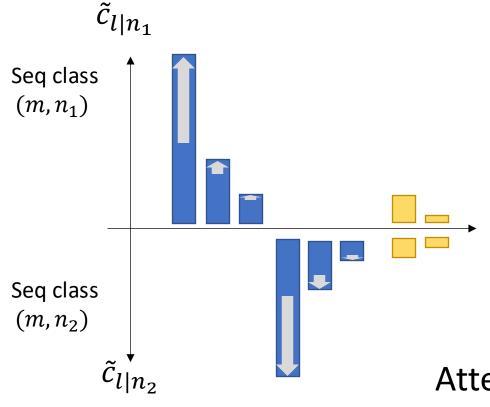
Winners-emergence



- (a) $\dot{z_{ml}} < 0$, for common token l
- (b) z_{ml} > 0, for distinct token l

Learnable TF-IDF (Term Frequency, Inverse Document Frequency)

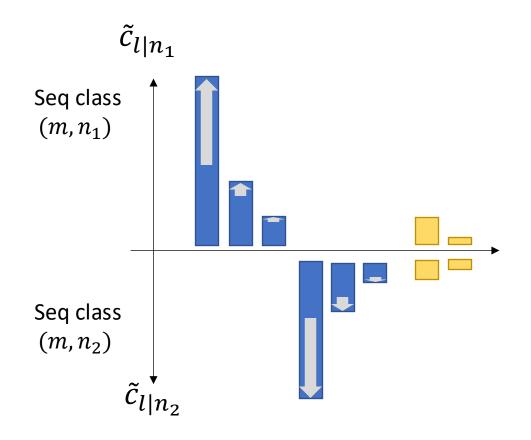
Winners-emergence



- (a) z_{ml} < 0, for common token l
- (b) z_{ml} > 0, for distinct token l
- (c) $z_{ml}(t)$ grows faster with larger $\mathbb{P}(l|m,n)$

Attention looks for discriminative tokens that frequently co-occur with the query.

Winners-emergence



(c) $z_{ml}(t)$ grows faster with larger $\mathbb{P}(l|m,n)$

Theorem 3 Relative gain $r_{l/l'|n}(t)\coloneqq \frac{\tilde{c}_{l|n}^2(t)}{\tilde{c}_{l'|n}^2(t)}-1$ has a close form:

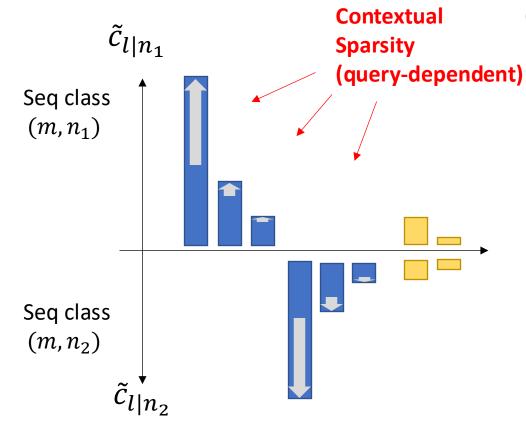
$$r_{l/l'|n}(t) = r_{l/l'|n}(0)\chi_l(t)$$

If l_0 is the dominant token: $r_{l_0/l|n}(0)>0$ for all $l\neq l_0$ then

$$e^{2f_{nl_0}^2(0)B_n(t)} \le \chi_{l_0}(t) \le e^{2B_n(t)}$$

where $B_n(t) \ge 0$ monotonously increases, $B_n(0) = 0$

Winners-emergence



(c) $z_{ml}(t)$ grows faster with larger $\mathbb{P}(l|m,n)$

Theorem 3 Relative gain $r_{l/l'|n}(t)\coloneqq \frac{\tilde{c}_{l|n}^2(t)}{\tilde{c}_{l'|n}^2(t)}-1$ has a close form:

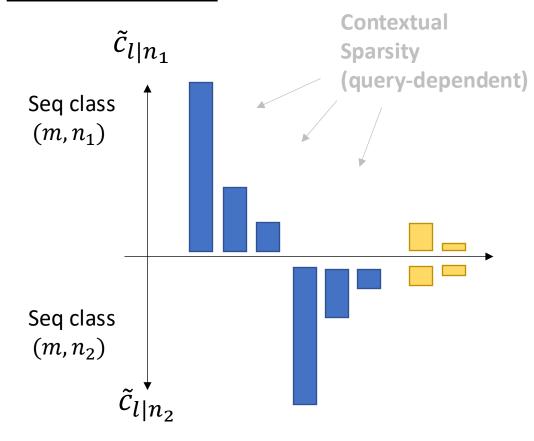
$$r_{l/l'|n}(t) = r_{l/l'|n}(0)\chi_l(t)$$

If l_0 is the dominant token: $r_{l_0/l|n}(0)>0$ for all $l\neq l_0$ then

$$e^{2f_{nl_0}^2(0)B_n(t)} \le \chi_{l_0}(t) \le e^{2B_n(t)}$$

where $B_n(t) \ge 0$ monotonously increases, $B_n(0) = 0$

Attention frozen



Theorem 4 When $t \to +\infty$,

$$B_n(t) \sim \ln \left(C_0 + 2K \frac{\eta_z}{\eta_Y} \ln^2 \left(\frac{M \eta_Y t}{K} \right) \right)$$

Attention **scanning**:

When training starts, $B_n(t) = O(\ln t)$

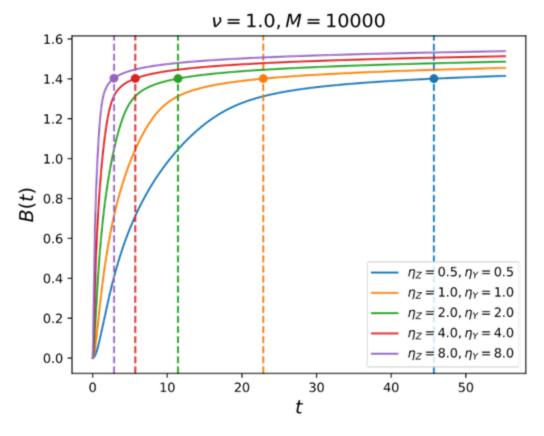
Attention **snapping**:

When
$$t \ge t_0 = O\left(\frac{2K \ln M}{\eta_Y}\right)$$
, $B_n(t) = O(\ln \ln t)$

- (1) η_z and η_Y are large, $B_n(t)$ is large and attention is sparse
- (2) Fixing η_Z , large η_Y leads to slightly small $B_n(t)$ and denser attention

Attention frozen

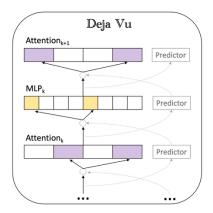




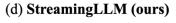
Larger learning rate η_z leads to faster phase transition

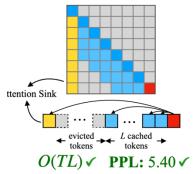
$$B_n(t) \sim \ln \left(C_0 + 2K \frac{\eta_z}{\eta_Y} \ln^2 \left(\frac{M \eta_Y t}{K} \right) \right)$$

Further Study of Sparse Attention / Low Rank

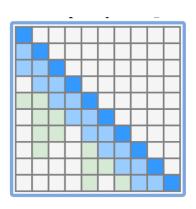


DejaVu [Z. Liu et al, ICML'23 (oral)]

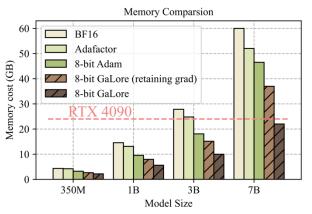




Attention Sink [G. Xiao et al, ICLR'24]



H2O [Z. Zhang et al, NeurlPS'23]



GaLore [J. Zhao et al, , ICML'24 (Oral)]

How to get rid of the assumptions?

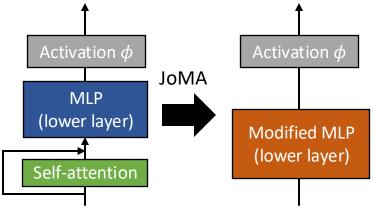
- A few annoying assumptions in the analysis
 - No residual connections
 - No embedding vectors
 - The decoder needs to learn faster than the self-attention $(\eta_Y \gg \eta_Z)$.
 - Single layer analysis

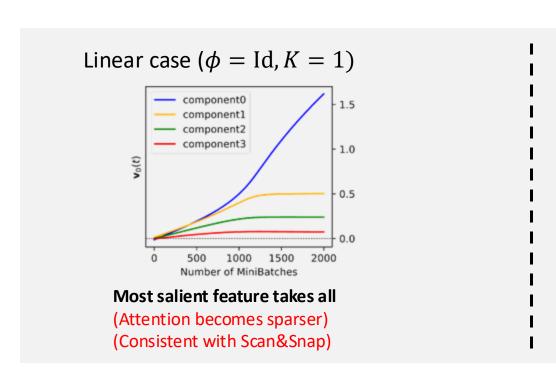
How to get rid of them?

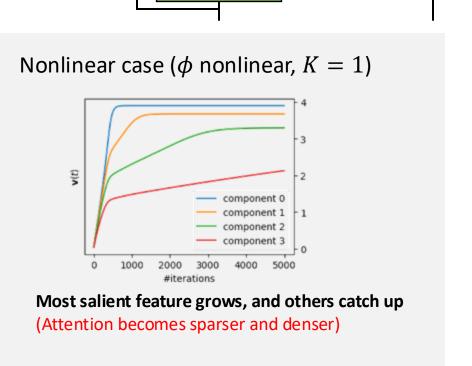
Follow-up work: JoMA (Joint MLP/Attention dynamics)

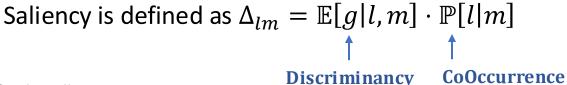
Folding self-attention into MLP

A Transformer block becomes a modified MLP (due to nice property in gradient dynamics)



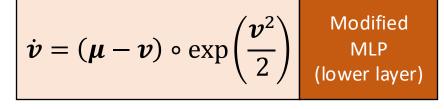


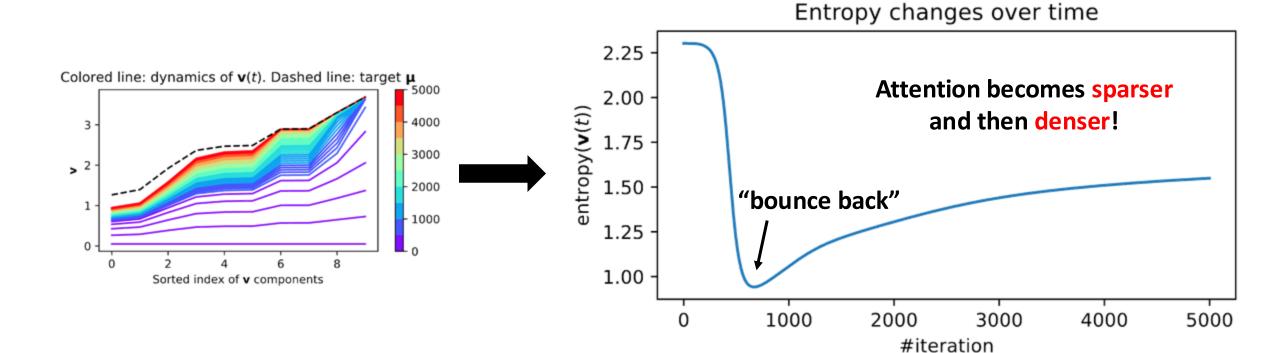




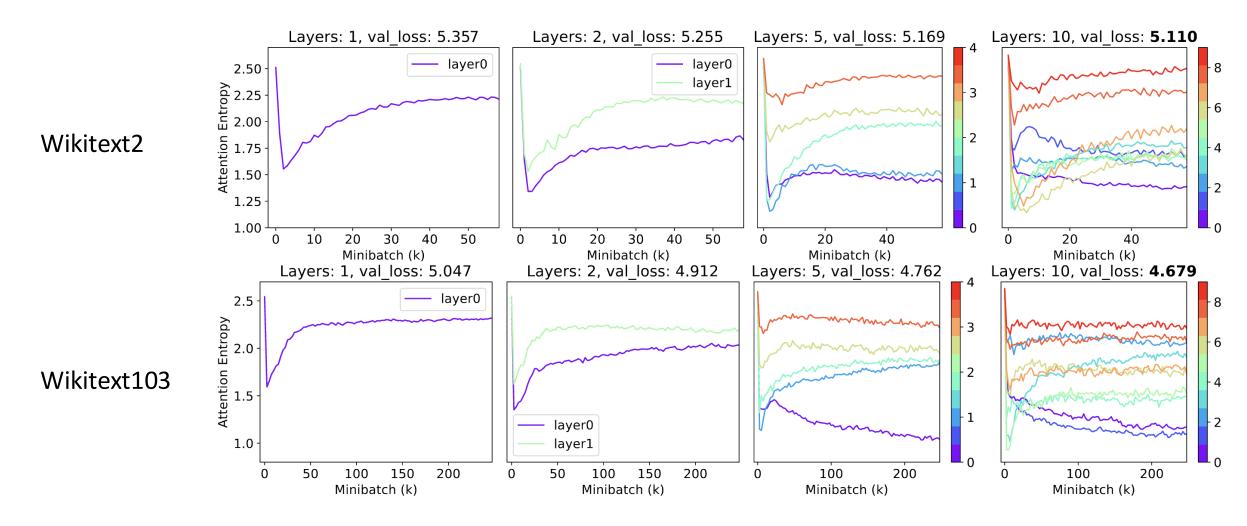
 $\Delta_{lm} pprox 0$: **Common** tokens $|\Delta_{lm}|$ large: **Distinct** tokens

Nonlinear case





Real-world Experiments

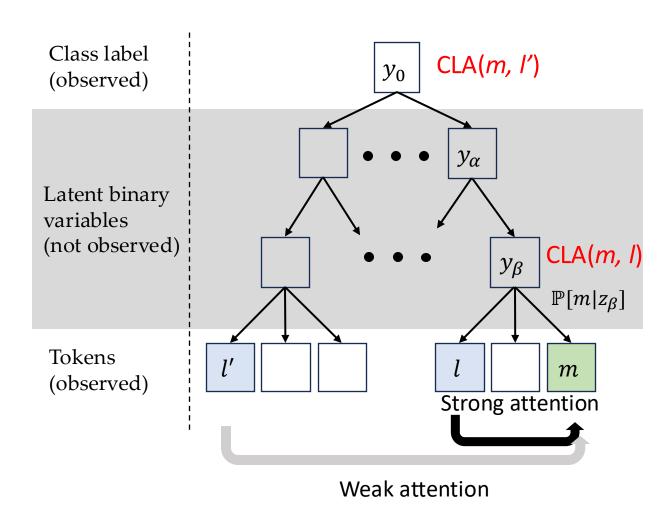


Why is this "bouncing back" property useful?

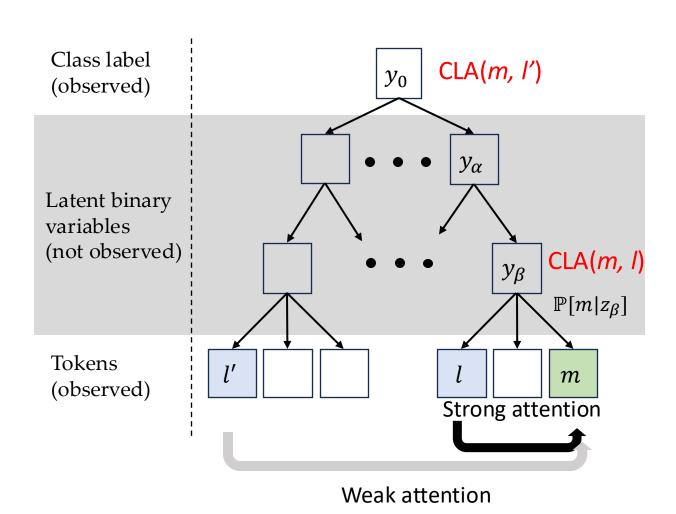
It seems that it only slows down the training??

Not useful in 1-layer, but useful in multiple Transformer layers!

Data Hierarchy & Multilayer Transformer



Data Hierarchy & Multilayer Transformer



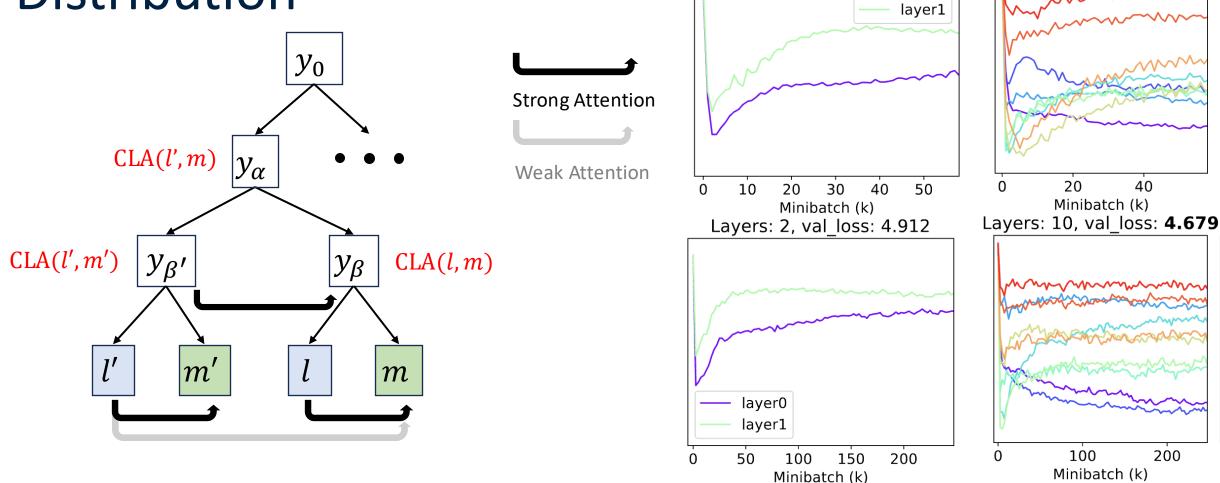
Theorem 5

$$\mathbb{P}[l|m] \approx 1 - \frac{H}{L}$$

H: height of the common latent ancestor (CLA) of $l \ \& \ m$

L: total height of the hierarchy

Deep Latent Distribution



Learning the current hierarchical structure by slowing down the association of tokens that are not directly correlated

Layers: 10, val loss: **5.110**

- 2

8

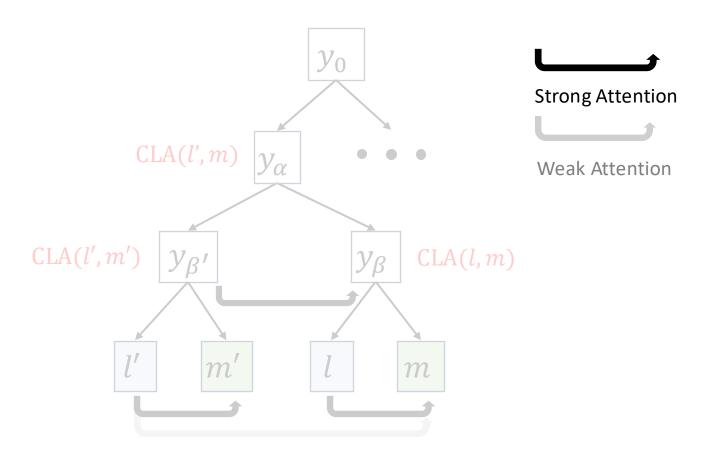
6

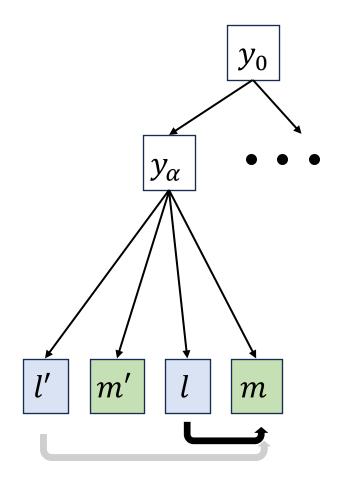
- 2

Layers: 2, val_loss: 5.255

layer0

Shallow Latent Distribution





Hierarchy-agnostic Learning



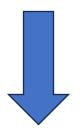
- Architecture ✓ training dynamics ✓
- Nonlinearity is not formidable!
 - Transformer can be analyzed following gradient descent rules
- Property of self-attention
 - Attention becomes sparse over training
 - Inductive bias
 - Favor the learning of strong co-occurred tokens
 - Deter the learning of weakly co-occurred tokens, avoiding spurious correlation.
- Key insights lead to broad applications

What Gradient Descent gives us?

Simple Structures

Low-rank

More complicated structures



Hierarchical Representation

Algebraic Structure Spectral Structure

Dichotomy: Symbolic and Neural Representation

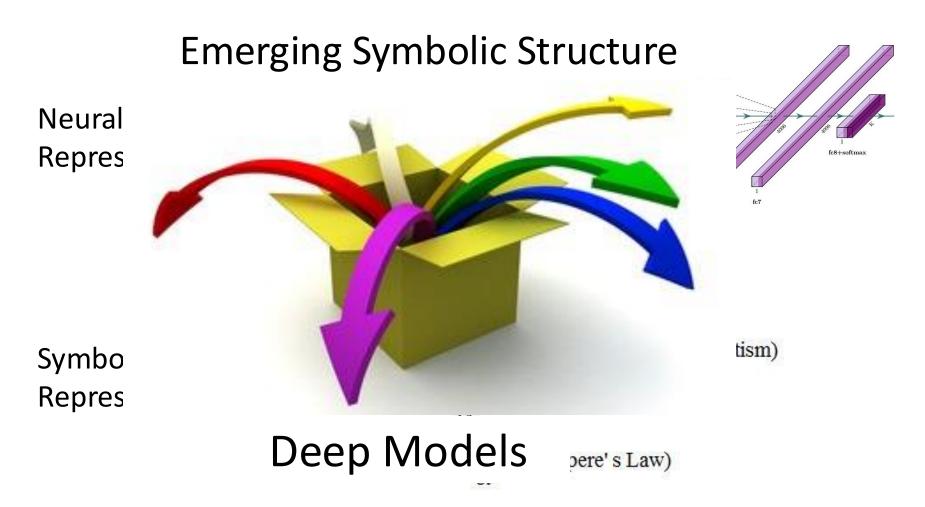
Neural Representation



Symbolic Representation

$$\nabla \cdot \mathbf{E} = \frac{\rho_{v}}{\varepsilon}$$
 (Gauss' Law)
$$\nabla \cdot \mathbf{H} = 0$$
 (Gauss' Law for Magnetism)
$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t}$$
 (Faraday's Law)
$$\nabla \times \mathbf{H} = \mathbf{J} + \varepsilon \frac{\partial \mathbf{E}}{\partial t}$$
 (Ampere's Law)

Unification of Symbolic and Neural Representation



Concrete Example: Modular Addition

$$a + b = c \mod d$$

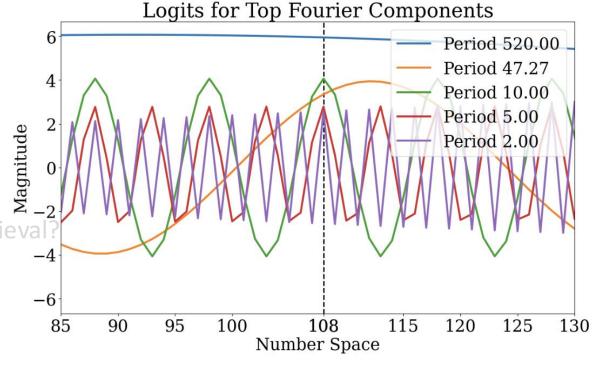
Does neural network have an *implicit table* to do retrieval?

Concrete Example: Modular Addition

$$a + b = c \mod d$$

Does neural network have an *implicit table* to do retrieval

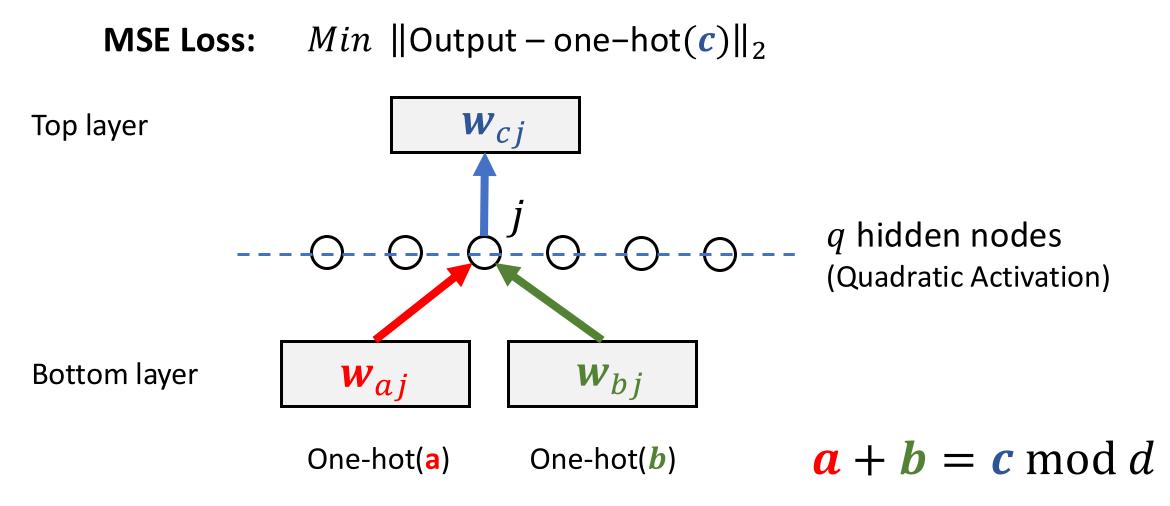
Learned representation = Fourier basis (**)



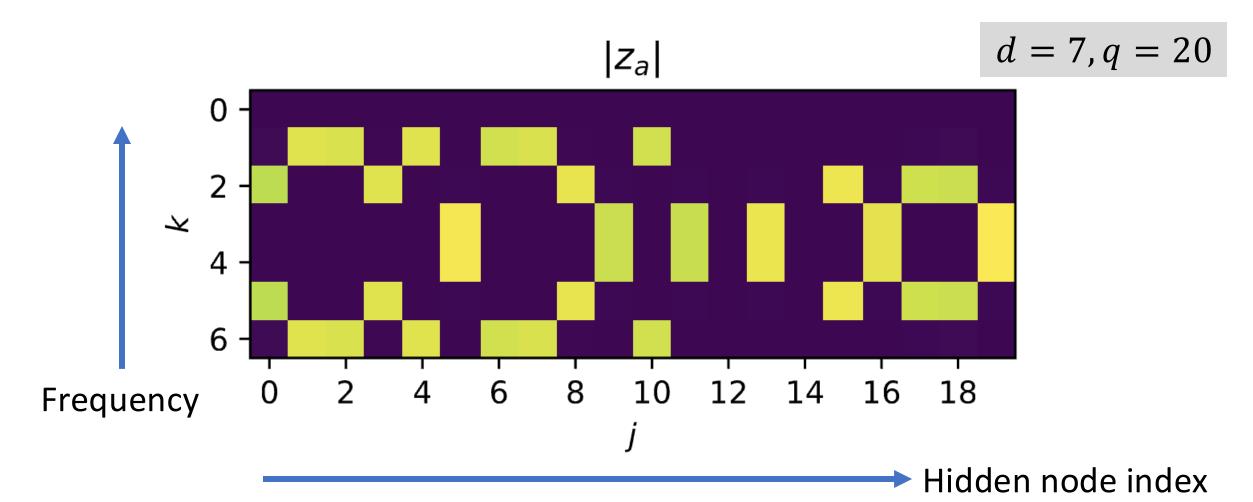
(a) Final logits for top Fourier components

[T. Zhou et al, Pre-trained Large Language Models Use Fourier Features to Compute Addition, NeurIPS'24] [S. Kantamneni, Language Models Use Trigonometry to Do Addition, arXiv'25]

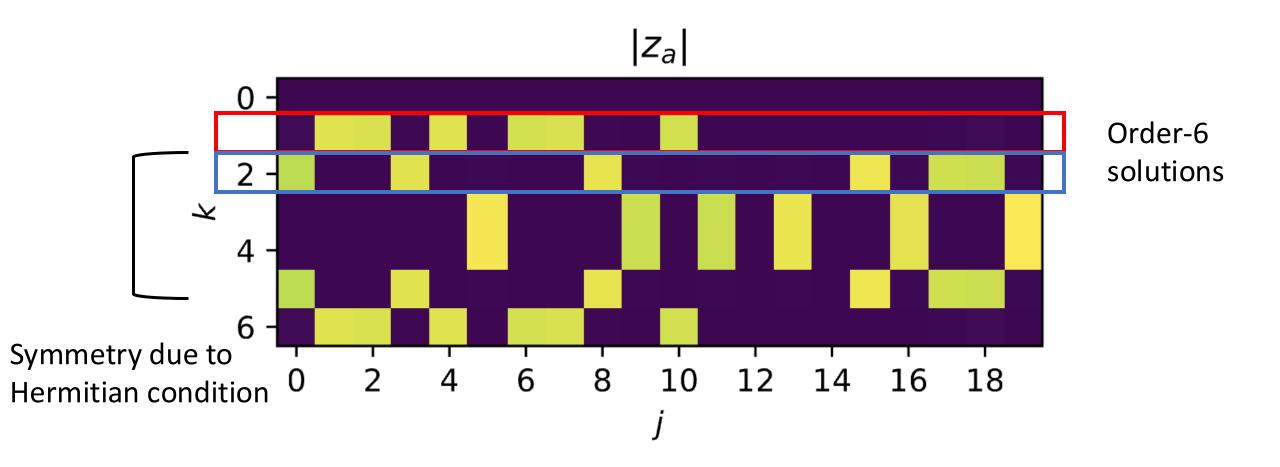
Minimal Setup



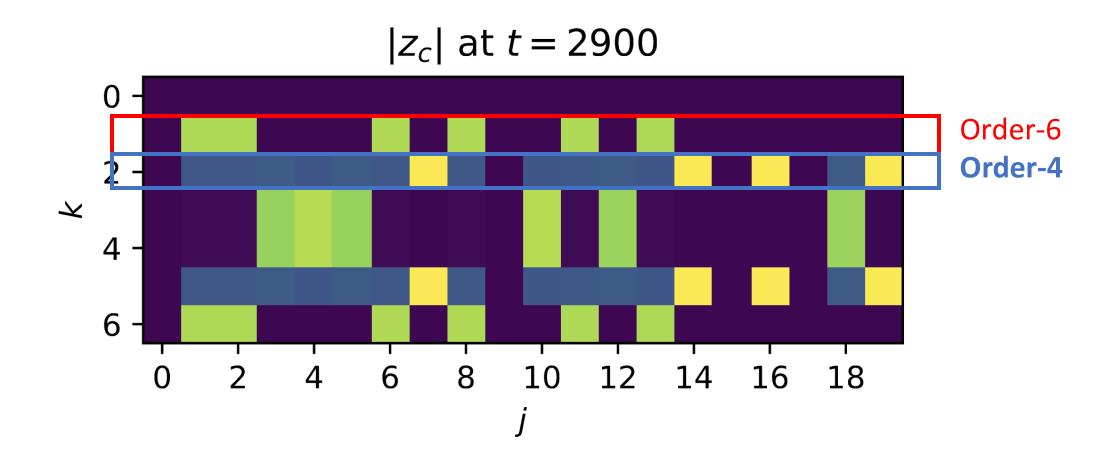
What a Gradient Descent Solution look like?



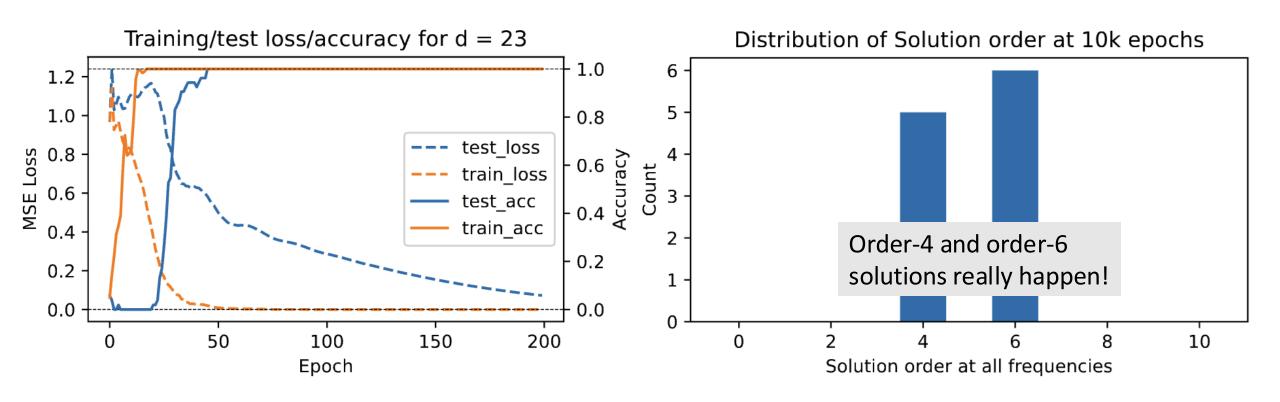
What a Gradient Descent Solution look like?



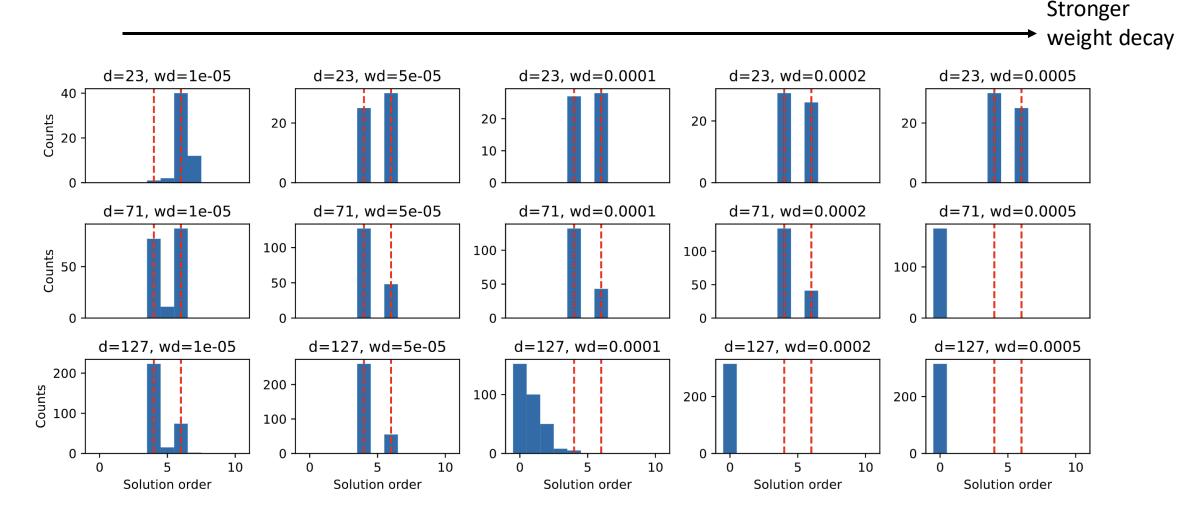
What a Gradient Descent Solution look like?



More Statistics on Gradient Descent Solutions



Effect of Weight Decay



How to Optimize?

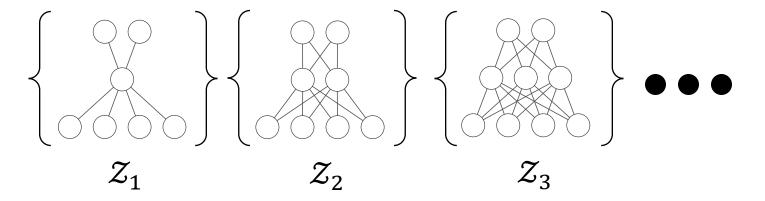
The objective is highly nonlinear!!

However, nice *algebraic structures* exist!

How to Optimize?

The objective is highly nonlinear!!

However, nice *algebraic structures* exist!

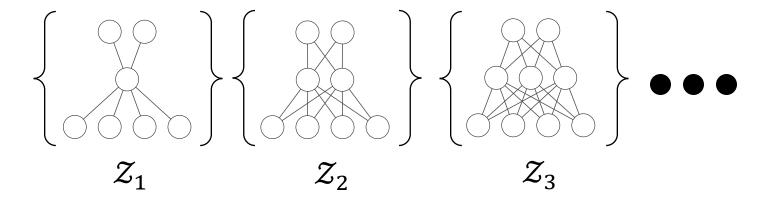


 $\mathcal{Z} = \bigcup_{g \geq 0} \mathcal{Z}_g$: All 2-layer networks with different number of hidden nodes

How to Optimize?

The objective is highly nonlinear!!

However, nice *algebraic structures* exist!



 $\mathcal{Z} = \bigcup_{q \geq 0} \mathcal{Z}_q$: All 2-layer networks with different number of hidden nodes Ring addition +: Concatenate hidden nodes Ring multiplication *: Kronecker production along the hidden dimensions $\langle \mathcal{Z}, +, \ * \rangle$ is a **semi-ring**

Composing Global Optimizers from Partial Ones

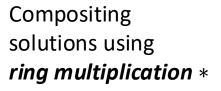
Partial solution #1

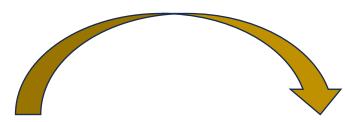
$$\mathbf{z}_{\mathrm{syn}}^{(k)} \in R_{\mathrm{c}} \cap R_{\mathrm{n}} \text{ but } \mathbf{z}_{\mathrm{syn}}^{(k)} \notin R_{*}$$

Partial solution #2

$$\mathbf{z}_{v}^{(k)} \in R_{*}$$

Composing Global Optimizers from Partial Ones





Partial solution #1

$$\mathbf{z}_{\mathrm{syn}}^{(k)} \in R_{\mathrm{c}} \cap R_{\mathrm{n}} \text{ but } \mathbf{z}_{\mathrm{syn}}^{(k)} \notin R_{*}$$

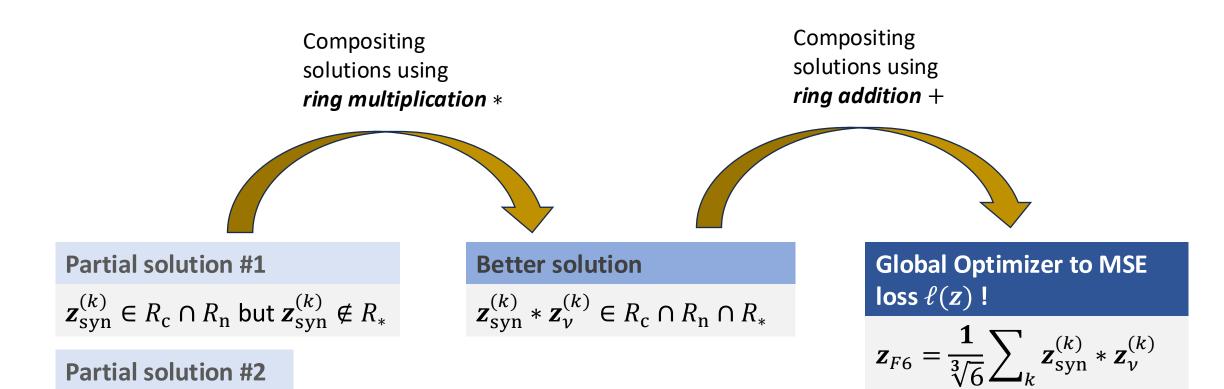
Partial solution #2

$$\mathbf{z}_{v}^{(k)} \in R_{*}$$

Better solution

$$\mathbf{z}_{\text{syn}}^{(k)} * \mathbf{z}_{v}^{(k)} \in R_{c} \cap R_{n} \cap R_{*}$$

Composing Global Optimizers from Partial Ones



 $\mathbf{z}_{v}^{(k)} \in R_{*}$

Exemplar constructed global optimizers

Order-6
$$z_{F6}$$
 (2*3)

$$m{z}_{F6} = rac{1}{\sqrt[3]{6}} \sum_{k=1}^{(d-1)/2} m{z}_{ ext{syn}}^{(k)} * m{z}_{
u}^{(k)} * m{y}_{k}$$

Exemplar constructed global optimizers

Order-6 z_{F6} (2*3)

$$m{z}_{F6} = rac{1}{\sqrt[3]{6}} \sum_{k=1}^{(d-1)/2} m{z}_{ ext{syn}}^{(k)} * m{z}_{
u}^{(k)} * m{y}_{k}$$

Order-4 $\mathbf{z}_{F4/6}$ (2*2) (mixed with order-6)

$$m{z}_{F4/6} = rac{1}{\sqrt[3]{6}} \hat{m{z}}_{F6}^{(k_0)} + rac{1}{\sqrt[3]{4}} \sum_{k=1, k
eq k_0}^{(d-1)/2} m{z}_{F4}^{(k)}$$

Exemplar constructed global optimizers

Order-6 z_{F6} (2*3)

Order-4 $z_{F4/6}$ (2*2) (mixed with order-6)

Perfect memorization (order-d per frequency)

$$m{z}_{F6} = rac{1}{\sqrt[3]{6}} \sum_{k=1}^{(d-1)/2} m{z}_{ ext{syn}}^{(k)} * m{z}_{
u}^{(k)} * m{y}_k$$

$$m{z}_{F4/6} = rac{1}{\sqrt[3]{6}} \hat{m{z}}_{F6}^{(k_0)} + rac{1}{\sqrt[3]{4}} \sum_{k=1, k
eq k_0}^{(d-1)/2} m{z}_{F4}^{(k)}$$

$$egin{align} oldsymbol{z}_a &= \sum_{j=0}^{d-1} oldsymbol{u}_a^j, & oldsymbol{z}_b &= \sum_{j=0}^{d-1} oldsymbol{u}_b^j \ oldsymbol{z}_M &= d^{-2/3} oldsymbol{z}_a * oldsymbol{z}_b \end{aligned}$$

d	%not	not %non-factorable			error ($\times 10^{-2}$)		solution distribution (%) in factorable ones			
	order-4/6	order-4	order-6	order-4	order-6	$oxed{oldsymbol{z}_{ u=\mathrm{i}}^{(k)} * oldsymbol{z}_{\xi}^{(k)}}$	$ig oldsymbol{z}_{ u=\mathrm{i}}^{(k)}*oldsymbol{z}_{\mathrm{syn},lphaeta}^{(k)}$	$\left oldsymbol{z}_{ u}^{(k)}*oldsymbol{z}_{ ext{syn}}^{(k)} ight $	others	
23	0.0 ± 0.0	0.00 ± 0.00	$ 5.71\pm_{5.71} $	$0.05{\pm}0.01$	4.80 ± 0.96	47.07 ± 1.88	$11.31{\scriptstyle\pm1.76}\atop 4.00{\scriptstyle\pm1.14}$	39.80 ± 2.11	1.82 ± 1.82	
71	0.0 ± 0.0	0.00 ± 0.00	$ 0.00\pm0.00 $	0.03 ± 0.00	$ 5.02\pm_{0.25} $	72.57 ± 0.70	$4.00{\pm}1.14$	$ 21.14\pm 2.14 $	$2.29{\scriptstyle\pm1.07}$	
127	0.0 ± 0.0	$\left 1.50\pm 0.92\right $	$\left 0.00\pm0.00\right $	$\left 0.26\pm0.14\right $	$\left 0.93\pm 0.18\right $	82.96 ± 0.39	$2.25{\pm}0.64$	$ 14.13\pm 0.87 $	0.66 ± 0.66	

$$q = 512, wd = 5 \cdot 10^{-5}$$

d	%not order-4/6	%non-factorable order-4 order-6		error ($\times 10^{-2}$) order-4 order-6		$egin{align*} egin{align*} ext{solution distribution (\%) in factorable one} \ m{z}_{ u= ext{i}}^{(k)} * m{z}_{\xi}^{(k)} m{z}_{ u= ext{i}}^{(k)} * m{z}_{ ext{syn},lphaeta}^{(k)} m{z}_{ u}^{(k)} * m{z}_{ ext{syn}}^{(k)} \ \end{bmatrix} ext{ otherwise} $			le ones others
23 71 127	0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0	0.00 ± 0.00 0.00 ± 0.00 1.50 ± 0.92	5.71 ± 5.71 0.00 ± 0.00 0.00 ± 0.00				$\begin{array}{c c} 11.31{\pm}1.76\\ 4.00{\pm}1.14\\ 2.25{\pm}0.64\end{array}$		
	0.070.0	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[0.0020.00]	100202011	0	10210023100	1 2020201	1	0.0073.00

100% of the per-freq solutions are order-4/6

$d \mid$	%not	%non-factorable 6 order-4 order-6		error ($\times 10^{-2}$) order-4 order-6		$egin{aligned} egin{aligned} \operatorname{solution} & \operatorname{distribution} (\%) & \operatorname{in} \operatorname{factorable} & \operatorname{ones} \ oldsymbol{z}_{ u=\mathrm{i}}^{(k)} * oldsymbol{z}_{\xi}^{(k)} ig oldsymbol{z}_{ u=\mathrm{i}}^{(k)} * oldsymbol{z}_{\mathrm{syn},lphaeta}^{(k)} ig oldsymbol{z}_{ u}^{(k)} * oldsymbol{z}_{\mathrm{syn}}^{(k)} ig & \operatorname{others} \end{aligned}$			
							$\frac{ \alpha_{\nu=1} \alpha_{\text{syn},\alpha\beta} }{11.31 \pm 1.76}$		
71	0.0 ± 0.0	0.00 ± 0.00	$0.00\pm$ 0.00	0.03 ± 0.00	$ 5.02\pm 0.25 $	72.57 ± 0.70	$4.00{\pm}1.14$	$ 21.14\pm 2.14 $	$2.29{\pm}1.07$
127	$ 0.0 \pm 0.0 $	$1.50{\pm}0.92$	$ 0.00\pm 0.00 $	$\left 0.26\pm 0.14\right $	$\left 0.93\pm0.18\right $	82.96 ± 0.39	$2.25{\pm}0.64$	$ 14.13\pm_{0.87} $	0.66 ± 0.66

95% of the solutions are factorizable into "2*3" or "2*2"

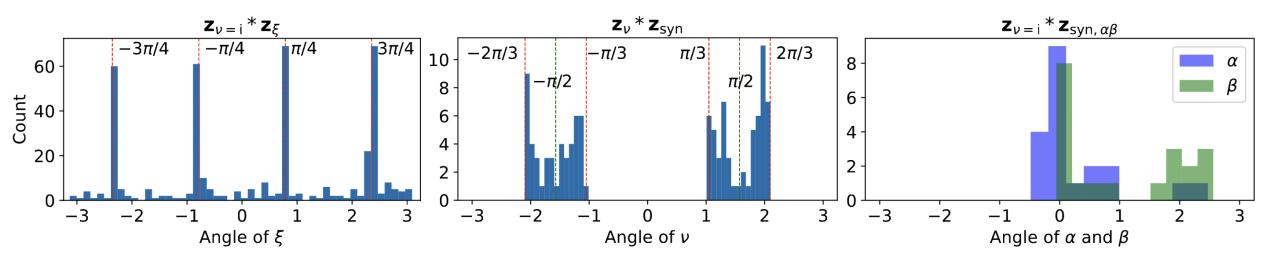
$_d$	%not %non-factorable order-4/6 order-4 order-6		error ($\times 10^{-2}$)						
	order-4/6	order-4	order-6	order-4	order-6	$oxed{oldsymbol{z}_{ u=\mathrm{i}}^{(\kappa)} * oldsymbol{z}_{\xi}^{(\kappa)}}$	$ig oldsymbol{z}_{ u=\mathrm{i}}^{(k)}*oldsymbol{z}_{\mathrm{syn},lphaeta}^{(k)}$	$oxed{z_{ u}^{(\kappa)} * z_{ m syn}^{(\kappa)}}$	others
23	0.0 ± 0.0	0.00 ± 0.00	$ 5.71\pm 5.71 $	$0.05\pm$ 0.01	$4.80{\pm0.96}$	47.07 ± 1.88	11.31 ± 1.76	39.80 ± 2.11	1.82 ± 1.82
71	0.0 ± 0.0	$ 0.00\pm0.00 $	$ 0.00\pm0.00 $	$0.03\pm$ 0.00	$5.02{\pm}0.25$	72.57 ± 0.70	$4.00{\pm}1.14$	$ 21.14\pm 2.14 $	$2.29{\pm}1.07$
						82.96 ± 0.39		14.13 ± 0.87	0.66 ± 0.66
,	•	'	'		'	•	•		'

Factorization error is very small

d	%not %non-factorable		error ($\times 10^{-2}$)		solution distribution (%) in factorable ones $oldsymbol{z}{ u=\mathrm{i}}^{(k)}*oldsymbol{z}_{ u=\mathrm{i}}^{(k)}*oldsymbol{z}_{ u=\mathrm{i}}^{(k)}*oldsymbol{z}_{\mathrm{syn},\alpha\beta}^{(k)}oldsymbol{z}_{ u}^{(k)}*oldsymbol{z}_{\mathrm{syn}}^{(k)}$ others				
$begin{bmatrix} a \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	order-4/6	order-4	order-6	order-4	order-6	$oldsymbol{z}_{ u=\mathrm{i}}^{(k)}*oldsymbol{z}_{\xi}^{(k)}$	$oldsymbol{z}_{ u=\mathrm{i}}^{(k)}*oldsymbol{z}_{\mathrm{syn},lphaeta}^{(k)}$	$oxed{z_{ u}^{(k)} * oxed{z_{\mathrm{syn}}^{(k)}}}$	others
23	0.0 ± 0.0	0.00 ± 0.00	$ 5.71\pm_{5.71} $	$0.05{\pm}0.01$	$4.80{\scriptstyle\pm0.96}$	$47.07{\pm}1.88$	11.31 ± 1.76	39.80 ± 2.11	1.82 ± 1.82
71	0.0 ± 0.0	0.00 ± 0.00	$ 0.00\pm 0.00 $	$ 0.03\pm 0.00 $	$5.02{\pm}0.25$	72.57 ± 0.70	$4.00{\scriptstyle\pm1.14}$	$ 21.14\pm 2.14 $	$2.29{\pm}1.07$
127	0.0 ± 0.0	$ 1.50\pm 0.92 $	$ 0.00\pm 0.00 $	$ 0.26\pm 0.14 $	0.93 ± 0.18	$82.96{\scriptstyle\pm0.39}$	$2.25{\pm}0.64$	14.13 ± 0.87	0.66 ± 0.66
'	•	•	'			'	'	•	'

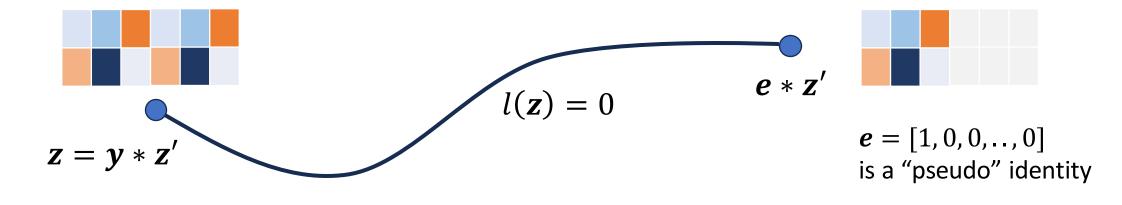
98% of the solutions can be factorizable into the constructed forms

d	%not order-4/6	%non-fa	order-6	error (2)	$\times 10^{-2}$) order-6	solution $z_{\cdots}^{(k)} * z_{\varepsilon}^{(k)}$	$oxed{z_{ u=\mathrm{i}}^{(k)}} * oxed{z_{\mathrm{syn},lphaeta}^{(k)}}$) in factorabl $ z_{\nu}^{(k)} * z_{\text{syn}}^{(k)} $	e ones others
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									1.82 ± 1.82
Dist	ribution (of the pa	rameters	in the sol		4.00 ± 1.14 2.25 ± 0.64			



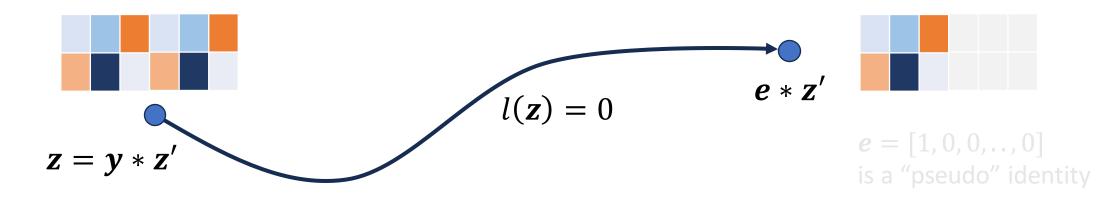
Gradient Dynamics

Theorem [The Occam's Razer] If z = y * z' and both z and z' are global optimal, then there exists a path of zero loss connecting z and z'.



Gradient Dynamics

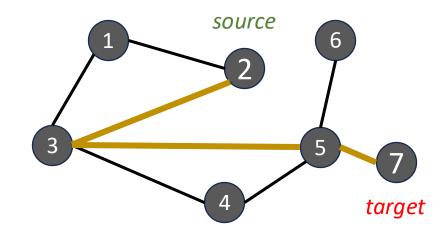
Theorem [The Occam's Razer] If z = y * z' and both z and z' are global optimal, then there exists a path of zero loss connecting z and z'.



L2 regularization will push the solution to e * z' (simpler solutions), since $||e * z'||_2 \le ||y * z'||_2$

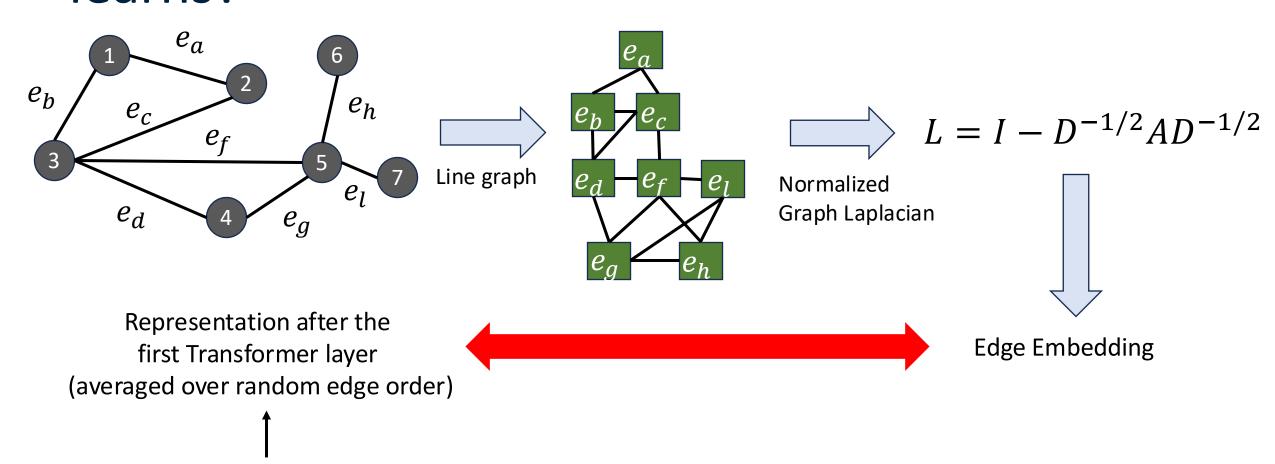
Another Example: Symbolic from Neural Representation

Task: Learn a 2-layer Transformer for predicting shortest path in the graph



<bos> 1 2 <e> ... <q> [source] [target] [source] [node 1] [node 2] ... [target]
Context
Predicted Shortest path

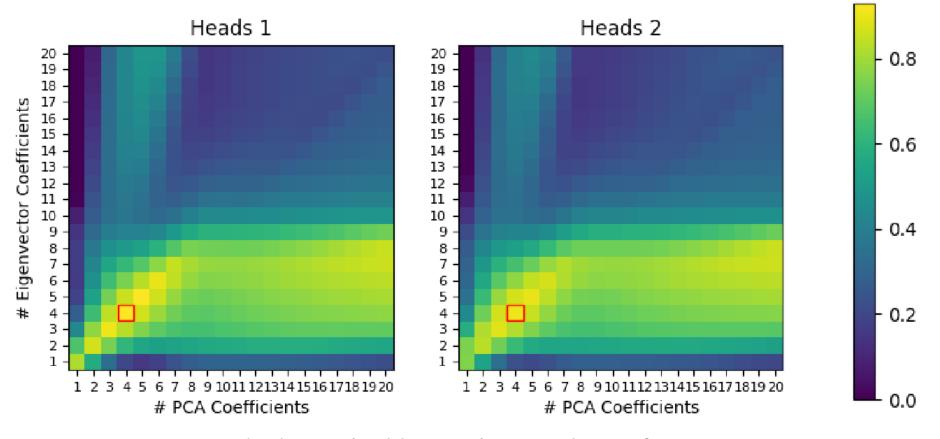
What representations it learns?



<bos> 1 2 <e> ... <q> [source] [target] [source] [node 1] [node 2] ... [target]

What representations it learns?

Graph Edge Embedding of various dimensions



Computed edge embedding with trained Transformers

Normalized Correlation > 0.9

Spectral Line Navigator (SLN)

Simple Algorithms of Graph Shortest Path

- 1. Compute Line Graph \tilde{G} of existing graph G
- 2. Compute eigenvectors of normalized Laplacian $L(\tilde{G})$
- 3. i = source
- 4. While $i \neq target$ do $distance(j, k; i) \coloneqq \|v_{ij} v_{k, target}\|_{2}$ Find $j = \operatorname{argmin}_{j,k} distance(j, k; i)$ Let i = j

>99% optimal for small random graph (size < 10)

o3-mini-high implementation: https://chatgpt.com/share/67b027f9-fb28-8012-aa64-a1f7479134b7

Possible Implications

Do neural networks end up learning more efficient symbolic representations that we don't know?

Does gradient descent lead to a solution that can be reached by **advanced algebraic operations**?

Will gradient descent become **obsolete**, eventually?



Thanks!

facebook Artificial Intelligence 71

Thanks!