Understanding Foundational Models via the Lens
of Training Dynamics

Yuandong Tian
Research Scientist and Manager

Meta Al (FAIR)

b J
1 I \
- B\ Wik
“ 7 a1\ :
F (ﬁ\,_\) ‘ﬁ_i H & |
[o™ o |
l/)‘ f‘ == @ |mEms| A
¥/ '/A A —) —

A \\
LA Y m

facebook Artificial Intelligence

Large Language Models (LLMs)

iFE=F E;_B-‘ ‘f‘ Eﬂq ﬂ%l i~
Tlltkl:;lynmklki = Eg.‘& ih“! 5)

\NPUT
4

OUTPUy

Finishinga
morning routine &

Conversational Al Content Generation Al Agents

Standard Prompting Chain of Thought Prompting
Y coNCEPT

Input 16 \
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of %
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now? ‘
A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls b .’\

each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples
do they have?

Cnse is 9. J - ‘ ‘ ') ~* \{F: Yeg ‘ Al

Reasoning Planning

PLI\“ §)

A: The answer is 27. x

facebook Artificial Intelligence

What does the future look like?

More data

More compute

Training loss

Larger models

1017 1018 1019 1020 1021 1022
FLOPS

facebook Artificial Intelligence Are we going to blindly believe in scaling laws?

Black-box versus White-box

Black box

facebook Artificial Intelligence

Black-box versus White-box

Black box White box

facebook Artificial Intelligence

Three Angles

Understanding how

= =

Expressibility . 4

“Neural Network is a universal approximator”
“Deep Models can express functions more efficiently than shallow ones”

Deep Models work

Optimization

“Gradient vanishing/exploding” >
“Gradient Descent might get stuck at saddle pomt / local minima”
“Can GD/SGD go to global optima? How fast?”

Generalization

“Does zero training error often lead to overflttmg?”
“More parameters might lead to overfitting.”

Three Angles

Understanding how

= =

Expressibility . 4

“Neural Network is a universal approximator”
“Deep Models can express functions more efficiently than shallow ones”

Deep Models work

Which path should we take?

Optimization

“Gradient vanishing/exploding” >
“Gradient Descent might get stuck at saddle pomt / local minima”
“Can GD/SGD go to global optima? How fast?”

Generalization

“Does zero training error often lead to overflttmg?”
“More parameters might lead to overfitting.”

Three Angles — What to pick?

Expressibility

Optimization

Generalization

Model Complexity

Architecture \/
training dynamics X

Architecture X
training dynamics v

Architecture X
training dynamics X

How about

Architecture v/
training dynamics v

Start From the First Principle

* Training follows Gradient and its variants (SGD, Adams, etc)

dw v
_E__ w](w)

* First principle = Understand the behavior of the neural networks by
checking the gradient dynamics induced by the neural architectures.

w :

* Sounds complicated.. Is that possible? Yes ,
Architecture v/

training dynamics v

facebook Artificial Intelligence

Transformers

facebook Artificial Intelligence

Output

Probabilities
| Softmax |
|
{ Linear |
e)
| Add & Norm <=~
Feed
Forward
s 1 ~\ L Add & Norm Je~
—{Add &.Norm J Multi-Head
Feed Attention
Forward D) Nx
—
» (Add & Norm Je— Query Q
~—>| Add & Norm] VR
Multi-Head Multi-Head
Attention Attention
At 1t
] J .)
Positional Positional
E di D & [
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

[A. Vaswani et al, Attention is all you need, NeurlPS’17]

Key K

Attention mechanism

Understanding Attention in 1-layer Setting

Decoding & Softmax

Normalization Different next token =
Different classes in classification

Self-attention

Co) eee Gro () G

Contextual tokens Last/query token Next token

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurlPS’23]

Reparameterization

* Parameters Wy, Wy, Wy, U makes the dynamics complicated.

Class Prediction

I

* Reparameterize the problem with independent variable Y and Z
« Y = UW,UT (Merging the embedding with weight matrix)

fn
VA UWQW,?UT (pairwise logits of self-attention matrix)

normalize

* Then the dynamics becomes easier to analyze

Data

facebook Artificial Intelligence

Overall Picture of the Training Dynamics

At initialization

Clin, Distinct
A Token

Seq class
(m,nq)

Common
Token

(m, le)

v

Cl|n2

facebook Artificial Intelligence

v

Seq class

Co-occurrence probability

¥
Clin,: = P(llm,nq) exp(zm)

Initial condition: z,,,;;(0) = 0

!

Pairwise attention score
between token | and query m

Distinct tokens: Tokens that only appear in a single class.
Common tokens: Tokens that appear in multiple classes.

Overall Picture of the Training Dynamics

Common Token Suppression

Cl|n1

Seq class
(m,nq)

Seq class
(m, le)

A

v

Clin,

facebook Artificial Intelligence

(a) z,,;; < 0, for common token [

Overall Picture of the Training Dynamics

Winners-emergence

Cl|n1

Seq class
(m,n,)

Seq class
(m, le)

A u

v

Cl|n2

facebook Artificial Intelligence

= -

»
»

(a) z,,; < 0, for common token [

(b) z;,,; > 0, for distinct token [

Learnable TF-IDF (Term Frequency,
Inverse Document Frequency)

Overall Picture of the Training Dynamics

Winners-emergence

6l|n
. (a) z,,;; < 0, for common token [
Seq class
(minl)
u (b) z,,,; > 0, for distinct token [
ii — - (c) z,,,; (t) grows faster with

Seq class ! larger P(l |m; Tl)
(mJnZ)

5zi'nz Attention looks for discriminative tokens that

frequently co-occur with the query.

facebook Artificial Intelligence

Overall Picture of the Training Dynamics

Winners-emergence

(c) z,; () grows faster with larger P(l|m, n)

é'vl|7’11
A . . _ Cia®
Seq class Theorem 3 Relative gain 7,7, (t) = D —lhasa
(m,ny) close form:
i N 7”1/1’|n(t) = 7”1/1’|n(0))(z(t)
! _ e " If Iy is the dominant token: 17, /1, (0) > 0 forall I # [,
then

Seq class
(m» le) 2

v ezfnlo (0)By(t) < Xlo (t) < eZBn(t)

Clin,

where B,,(t) = 0 monotonously increases, B,(0) = 0

Overall Picture of the Training Dynamics

Winners-emergence

Cl|n1

Seq class
(m,ny)

Seq class
(m» le)

A

/

Contextual
Sparsity

"/

(query-dependent)

v

Cl|n2

L

»
»

(c) z,; () grows faster with larger P(l|m, n)

aﬁn(t)

512'|n(t) — 1 hasa

Theorem 3 Relative gain 7,7, (t) =

close form:

rl/l’ln(t) = Tl/l’|n(0))(l(t)

If Iy is the dominant token: 17, /1, (0) > 0 forall I # [,
then

ezfr%lo (0)Bn(t) < X1, (t) < e2Bn(t)

where B,,(t) = 0 monotonously increases, B,(0) = 0

Overall Picture of the Training Dynamics

Attention frozen

Cl|n1

A

Seq class
(m, nl)

Seq class
(m' le)

v

Cl|n2

facebook Artificial Intelligence

= -

»
»

Theorem 4 When t — +o0,

Mnyt
B.(t) ~ In CO+2K21n2("Y)
Ny K

Attention scanning:
When training starts, B,,(t) = O(Int)

Attention snapping:

Whent =ty =0 (ZKlnM

), B, (t) = O0(Inlnt)

(1) n, and ny are large, B, (t) is large and attention is sparse

(2) Fixing n,,, large ny leads to slightly small B,,(t) and
denser attention

Overall Picture of the Training Dynamics

Winners-emergence

é'vl|n
. (a) z,,;; < 0, for common token [
Seq class
(m,nl)
u (b) z;,,; > 0, for distinct token [
Is |
L

Seq class
(m!nZ)

Cl|n2

facebook Artificial Intelligence

Overall Picture of the Training Dynamics

Winners-emergence

6l|n
. (a) z,,;; < 0, for common token [
Seq class
(minl)
u (b) z,,,; > 0, for distinct token [
ii — - (c) z,,,; (t) grows faster with

Seq class ! larger P(l |m; Tl)
(mJnZ)

5zi'nz Attention looks for discriminative tokens that

frequently co-occur with the query.

facebook Artificial Intelligence

Overall Picture of the Training Dynamics

Winners-emergence

(c) z,; () grows faster with larger P(l|m, n)

é'vl|7’11
A . . _ Cia®
Seq class Theorem 3 Relative gain 7,7, (t) = D —lhasa
(m,ny) close form:
i N 7”1/1’|n(t) = 7”1/1’|n(0))(z(t)
! _ e " If Iy is the dominant token: 17, /1, (0) > 0 forall I # [,
then

Seq class
(m» le) 2

v ezfnlo (0)By(t) < Xlo (t) < eZBn(t)

Clin,

where B,,(t) = 0 monotonously increases, B,(0) = 0

Overall Picture of the Training Dynamics

Winners-emergence

Cl|n1

Seq class
(m,ny)

Seq class
(m» le)

A

/

Contextual
Sparsity

"/

(query-dependent)

v

Cl|n2

L

»
»

(c) z,; () grows faster with larger P(l|m, n)

aﬁn(t)

512'|n(t) — 1 hasa

Theorem 3 Relative gain 7,7, (t) =

close form:

rl/l’ln(t) = Tl/l’|n(0))(l(t)

If Iy is the dominant token: 17, /1, (0) > 0 forall I # [,
then

ezfr%lo (0)Bn(t) < X1, (t) < e2Bn(t)

where B,,(t) = 0 monotonously increases, B,(0) = 0

Overall Picture of the Training Dynamics

Attention frozen

Cl|n1

A

Seq class
(m, nl)

Seq class
(m' le)

v

Cl|n2

facebook Artificial Intelligence

= -

»
»

Theorem 4 When t — +o0,

Mnyt
B.(t) ~ In CO+2K21n2("Y)
Ny K

Attention scanning:
When training starts, B,,(t) = O(Int)

Attention snapping:

Whent =ty =0 (ZKlnM

), B, (t) = O0(Inlnt)

(1) n, and ny are large, B, (t) is large and attention is sparse

(2) Fixing n,,, large ny leads to slightly small B,,(t) and
denser attention

Simple Real-world Experiments

iter-0 iter-500 iter-1000 iter-1500

o

10 20 30

WikiText2
(original parameterization)

iter-500 iter-1000 iter-1500

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Figure 7: Attention patterns in the lowest self-attention layer for 1-layer (top) and 3-layer (bottom) Trans-
former trained on WikiText2 using SGD (learning rate is 5). Attention becomes sparse over training.

Further study of sparse attention
- Deja Vu, H20 and StreamingLLM

[Z. Liu et al, Deja vu: Contextual sparsity for efficient LLMs at inference time, ICML 23 (oral)]
[Z. Zhang et al, H20: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models, NeurlPS’23]
[G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]

Follow-up works

* Scan & Snap has Multiple Assumptions
* No positional encoding
* Sequence length T — 40
* Learning rate of decoder Y larger than self-attention layer Z (ny > nyz)
* Other technical assumptions

* How to get rid of them?
* Follow-up work: JoMA

JoMA: JOint Dynamics of MLP/Attention layers

Main Contributions:

1. Find a joint dynamics that connects
MLP with self-attention.
2. Understand self-attention behaviors for
Modified MLP linear/nonlinear activations.
attse‘;';on (lower layer) 3. Explain how data hierarchy is learned in
multi-layer Transformers.

(lower layer)

facebook Artificial Intel l"gence [Y. Tian et al, JOMA: Demystifying Multilayer Transformers via JOint Dynamics of MLP and Attention, ICLR’24]

JOMA Settings

hie = ¢(Wif)

f = UC'b + uq
Uc and u, are embeddings

b=o0(z;)ex/A

Self- ; b = xlequ

< ExpAttn: bl = xlequ

X

uThiS iS an app|e" \ LinearAttn: bl - leql

facebook Artificial Intelligence

JoMA Dynamics

Theorem 1 (JoMA). Let vy, := Ug wy,, then the dynamics of Eqn.[$ satisfies the invariants:

e Linear attention. The dynamics satisfies z2 (t) = ., vi(t) + c.

e Ezp attention. The dynamics satisfies zm(t) = 3 > 1 vi(t) + c.

e Softmax attention. If b, := E,,.[b] is a constant over time and
IElq:m 1> gr B D] = b Eqy—m [D 1 gn b)), then the dynamics satisfies zm(t) =
5 2k VR (t) — k() [|30m + c.

Under zero-initialization (wg(0) =0, 2,,(0) = 0), then the time-independent constant c = 0.

There is residual connection.
Joint dynamics works for any learning rates between self-attention and MLP layer.

No assumption on the data distribution.

facebook Artificial Intelligence

Implication of Theorem 1

(lower layer)

Modified MLP
Key idea: folding self-attention into MLP (lower layer)

If- '
—> A Transformer block becomes a modified MLP ScaReRton

Linear case (p =1d,K = 1) Nonlinear case (¢ nonlinear, K = 1)

—— component0 L 15 |4
componentl

—— component2 L3

—— component3 L 1.0

Vo(t)
v(t)

—— component1 1
e oo

—— component 2
—— component 3
0 500 1000 1500 2000
Number of MiniBatches

0 1000 2000 3000 4000 5000
#iterations

Most salient feature takes all
(Attention becomes sparser)

|
|
|
|
|
|
I
0.5 | —— component 0
|
|
|
|
| Most salient feature grows, and others catch up
[(Attention becomes sparser and denser)
|

Saliency is defined as A;,,, = E[g|l, m] - P[l|m] Ay, ~ 0: Common tokens

f f |A;n | large: Distinct tokens

i o : Discriminancy CoOccurrence
facebook Artificial Intelligence

Linear

2 Modified

JoOMA for Linear Activation b= Ao e (2] T

(lower layer)

Theorem 2

erf(v;(t)/2) erf(v;(t)/2)
W = _
€ can prove A, A erf(x) = \/_j de € [-1,1]

Only the most salient token [* = argmax |Ay,;,| of v goes to +

other components stay finite.
Attention becomes sparser

_ V(t) initialization V(t) after convergence (Consistent with Scan&Snap)
S 0.02 1.5 —— component0 L 1.5
w0 . .
5 1.0 ——— componentl
9 .
S 0.01 —— component2
§ 0.5 —— component3 L 1.0
£ 0.00 =
b 0.0 S
5
S -0.01 -0.5 - 0.5
kS
@ —-0.02 -1.0
E

- 0.0
e —-0.03 1.5 :

0 500 1000 1500 2000
Number of MiniBatches

facebook Artificial Intelli gence [Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurlPS’23]

What it we have more nodes (K > 1)?

*V = UMW € RM*K and the dynamics becomes

.1 VoV
V= Zdlag (exp(>) 1) A A=1[A A, ..., Akl A, = E[gyx]

We can prove that I/ gradually becomes low rank
* The growth rate of each row of V' varies widely.

VoV : i -
Due to exp (T)’ the weight gradient V can be even more low-rank

How the Weight Rank Changes over time?

Consider the Entire Training Trajectory ...

/

/ fine-tuning

pre-training \

——————————————— :—Q———————-————————————————————-———————————————————————————————————————»
O

How the Weight Rank Changes over time?

Beginning of Training: Weight subspace changes a lot

\ I\
\
\ ; .
\ /][fT - W high rank
\ g (due to random
\ / initialization)
GIIHIN
""""""" O\L~~~_*

facebook Artificial Intelligence

How the Weight Rank Changes over time?

Mid/End of Training: Weight subspace changes little

A
1

W low rank

facebook Artificial Intelligence

Think about LoRA?

W high rank (due to random initialization)

' '
)|
\ /AT
v/
\ 7

LoRA does not work

facebook Artificial Intelligence

W low rank

Pretrained

Weights
W e Rdxd

i |
X |

LoRA (Low-rank Adaption)

LoRA can work

GalLore

low-rank weights = low-rank gradients

Algorithm 1: Gal.ore, PyTorch-like

Gt « —Vwop (W)

for weéght ig 2idel.%§rameters(): [ft% T == 0:
rad = wel .gra
3 originalgspage —> compact space ComPUte Pt — SVD(Gt) € R™"
lor_.grad = project (grad) R; « Pth {project}
update by Adam, Adafactor, etc. R’t (_p(Rt) {Adam in /OW-I’GI’)/(}
lor_update = update (lor_grad) ~ ~)
compact space —-> original space Gt(_Pth {pl’OjBCt—baCk}
update = project_back (lor_update) Wi <« We + rlét

weight.data += update

[J. Zhao et al, GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection, ICML 24 Oral]

Memory Saving in Galore

Weight Memory

Galore
(8-bit + per-layer)

—

Activation
Memory

Optimizer +
Gradient Memory

58 GB <24 GB

Reduce optimizer states and weight gradients, Achieve 82.5% mem reduction

facebook Artificial Intelligence

Convergence Analysis on Fixed Projection

For gradient in the following form
G =2 A; — 2 BiWC;
Let R = PTGQ be projected gradient (P and Q are fixed) then

IR¢llr < (1 —M)|[R¢—_41]l[F > O

1 ; ~ ~
Where M := =¥, min Amin(Bit) Amin(Cit) — La — LgLcD?
Bit = P{ Bi{(W,)P Cit = Qf C;(WpQ;

Does that mean it works? No... R; — 0 just means the gradient within the subspace vanishes.
How to continue optimization? Change the projection from time to time!

How often to change P?

GZGO P

Gy

PP'(G,) = G,

>

Consecutive gradients are similar

For every T iterations:
Compute and store P;= SVD(G,)
P, is the projection matrix.

No need to change P; every iteration!

Perplexity (1)

Training 130M models (d0de] = 768)

40
K\
30' X\
\
\
\;
Rank = 64 g_*_*-—""x—-—x-—-x
257 Rank = 128
Rank = 256
—-%= Rank=512
20 LR | L R R | LA L B | L L | T
Q Q O N QE Q¢

Update Frequency

Pre-training Results (LLaMA 7B) on C4

7B model trained on up to
150K steps and 19.7 B tokens

Mem | 40K 80K 120K 150K

8-bit GaLore | 18G | 1794 1539 1495 14.65
8-bit Adam 26G | 18.09 1547 14.83 14.61

Tokens (B) 5.2 10.5 15.7 19.7

C4 Dataset LLaMA-7B single RTX 4090
Pre-training - for the first time!

24 -
22 -
201
18
16 -

141

LLaMA-7B

8-bit AdamW
m—— 8_bit Gal.ore

5

10 15 20
Token Seen (Billions)

Nonlinear

2) Modified

JoMA for Nonlinear activation v=<u—v>oexp(”7 it

(lower layer)

facebook Artificial Intelligence

Modified

JoMA for Nonlinear activation ”) P

(lower layer)

Theorem 4

Salient components grow much faster than non-salient ones:

ConvergenceRate(j) exp(u7/2)
ConvergenceRate(k) exp(uz/2)

ConvergenceRate(j) := In1/6;(t)
5(0) =1 - v(0)/u;

facebook Artificial Intelligence

Modified

JoMA for Nonlinear activation ”) P

(lower layer)

Theorem 4

Salient components grow much faster than non-salient ones:

Colored line: dynamics of v(t). Dashed line: target p

ConvergenceRate(j) exp(u7/2)

5000

ConvergenceRate(k) exp(uz/2) ;. [4000

. - 3000

ConvergenceRate(j) := In1/6;(t) ” - 2000

6;(t) =1—v;(t)/u; 1-

i (1) () /1 Ilooo
01 : : . ; 0

0 2 4 6 8 #iterations

Sorted index of v components

facebook Artificial Intelligence

MLP
(lower layer)

2) Modified

JoMA for Nonlinear activation ﬁ=<u-v)oexp(‘%

How the entropy of attention changes over time?

Entropy changes over time

2.25 - \
Colored line: dynamics of v(t). Dashed line: target ;15000 5 00 - AttentiOn becomes sparser
;. 4000 =) and then denser!
2 1.75 -
3000 >
=) °
2000 = 1.50 A
1 = “bounce back”
1000 Q
1.25 A
01, 0
0 2 4 6 8
Sorted index of v components 100 n
0 1000 2000 3000 4000 5000
#iteration

facebook Artificial Intelligence

Real-world Experiments

Layers: 1, val_loss: 5.357 Layers: 2, val_loss: 5.255 Layers: 5, val_loss: 5.169 4 Layers: 10, val_loss: 5.110
2.50 A — layer0 i —— layer0
> layerl
§2.251 1 3
<2.00- |
Wikitext2 §1.75] | ’
C
() 4
g 1.50 1
1.251
1.00 = - T y T - - T T T - y T - T 0 T - T
0 10 20 30 40 50 0 10 20 30 40 50 0 20 40 0 20 40
Minibatch (k) Minibatch (k) Minibatch (k) Minibatch (k)
Layers: 1, val_loss: 5.047 Layers: 2, val_loss: 4.912 Layers: 5, val _loss: 4.762 4 Layers: 10, val_loss: 4.679
2.5 — layer0
é | 3
o
£ 2.01 '
w
oy - c 2
Wikitext103 S \
C 1 5 \‘\v‘\
8 “‘.t‘”
< — layer0 1 %
1.0 layerl
0 50 100 150 200 0 50 100 150 200 0 100 200 0 100 200
Minibatch (k) Minibatch (k) Minibatch (k) Minibatch (k)

facebook Artificial Intelligence

Why is this “bouncing back” property useful?

It seems that it only slows down the training??

Not useful in 1-layer, but useful in multiple Transformer layers!

facebook Artificial Intelligence

Data Hierarchy & Multilayer Transtormer

Class label
(observed)

Latent binary
variables .
(not observed) i

Tokens
(observed)

Strong attention

Weak attention

Data Hierarchy & Multilayer Transtormer

Class label
(observed)

Latent binary !
variables .
(not observed) i

Tokens
(observed)

Strong attention

Weak attention

Theorem 5

H
Pl ~]1——
lm] ~ 1 -

H: height of the common latent
ancestor (CLA) of [& m

L: total height of the hierarchy

Deep Latent Distribution

Q

Strong Attention

Yo

CLA(l', m)

Weak Attention

CLA(l',m")

CLA(l,m)

Layers: 2, val_loss: 5.255

— layer0
layerl

pa—

0 10 20 30 40 50
Minibatch (k)
Layers: 2, val_loss: 4.912

— layer0
layerl

0 50

100 150 200

Minibatch (k)

Learning the current hierarchical structure by

facebook Artificial Intelligence

Layers: 10, val _loss: 5.110

0 20 40
Minibatch (k)
Layers: 10, val_loss: 4.679

0 100
Minibatch (k)

200

slowing down the association of tokens that are not directly correlated

Shallow Latent Distribution

g

Strong Attention

Weak Attention

Hierarchy-agnostic Learning

Self-attention enables Hierarchy-agnostic Learning!

\erification of Hierarchical Intuitions

C =20, Nep = 2 C =20, Nop =3 C =30, Nep = 2
(No, N1) (10, 20) (20, 30) (10, 20) (20, 30) (10, 20) (20, 30)
NCorr (s =0) | 0.99+0.01 | 0.97+0.02 | 1.00+0.00 | 0.96+0.02 | 0.99 +0.01 | 0.94 =+ 0.04
NCorr (s =1) | 0.81+£0.05 | 0.80+0.05 | 0.69+0.05 | 0.68£0.04 | 0.73+0.08 | 0.74 £ 0.03

C =30 Now =3 C =50, Nep = 2 C =50, Non = 3
(No, N1) (10, 20) (20, 30) (10, 20) (20, 30) (10, 20) (20, 30)
NCorr (s =0) | 0.99+£0.01 | 0.95+0.03 | 0.99+0.01 | 0.95=+0.03 | 0.99+0.01 | 0.95 = 0.03
NCorr (s =1) | 0.72+£0.04 | 0.66+0.02 | 0.58 +£0.02 | 0.55=+0.01 | 0.64+0.02 | 0.61=+0.04

Table 1: Normalized correlation between the latents and their best matched hidden node in MLP
of the same layer. All experiments are run with 5 random seeds.

Take away messages

» Architecture v/ training dynamics v

* Nonlinearity is not formidable!
* Transformer can be analyzed following gradient descent rules

* Property of self-attention
* Attention becomes sparse over training
* Inductive bias

* Favor the learning of strong co-occurred tokens
* Deter the learning of weakly co-occurred tokens, avoiding spurious correlation.

* Key insights lead to broad applications

facebook Artificial Intelligence

Thanks!

facebook Artificial Intelligence

