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What does the future look like?

More data

More compute

Larger models

Are we going to blindly believe in scaling laws?



Black-box versus White-box

Black box White box



Black-box versus White-box

Black box White box



Three Angles

Understanding how
Deep Models work

Expressibility

Optimization

Generalization

“Neural Network is a universal approximator”
“Deep Models can express functions more efficiently than shallow ones”

“Gradient vanishing/exploding”
“Gradient Descent might get stuck at saddle point / local minima”
“Can GD/SGD go to global optima? How fast?”

“Does zero training error often lead to overfitting?”
“More parameters might lead to overfitting.”

+ -
+-
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Which path should we take?



Three Angles – What to pick?

Expressibility

Optimization

Generalization

+ -
+- Architecture ✓   

training dynamics ✘

Architecture ✘   

training dynamics ✓ 

Architecture ✘   
training dynamics ✘

How about 

Architecture ✓
training dynamics ✓ 



Start From the First Principle

• Training follows Gradient and its variants (SGD, Adams, etc) 

• First principle à Understand the behavior of the neural networks by 
checking the gradient dynamics induced by the neural architectures.

• Sounds complicated.. Is that possible? Yes

𝒘̇ ≔
d𝒘
d𝑡

= −∇𝒘𝐽(𝒘)

Architecture ✓
training dynamics ✓ 



Transformers

Attention mechanism

[A. Vaswani et al, Attention is all you need, NeurIPS’17]

Key 𝐾

Query 𝑄



Understanding Attention in 1-layer Setting

Contextual tokens

𝑥# 𝑥$ 𝑥%&# 𝑥% 𝑥%'#

Last/query token Next token

Self-attention

Normalization

Decoding & Softmax

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurIPS’23]

Different next token = 
Different classes in classification



Reparameterization

• Parameters 𝑊! ,𝑊" ,𝑊# , 𝑈 makes the dynamics complicated. 

• Reparameterize the problem with independent variable 𝑌 and 𝑍
• 𝑌 = 𝑈𝑊(

%𝑈% (Merging the embedding with weight matrix)
• 𝑍 = 𝑈𝑊)𝑊*

%𝑈% (pairwise logits of self-attention matrix)

• Then the dynamics becomes easier to analyze

Y

Z

𝒇!

normalize

Data

Class Prediction



Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛")	

Seq class
(𝑚, 𝑛#)	

Distinct 
Token

Common 
Token

𝑐̃2|4!

𝑐̃2|4"

At initialization

Common tokens: Tokens that appear in multiple classes.
Distinct tokens: Tokens that only appear in a single class. 

𝑐̃2|4! : = ℙ 𝑙 𝑚, 𝑛# exp(𝑧52)

Initial condition: 𝑧52 0 = 0

Co-occurrence probability 

Pairwise attention score 
between token 𝑙 and query 𝑚



Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛")	

Seq class
(𝑚, 𝑛#)	

𝑐̃2|4!

𝑐̃2|4"

Common Token Suppression

(a) ̇𝑧$% < 0, for common token 𝑙



Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛")	

Seq class
(𝑚, 𝑛#)	

𝑐̃2|4!

𝑐̃2|4"

(a) ̇𝑧$% < 0, for common token 𝑙

(b) ̇𝑧$% > 0, for distinct token 𝑙

Winners-emergence

Learnable TF-IDF (Term Frequency, 
Inverse Document Frequency)



Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛")	

Seq class
(𝑚, 𝑛#)	

𝑐̃2|4!

𝑐̃2|4"

Winners-emergence

(a) ̇𝑧$% < 0, for common token 𝑙

(b) ̇𝑧$% > 0, for distinct token 𝑙

(c) 𝑧$%(𝑡) grows faster with 
larger ℙ 𝑙 𝑚, 𝑛

Attention looks for discriminative tokens that 
frequently co-occur with the query.
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Theorem 3 Relative gain 𝑟$/$!|! 𝑡 ≔
̃("|$
% )
̃("!|$
% )

− 1 has a 

close form:

𝑟2/2#|4 𝑡 = 𝑟2/2#|4 0 𝜒2(𝑡)

If 𝑙* is the dominant token: 𝑟$&/$|! 0 > 0 for all 𝑙 ≠ 𝑙* 
then
 

𝑒$@$%&
" (A)B$ C ≤	𝜒2&(𝑡) ≤ 𝑒$B$ C

where 𝐵! 𝑡 ≥ 0 monotonously increases, 𝐵! 0 = 0

(c) 𝑧52(𝑡) grows faster with larger ℙ 𝑙 𝑚, 𝑛
Winners-emergence
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Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛")	

Seq class
(𝑚, 𝑛#)	

𝑐̃2|4!

𝑐̃2|4"

Attention frozen
Theorem 4 When 𝑡 → +∞, 

𝐵! 𝑡 ∼ ln 𝐶" + 2𝐾
𝜂#
𝜂$
ln%

𝑀𝜂$𝑡
𝐾

Attention scanning: 
          When training starts, 𝐵! 𝑡 = 𝑂(ln 𝑡)

Attention snapping: 
           When 𝑡 ≥ 𝑡" = 𝑂 %& '()

*!
, 𝐵! 𝑡 = 𝑂(ln ln 𝑡)

(1) 𝜂+ and 𝜂, are large, 𝐵! 𝑡  is large and attention is sparse

(2) Fixing 𝜂+, large 𝜂, leads to slightly small 𝐵! 𝑡  and 
denser attention 

Contextual 
Sparsity
(query-dependent)
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Simple Real-world Experiments

WikiText2 
(original parameterization)

Further study of sparse attention 
    à Deja Vu, H2O and StreamingLLM

[Z. Liu et al, Deja vu: Contextual sparsity for efficient LLMs at inference time, ICML’23 (oral)]
[Z. Zhang et al, H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models, NeurIPS’23]
[G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]



Follow-up works 

• Scan & Snap has Multiple Assumptions
• No positional encoding
• Sequence length 𝑇 → +∞
• Learning rate of decoder 𝑌 larger than self-attention layer Z (𝜂H ≫ 𝜂I) 
• Other technical assumptions 

• How to get rid of them?
• Follow-up work: JoMA



JoMA: JOint Dynamics of MLP/Attention layers

[Y. Tian et al, JoMA: Demystifying Multilayer Transformers via JOint Dynamics of MLP and Attention, ICLR’24]

Modified MLP 
(lower layer)

Activation 𝜙

MLP 
(lower layer)

Self-
attention

Activation 𝜙 

JoMA

Main Contributions:

1. Find a joint dynamics that connects 
     MLP with self-attention. 
2. Understand self-attention behaviors for 
     linear/nonlinear activations. 
3. Explain how data hierarchy is learned in 
     multi-layer Transformers. 



JoMA Settings
ℎ+ = 𝜙(𝒘+

,𝒇)

𝒇 = 𝑈-𝒃 + 𝒖. 
        𝑈- and 𝒖.	are embeddings

𝒃 = 𝜎 𝒛. ∘ 𝒙/𝐴
Self-

attention

Nonlinearity 𝜙(⋅)

MLP 
(lower layer)

𝒙

𝒖-
𝑥-  

𝒃

ExpAttn: 𝑏/ = 𝑥/𝑒#"#

SoftmaxAttn: 𝑏/ =
0#1

$"#

∑# 0#1
$"#

LinearAttn: 𝑏/ = 𝑥/𝑧./

𝒇

“This is an apple”

𝒘.
/𝒇

ℎ.



JoMA Dynamics

There is residual connection.
Joint dynamics works for any learning rates between self-attention and MLP layer.
No assumption on the data distribution. 



Linear case (𝜙 = Id, 𝐾 = 1)

Key idea: folding self-attention into MLP 
            à A Transformer block becomes a modified MLP

Modified MLP 
(lower layer)

Activation 𝜙

MLP 
(lower layer)

Self-attention

Activation 𝜙 
JoMA

Nonlinear case (𝜙 nonlinear, 𝐾 = 1)

Most salient feature takes all
(Attention becomes sparser) 

Most salient feature grows, and others catch up
(Attention becomes sparser and denser)

Saliency is defined as Δ/3 = 𝔼 𝑔 𝑙,𝑚 ⋅ ℙ 𝑙 𝑚

𝐃𝐢𝐬𝐜𝐫𝐢𝐦𝐢𝐧𝐚𝐧𝐜𝐲 𝐂𝐨𝐎𝐜𝐜𝐮𝐫𝐫𝐞𝐧𝐜𝐞

Implication of Theorem 1

Δ$0 ≈ 0: Common tokens
Δ$0  large: Distinct tokens



JoMA for Linear Activation

Attention becomes sparser
(Consistent with Scan&Snap)

Modified 
MLP 

(lower layer)

Linear

𝒗̇ = 𝚫3 ∘ exp
𝒗%

2

erf 𝑣$(𝑡)/2
Δ$0

=
erf 𝑣$!(𝑡)/2

Δ$!0
We can prove erf 𝑥 =

2
𝜋
=
!

"
𝑒#$!d𝑡 ∈ [−1,1]

Only the most salient token 𝑙∗ = argmax	|Δ&'| of 𝒗 goes to +∞ 
other components stay finite.

Theorem 2

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurIPS’23]



What if we have more nodes (𝐾	 > 	1)?

• 𝑉	 = 	𝑈XY𝑊 ∈ ℝZ!×!  and the dynamics becomes

𝑉̇ =
1
𝐴
diag exp

𝑉 ∘ 𝑉
2

𝟏 Δ Δ = Δ", Δ#, … , Δ1 , 	 Δ. = 𝔼[𝑔.𝒙]

We can prove that 𝑉 gradually becomes low rank 
• The growth rate of each row of 𝑉 varies widely. 

Due to exp (∘(
$

, the weight gradient 𝑽̇ can be even more low-rank

𝑉(𝑡) →



O

pre-training

fine-tuning

How the Weight Rank Changes over time?
Consider the Entire Training Trajectory …



O

Beginning of Training: Weight subspace changes a lot

How the Weight Rank Changes over time?

𝑊 high rank 
(due to random 
initialization)



O

Mid/End of Training: Weight subspace changes little

How the Weight Rank Changes over time?

𝑊 low rank 



LoRA does not work LoRA can work

O O

Think about LoRA?

LoRA (Low-rank Adaption)𝑊 high rank (due to random initialization) 𝑊 low rank 



GaLore

𝐺4 ← −∇5𝜙(𝑊4)
If	t	%	T	==	0:	
								Compute	𝑃4 = SVD 𝐺4 ∈ ℝ3×7	
𝑅4 ← 𝑃48𝐺4     {project}
z𝑅4 ← 𝜌 𝑅4     {Adam in low-rank}
z𝐺4 ← 𝑃4 z𝑅4       {project-back}
𝑊49: ← 𝑊4 + 𝜂 z𝐺4

[J. Zhao et al, GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection, ICML’24 Oral]

low-rank weights à low-rank gradients



Reduce optimizer states and weight gradients, Achieve 82.5% mem reduction

Weight Memory

Activation 
Memory

Optimizer + 
Gradient Memory

GaLore 
(8-bit + per-layer)

58 GB < 24 GB

Memory Saving in GaLore



𝐺 = ∑b𝐴b −∑b𝐵b𝑊𝐶b 

For gradient in the following form

Let 𝑅 = 𝑃,𝐺𝑄 be projected gradient (P and Q are fixed) then  

𝑹𝒕 𝑭 ≤ 𝟏 − 𝜼𝑴 𝑹𝒕�𝟏 𝑭 → 𝟎

Where 𝑀 ≔ :
;
∑<min4 𝜆=>( �𝐵<4 𝜆=>( �𝐶<4 − 𝐿? − 𝐿@𝐿-𝐷%

�𝐵<4 = 𝑃48𝐵< 𝑊4 𝑃4 	 �𝐶<4= 𝑄48𝐶< 𝑊4 𝑄4

Does that mean it works? No… 𝑅4 → 0 just means the gradient within the subspace vanishes.
How to continue optimization? Change the projection from time to time!

Convergence Analysis on Fixed Projection



For	every	T	iterations:
	Compute	and	store	𝑷𝒕= SVD 𝑮𝒕
	𝑷𝒕	is	the	projection	matrix.	

𝑮𝟎 

𝑮𝟏 

𝑮𝟐 𝑷

𝑷𝑷𝑻 𝑮𝒕 ≈ 𝑮𝒕

No	need	to	change	 𝑷𝒕	every	iteration!

Consecutive gradients are similar

Training 130M models (𝑑=ABC' = 768)
How often to change 𝑃"?



7B	model	trained	on	up	to	
150K	steps	and	19.7	B	tokens

C4 Dataset LLaMA-7B single RTX 4090

Pre-training - for the first time!

Pre-training Results (LLaMA 7B) on C4



JoMA for Nonlinear activation Modified 
MLP 

(lower layer)

Nonlinear

𝒗̇ = 𝝁 − 𝒗 ∘ exp
𝒗%

2



JoMA for Nonlinear activation Modified 
MLP 

(lower layer)

Nonlinear

𝒗̇ = 𝝁 − 𝒗 ∘ exp
𝒗%

2

Salient components grow much faster than non-salient ones:

ConvergenceRate(𝑗)
ConvergenceRate(𝑘)

~
exp 𝜇D%/2
exp 𝜇+%/2

ConvergenceRate 𝑗 ≔ 	 ln 1/𝛿D(𝑡)
𝛿D 𝑡 ≔ 1 − 𝑣D(𝑡)/𝜇D

Theorem 4



JoMA for Nonlinear activation Modified 
MLP 

(lower layer)

Nonlinear

𝒗̇ = 𝝁 − 𝒗 ∘ exp
𝒗%

2

Salient components grow much faster than non-salient ones:

ConvergenceRate(𝑗)
ConvergenceRate(𝑘)

~
exp 𝜇D%/2
exp 𝜇+%/2

ConvergenceRate 𝑗 ≔ 	 ln 1/𝛿D(𝑡)
𝛿D 𝑡 ≔ 1 − 𝑣D(𝑡)/𝜇D

Theorem 4

#iterations



JoMA for Nonlinear activation Modified 
MLP 

(lower layer)

Nonlinear

𝒗̇ = 𝝁 − 𝒗 ∘ exp
𝒗%

2

Attention becomes sparser 
and then denser!

“bounce back”

How the entropy of attention changes over time?



Real-world Experiments

Wikitext2

Wikitext103



Why is this “bouncing back” property useful? 

It seems that it only slows down the training?? 

Not useful in 1-layer, but useful in multiple Transformer layers!



Data Hierarchy & Multilayer Transformer

𝑙′

𝑦*

𝑙

𝑦2
ℙ[𝑚|𝑧(]

𝑦3

𝑚

Class label 
(observed)

Tokens 
(observed)

Latent binary 
variables 
(not observed)

Strong attention

Weak attention

CLA(m, l)

CLA(m, l’)



Data Hierarchy & Multilayer Transformer

𝑙′

𝑦*

𝑙

𝑦2
ℙ[𝑚|𝑧(]

𝑦3

𝑚

Class label 
(observed)

Tokens 
(observed)

Latent binary 
variables 
(not observed)

Strong attention

Weak attention

ℙ 𝑙 𝑚 ≈ 1 −
𝐻
𝐿

𝐻: height of the common latent 
     ancestor (CLA) of 𝑙 & 𝑚

𝐿: total height of the hierarchy

CLA(m, l)

CLA(m, l’)
Theorem 5



Deep Latent Distribution

𝑙′ 𝑚′

𝑦f#  

𝑦A

𝑙

𝑦f

𝑦g

𝑚

CLA(𝑙’, 𝑚)

CLA(𝑙,𝑚)CLA(𝑙′, 𝑚′)

Strong Attention

Weak Attention

Learning the current hierarchical structure by 
slowing down the association of tokens that are not directly correlated



Shallow Latent Distribution

𝑦g

𝑙′ 𝑚′ 𝑙 𝑚

𝑦A 

Strong Attention

Weak Attention

𝑙′ 𝑚′

𝑦f#  

𝑦A

𝑙

𝑦f

𝑦g

𝑚

CLA(𝑙’, 𝑚)

CLA(𝑙,𝑚)CLA(𝑙′, 𝑚′)



Hierarchy-agnostic Learning

𝑦g

𝑙′ 𝑚′ 𝑙 𝑚

𝑦A 

Strong Attention

Weak Attention

𝑙′ 𝑚′

𝑦f#  

𝑦A

𝑙

𝑦f

𝑦g

𝑚

CLA(𝑙’, 𝑚)

CLA(𝑙,𝑚)CLA(𝑙′, 𝑚′) Self-attention enables Hierarchy-agnostic Learning!



Verification of Hierarchical Intuitions



Take away messages

• Architecture ✓ training dynamics ✓

• Nonlinearity is not formidable!
• Transformer can be analyzed following gradient descent rules 

• Property of self-attention
• Attention becomes sparse over training
• Inductive bias 

• Favor the learning of strong co-occurred tokens
• Deter the learning of weakly co-occurred tokens, avoiding spurious correlation. 

• Key insights lead to broad applications



Thanks!


