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Large Language Models (LLMs)
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Conversational Al

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

A: The answer is 27. x

Content Generation

Chain of Thought Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?
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Transformers
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[A. Vaswani et al, Attention is all you need, NeurlPS’17]

Key K

Attention mechanism



How does Transtformer work?

This is an apple “Some Nonlinear Transformation”
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Black-box versus White-box

Black box White box
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Three Angles

Understanding how

= =

Expressibility . 4

“Neural Network is a universal approximator”
“Deep Models can express functions more efficiently than shallow ones”

Deep Models work

Optimization

“Gradient vanishing/exploding” >
“Gradient Descent might get stuck at saddle pomt / local minima”
“Can GD/SGD go to global optima? How fast?”

Generalization

“Does zero training error often lead to overflttmg?”
“More parameters might lead to overfitting.”



Three Angles

Understanding how

= =

Expressibility . 4

“Neural Network is a universal approximator”
“Deep Models can express functions more efficiently than shallow ones”

Deep Models work

Which path should we take?

Optimization

“Gradient vanishing/exploding” >
“Gradient Descent might get stuck at saddle pomt / local minima”
“Can GD/SGD go to global optima? How fast?”

Generalization

“Does zero training error often lead to overflttmg?”
“More parameters might lead to overfitting.”



Rethinking Generalization

model # params random crop weight decay train accuracy test accuracy
yes yes 100.0 89.05
. yes no 100.0 89.31
5 Inception 1,649,402 o yes 100.0 86.03
' ' ' ‘ - no no 100.0 85.75
m—& true labels (fitting random labels) no no |_100.0 9.78 |
2.0 o=@ random labels |- Inception w/o 1.649.402 no yes 100.0 83.00
. BatchNorm T no no 100.0 82.00
v »— shuffled pixels (fitting random labels) no no { 100.0 10.12 |
O p
= 15k random plxels . yes yes 99.90 8122
Q . yes no 99.82 79.66
g gaussian Alexnet 1,387,786 o yes 100.0 7736
GL) 1.0 no no 100.0 76.07
S (fitting random labels) no no [ 99.82 9.86 |
©
no yes 100.0 53.35
0.5 MEP33IZ  LISS;1T8 no no 100.0 52.39
(fitting random labels) no no { 100.0 10.48 |
0.0 » MLP 1x512 1,209,866 no yes e s
(fitting random labels) no no | 99.34 10.61 |

thousand steps

(a) learning curves Generalization bound failed: Test Error < Train Error+?77?

[C. Zhang et al, Understanding deep learning requires rethinking generalization, ICLR 2017]



Inductive Bias Really Matters

A self-supervised contrastive learning example

DA
\ /augs A D) . PS
([ ) o o
o
o o o ©
SSL Pertraining loss doesn’t
| I o * . really reflect downstream loss
o
o 0 g2 °
o o ®

Pretraining: L_,,.(g) ~ L....(f)
Downstream: L (g) > L (f)

[N. Saunshi et al, Understanding Contrastive Learning Requires Incorporating Inductive Biases, ICML 2022]



Downstream accuracy

Inductive Bias Really Matters

Boolean hypercube example

100 A linear ’ perfect rep f’
90 - T !
o Representation Contrastive loss | Accuracy (%)
o*
30 £~ 3f (perfect) 4.939 100
dg (spurious) 4.939 50
70 - % MLP + Adam 5.039 £ 0.001 74.1 £4.3
2-layer MLP MLP + Adam + wd | 5.040 £ 0.002 | 89.5+ 4.9
— SGD Linear 5.134 £ 0.002 | 99.5 + 0.1
60
—— Adam
50 - Adam+wd spurious rep g ¢
5.20 5.15 5.10 5.05 5.00 4.95

Contrastive loss

[N. Saunshi et al, Understanding Contrastive Learning Requires Incorporating Inductive Biases, ICML 2022]



L esson learned?

Generalization

Expressibility . 4

Optimization

Architecture X
training dynamics X

Architecture \/
training dynamics X

Architecture X
training dynamics v

How about

Architecture v/
training dynamics v




Start From the First Principle

* Training follows Gradient and its variants (SGD, Adams, etc)

_dw_ v
_E__ w](w)

* First principle = Understand the behavior of the neural networks by
checking the gradient dynamics induced by the neural architectures.

w :

* Sounds complicated.. Is that possible? Yes ,
Architecture v/

training dynamics v
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Understanding Attention in 1-layer Setting

U= [uy,uy, .. uy]": token embedding matrix

Self-attention

Decoding & Softmax T-1
4 P
Ur = Z thuxt = UTXTbT
t=1

Normalization

?
Self-attention ‘ | eXP(’UwIT WQWI—(art/\/C_i)
? ‘ T th — T-1 T T \/’
e @ @ e
e o o XT-1
Contextual tokens Last/query token  Next token

Normalized version iy = UTLN(XThy)

Objective:

T ~ T ~
max =Ep|u Wy —lo exp(u; Wyu
WK’WQ’WV’U] p Wy, , Wyur g El p(u; Wyr)

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurlPS’23]



Reparameterization

* Parameters Wy, Wy, Wy, U makes the dynamics complicated.

* Reparameterize the problem with independent variable Y and Z
« Y =UW}UT
/= UWQW,?UT (pairwise logits of self-attention matrix)

* Then the dynamics becomes easier to analyze



Major Assumptions

* No positional encoding

* Sequence length T — +0
* Learning rate of decoder Y larger than self-attention layer Z (ny > n,)
* Other technical assumptions



Xe €E[M]for1 <t<T

Data Distribution e )

K<KM
Contextual tokens x; (1 <t <T —1)
r A -, Last token x; Next token x4
P(llmy,nq) nq

- -
n
Sequence 2

m;
v Ny
Distinct tokens: There exists unique n so that P(l|n) > 0 P(|m, 1) = P(|n) is the
Common tokens: There exists multiple n so that P(l|n) > 0 conditional probability of

token [ given last token x; = m
and xp,1 =n

Assumption: m = yY(n), i.e., no next token shared among different last tokens

Question: Given the data distribution, how does the self-attention layer behave?
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Overall Picture of the Training Dynamics

At initialization

Clin, Distinct
A Token

Seq class
(m,nq)

Common
Token

(m, le)

v

Cl|n2
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v

Seq class

Co-occurrence probability

¥
Clin,: = P(l|m,nq) exp(zm)

Initial condition: z,,,;;(0) = 0

Z,,: All logits of the contextual tokens
when attending to last token x; = m



Overall Picture of the Training Dynamics

Common Token Suppression

Cl|n1

Seq class
(m,nq)

Seq class
(m, le)

A

v

Clin,
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(a) z,,;; < 0, for common token [



Overall Picture of the Training Dynamics

Winners-emergence

Cl|n1

Seq class
(m,n,)

Seq class
(m, le)

A u

v

Cl|n2
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(a) z,,; < 0, for common token [

(b) z;,,; > 0, for distinct token [

Learnable TF-IDF (Term Frequency,
Inverse Document Frequency)



Overall Picture of the Training Dynamics

Winners-emergence

6l|n
. (a) z,,;; < 0, for common token [
Seq class
(minl)
u (b) z,,,; > 0, for distinct token [
ii — - (c) z,,,; (t) grows faster with

Seq class ! larger P(l |m; Tl)
(mJnZ)

5zi'nz Attention looks for discriminative tokens that

frequently co-occur with the query.
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Overall Picture of the Training Dynamics

Winners-emergence

(c) z,; () grows faster with larger P(l|m, n)

é'vl|7’11
A . . _ Cia®
Seq class Theorem 3 Relative gain 7,7, (t) = D —lhasa
(m,ny) close form:
i N 7”1/1’|n(t) = 7”1/1’|n(0))(z(t)
! _ e " If Iy is the dominant token: 17, /1, (0) > 0 forall I # [,
then

Seq class
(m» le) 2

v ezfnlo (0)By(t) < Xlo (t) < eZBn(t)

Clin,

where B,,(t) = 0 monotonously increases, B,(0) = 0



Overall Picture of the Training Dynamics

Winners-emergence

Cl|n1

Seq class
(m,ny)

Seq class
(m» le)

A

/

Contextual
Sparsity

"/

(query-dependent)

v

Cl|n2

L

»
»

(c) z,; () grows faster with larger P(l|m, n)

aﬁn(t)

512'|n(t) — 1 hasa

Theorem 3 Relative gain 7,7, (t) =

close form:

rl/l’ln(t) = Tl/l’|n(0))(l(t)

If Iy is the dominant token: 17, /1, (0) > 0 forall I # [,
then

ezfr%lo (0)Bn(t) < X1, (t) < e2Bn(t)

where B,,(t) = 0 monotonously increases, B,(0) = 0



Overall Picture of the Training Dynamics

Attention frozen

Cl|n1

A

Seq class
(m, nl)

Seq class
(m' le)

v

Cl|n2
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Theorem 4 When t — +o0,

Mnyt
B.(t) ~ In CO+2K21n2( "Y)
Ny K

Attention scanning:
When training starts, B,,(t) = O(Int)

Attention snapping:

Whent =ty =0 (ZKlnM

), B, (t) = O0(Inlnt)

(1) n, and ny are large, B, (t) is large and attention is sparse

(2) Fixing n,,, large ny leads to slightly small B,,(t) and
denser attention



Overall Picture of the Training Dynamics

v=1.0,M=10000

. 1.6 1
Attention frozen
1.4 A
Cl|n1 1.2 1
A 1.0 4
Seq class
(m, nl) % 0.8 -
0.6
0.4 - '72=0-5' nY=05
— nNz=1.0,ny=1.0
. —3 _ 0.2 - — nz=2.0, f]y=20
= g — nz=4.0,ny=4.0
I - 0.0 A — nz=28.0,ny=28.0
Seq class 0 10 20 30 40 50
t
(m! le)
v Larger learning rate 1, leads to faster phase transition
Clin,

Nz Mnyt
B.(t) ~ 1 2k 12 2( )
L () n(Co + 0 n o )
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Simple Real-world Experiments

iter-0 iter-500 iter-1000 iter-1500

o

10 20 30

WikiText2
(original parameterization)

iter-500 iter-1000 iter-1500

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Figure 7: Attention patterns in the lowest self-attention layer for 1-layer (top) and 3-layer (bottom) Trans-
former trained on WikiText2 using SGD (learning rate is 5). Attention becomes sparse over training.

Further study of sparse attention
- Deja Vu, H20 and StreamingLLM

[Z. Liu et al, Deja vu: Contextual sparsity for efficient LLMs at inference time, ICML’23 (oral)]
[Z. Zhang et al, H20: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models, NeurlPS’'23]
[G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]



Deal with Reversal Curse

A->B B->A

n Who - Tom Crilse’s mothar? Q Who is Mary Lee Pfeiffer's son?

As of September 2021, there is no widely-
known information about a person named

Tom Cruise's mother is Mary Lee Pfeiffer.

Mary Lee Pfeiffer having a notable son.

Figure 1: Inconsistent knowledge in GPT-4. GPT-4 correctly gives the name of Tom Cruise’s
mother (left). Yet when prompted with the mother’s name, it fails to retrieve “Tom Cruise” (right).
We hypothesize this ordering effect is due to the Reversal Curse. Models trained on “A is B” (e.g.
“Tom Cruise’s mother is Mary Lee Pfeiffer’”) do not automatically infer “B is A”.

facebook Artificial Intelligence [L. Berglund et al, The Reversal Curse: LLMs trained on "A is B" fail to learn "B is A", ICLR 2024]



How to explain “Reversal Curse”?

Z = UWoWg UT pairwise logits of self- Z =
attention matrix,

is NOt symmetric ,
Z,,: All logits of the contextual tokens

when attending to last token x; = m

[H. Zhu et al, Towards a Theoretical Understanding of the 'Reversal Curse' via Training Dynamics, arXiv’'24]



You only learn what you see in the training set

Theorem 3 (Reversal curse). Assume we run SGD with batch size 1, and assume M > 100 and
W Lny <1. Lett 2 N%M denote the time step which also satisfies Int 2 In(NM/ny). For
training sequence (r1,x2,x3) € Dirgin at time t, we have

M —1
Poe) (z3|T1,72) > 1 — ; 2% 1
2(*5)

Mnyt
N

for some constant ¢ > 0, and for any test sequence (x1,x2,x3) € Diest that is not included the
training set Diygin, we have
1

pg(t)(w3|$1,fli2) < M

[H. Zhu et al, Towards a Theoretical Understanding of the 'Reversal Curse' via Training Dynamics, arXiv’'24]



“Chain-of-thoughts” reasoning

Theorem 4 (Necessity of chain-of-thought). Assume we run SGD with batch size 1, and assume

M > 100 and ﬁ Lny <1. Lett 2 N%LYM denote the time step which also satisfies Int 2>

In(NM/ny). For any test index i € Liest, we have

M -1 M—1
T Po)(Ci|B; —) > 1 —
2 (M)

Do) (Bil4s =) > 1 —

for some constant ¢ > 0 and

Po(t)(Cil 4 ~) <

[H. Zhu et al, Towards a Theoretical Understanding of the 'Reversal Curse' via Training Dynamics, arXiv’'24]



How to get rid of the assumptions?

* A few annoying assumptions in the analysis
* No residual connections
* No embedding vectors
* The decoder needs to learn faster than the self-attention (ny > ny,).

* Single layer analysis
* How to get rid of them?

* New research work: JoMA



JoMA: JOint Dynamics of MLP/Attention layers

Main Contributions:

1. Find a joint dynamics that connects
MLP with self-attention.
2. Understand self-attention behaviors for
Modified MLP linear/nonlinear activations.
attse‘;';on (lower layer) 3. Explain how data hierarchy is learned in
multi-layer Transformers.

(lower layer)

facebook Artificial Intel l"gence [Y. Tian et al, JOMA: Demystifying Multilayer Transformers via JOint Dynamics of MLP and Attention, ICLR’24]



JOMA Settings

hie = ¢(Wif)

f = UC'b + uq
Uc and u, are embeddings

b=o0(z;)ex/A

Self- ; b = xlequ

< ExpAttn: bl = xlequ

X

uThiS iS an app|e" \ LinearAttn: bl - leql

facebook Artificial Intelligence



Assumption (Orthogonal Embeddings [U¢, u

Cosine similarity between embedding vectors at different layers.

Pythia-70M; Layer: 6; Dim: 512 Pythia-160M; Layer: 12; Dim: 768 Pythia-410M; Layer: 24; Dim: 1024
0.065 5 0.044 0.038 4
10
0.060 1 00421 0.036 1 20
0.0407 8 0.034
> > > L
2 0.055 1 2 29
C T 0.038 4 o 15
e 32 Z 0.032 4
£ 0.050 E 0.036 1 6 £
[} w (4]
c —— c 0.034 o 2 0.030 4 10
2 0.045 1 == 2 2 4 2
O O 0.032 1 O 0.028 1
0.040 1 / 1 0.030 - 2 0,026 1 5
| 0.028 1
0.035 r v r r v . 0 v r v . v . 0 0.024 1y v r v r - 0
0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125
Minibatch (k) Minibatch (k) Minibatch (k)
Pythia-1B; Layer: 16; Dim: 2048 Pythia-1.4B; Layer: 24; Dim: 2048 Pythia-2.8B; Layer: 32; Dim: 2560
14 0.0375+ 0.0350 30
0008 12 0.0350 1 0.0325 1 25
> > 0.0325 4 > 0.0300
£ 10 = 15 T 20
£ 0.026 1 < 0.0300 S 0.0275 4
£ g8 £ €
? 0.024 1 » 0.0275 1 n | 15
2 . g 10 9 0.0250
8 0.022 2 0.0250 1 8 0.0225 10
4 0.0225 |
0.020 1 5 0.0200 .
2 0.0200 1 0.0175 1
A . . . . . . o 00173 . . . . . 0 0.0150 1= . . . . . 0
0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125
Minibatch (k) Minibatch (k) Minibatch (k)
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JoMA Dynamics

Theorem 1 (JoMA). Let vy, := Ug wy,, then the dynamics of Eqn.[$ satisfies the invariants:

e Linear attention. The dynamics satisfies z2 (t) = ., vi(t) + c.

e Ezp attention. The dynamics satisfies zm(t) = 3 > 1 vi(t) + c.

e Softmax attention. If b, := E,,.[b] is a constant over time and
IElq:m 1> gr B D] = b Eqy—m [D 1 gn b)), then the dynamics satisfies zm(t) =
5 2k VR (t) — k() [|30m + c.

Under zero-initialization (wg(0) =0, 2,,(0) = 0), then the time-independent constant c = 0.

There is residual connection.
Joint dynamics works for any learning rates between self-attention and MLP layer.

No assumption on the data distribution.
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Verification of JOMA dynamics

1.00 —————— I —e—"§.e—_—§a\@Iisnn —
- / B U N TE B B e
(] S 0.75 1 1 (3] © i e
E g " e z 0.75 //
= g 0.50 R = o
& = —— NC(Zn(t), Zm(t)) I 5 0509 [/ e
(@] N N O - ~~N\
2 O 0259 co NCEml(t), Zm(t) S < 1,77 ~—-.
= ] . = © 0.259 s
E N 0.004 === NC(Zma(t), zm(t)) —___. 3 o 1 .
§ g I ,/ é E 0.00 - " — Nc(fm(t). Zm(t))
g CZL) —0.25 A ” I, g ’25 ll ——— NC(Zm]_(t),Zm(t))
li A
© ~0.504 ! © —0.254 | — == NC(Zma(t), Zm(1))
Class label y 0 500 1000 1500 2000 Class label y 0 500 1000 1500 2000
Number of Batches Number of Batches

z.,(t): Real attention logits 1 B
Zn(t): Estimated attention logits by JOMA  Z_.(t) = EZ ve(t) — |lve®|3b,, + ¢

‘\k/_/ ——
Zm (8) Zma (0)
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Implication of Theorem 1

(lower layer)

Modified MLP
Key idea: folding self-attention into MLP (lower layer)

If- '
—> A Transformer block becomes a modified MLP ScaReRton

Linear case (p =1d,K = 1) Nonlinear case (¢ nonlinear, K = 1)

—— component0 L 15 |4
componentl

—— component2 L3

—— component3 L 1.0

Vo(t)
v(t)

—— component1 1
e oo

—— component 2
—— component 3
0 500 1000 1500 2000
Number of MiniBatches

0 1000 2000 3000 4000 5000
#iterations

Most salient feature takes all
(Attention becomes sparser)

|
|
|
|
|
|
I
0.5 | —— component 0
|
|
|
|
| Most salient feature grows, and others catch up
[ (Attention becomes sparser and denser)
|

Saliency is defined as A;,,, = E[g|l, m] - P[l|m] Ay, ~ 0: Common tokens

f f |A;n | large: Distinct tokens

i o : Discriminancy CoOccurrence
facebook Artificial Intelligence



Linear

2 Modified

JoOMA for Linear Activation b= Ao e (2] T

(lower layer)

Theorem 2

erf(v;(t)/2) erf(v;(t)/2)
W = _
€ can prove A, A erf(x) = \/_j de € [-1,1]

Only the most salient token [* = argmax |Ay,;,| of v goes to +

other components stay finite.
Attention becomes sparser

_ V(t) initialization V(t) after convergence (Consistent with Scan&Snap)
S 0.02 1.5 —— component0 L 1.5
w0 . .
5 1.0 ——— componentl
9 .
S 0.01 —— component2
§ 0.5 —— component3 L 1.0
£ 0.00 =
b 0.0 S
5
S -0.01 -0.5 - 0.5
kS
@ —-0.02 -1.0
E

- 0.0
e —-0.03 1.5 :

0 500 1000 1500 2000
Number of MiniBatches

facebook Artificial Intelli gence [Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurlPS’23]



What it we have more nodes (K > 1)?

*V = UMW € RM*K and the dynamics becomes

.1 VoV
V= Zdlag (exp( > ) 1) A A=1[A A, ..., Akl A, = E[gyx]

We can prove that I/ gradually becomes low rank
* The growth rate of each row of V' varies widely.

Due to exp (%), the weight gradient V can be even more low-rank > Galore



Galore: Pre-training 7B model on RTX 4090 (24G)

Memory Comparsion

60 1 BFl6 — Rank Retaingrad Memory Token/s
50 - 1 Adafactor — 8-bit Adamw Yes 40GB 1434
g [ 8-bit Adam 8-bit GaLore 16 Yes 28GB 1532
< 40 + EEZA 8-bit GaLore (retaining grad) ‘
§ BEE $-bit Galore 8-bit GalLore 128 Yes 29GB 1532
> 307 = 16-bit GaLore 128  Yes 30GB 1615
S -
g 20 - 16-bit GalLore 128 No 18GB 1587
=
10 8-bit GalLore 1024 Yes 36GB 1238
* SVD takes around 10min for 7B model, but runs every T=500-1000 steps.
0 .
350M 1B 3B
Model Size Third-party evaluation by @llamafactory_ai

facebook Artificial Intelligence [J. Zhao et al, GalLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection, ICML24]



Memory Saving with Gal.ore

Gal.ore
Algorithm 1: Gal.ore, PyTorch-like
for weight in model.parameters(): Gt &« _VW¢(Wt)
iradf‘welght.grad Ift % T == 0-
original space -> compact space o
lor_grad = project (grad) Compute Pt — SVD(Gt) e R™
# update by Adam, Adafactor, etc. T .
lor_update = update(lor_grad) 8t < Pt Gt {prOJeCt}
# compact space —-> original space Rt «— p(Rt) {Adam in /OW-rank}
update = project back (lor_update) ~ = .
weight.data += update Gt < Pth {pl;OjGCt—bGCk}

Wit « We +1nG;

Memory Usage Weight (W) Optim States (M, V;) | Projection (P)

Galore mn 2nr mr mn + mr + 2nr

facebook Artificial Intelligence W, R; P,



Params Hidden Intermediate Heads Layers Steps Data amount
60M 512 1376 8 8 10K 1.3B
o M 124 a6 16 2% &K 78D
Pre—trammg Results (LLaMA 7B> P pa e 3 @k s
Mem | 40K 80K 120K 150K
(€Y 8-bit GaLore | 18G | 17.94 1539 1495 14.65
8-bit Adam 26G | 18.09 1547 1483 14.61
Tokens (B) 5.2 10.5 15.7 19.7
* Experiments are conducted on 8 x 8 A100
60M 130M 350M 1B
Full-Rank 34.06 (0.36G) 25.08 (0.76G) 18.80 (2.06G) 15.56 (7.80G)
GaLore 34.88 (0.24G) 25.36 (0.52G) 18.95(1.22G) 15.64 (4.38G)
Low-Rank 78.18 (0.26G) 45.51 (0.54G) 37.41(1.08G) 142.53 (3.57G)
LoRA 34.99 (0.36G) 33.92 (0.80G) 25.58 (1.76G) 19.21 (6.17G)
ReLoRA 37.04 (0.36G) 29.37 (0.80G) 29.08 (1.76G)  18.33 (6.17G)
T/ dmodel 128 /256 256 /768 256 /1024 512 /2048
Training Tokens 1.1B 2.2B 6.4B 13.1B

* On LLaMA 1B, ppl is better (~14.97) with % rank (1024/2048)



JoMA for Nonlinear Activation

Theorem 3

If x is sampled from a mixture of C isotropic distributions,

(i.e., “local salient/non-salient map”), then g 0
o OO o
1 1 0 ®_ ° o
b= Y Al (R + s Y 6 () 5 oo
vl Ivll3 0©_
c C X3
: i T= t ' ° o
Here a; == Eg—m, _ghk]IP’[c], r.=v X, + fo Eq=m[ghkhk]dt, J00,
and 61 and 6, depends on nonlinearity o OE
2

What does the dynamics look like?

v2> U ~ X : Critical point due to nonlinearity
2

V=(u-—v)oexp (_ (one of the cluster centers)



Modified

JoMA for Nonlinear activation ”) P

(lower layer)

Theorem 4

Salient components grow much faster than non-salient ones:

Colored line: dynamics of v(t). Dashed line: target p

ConvergenceRate(j) exp(u7/2)

5000

ConvergenceRate(k) exp(uz/2) ;. [ 4000

. - 3000

ConvergenceRate(j) := In1/6;(t) ” - 2000

6;(t) =1—v;(t)/u; 1-

i (1) () /1 Ilooo
01 : : . ; 0
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MLP
(lower layer)

2) Modified

JoMA for Nonlinear activation ﬁ=<u-v)oexp(”?
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Real-world Experiments
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Real-world Experiments
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Why is this “bouncing back” property useful?

It seems that it only slows down the training??

Not useful in 1-layer, but useful in multiple Transformer layers!
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Data Hierarchy & Multilayer Transtormer
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Data Hierarchy & Multilayer Transtormer

Class label
(observed)

Latent binary !
variables .
(not observed) i

Tokens
(observed)

Strong attention

Weak attention

Theorem 5

H
Pl ~]1——
lm] ~ 1 -

H: height of the common latent
ancestor (CLA) of [ & m

L: total height of the hierarchy



Deep Latent Distribution

Q

Strong Attention
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Weak Attention
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Layers: 10, val _loss: 5.110
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slowing down the association of tokens that are not directly correlated




Shallow Latent Distribution
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Hierarchy-agnostic Learning

Self-attention enables Hierarchy-agnostic Learning!



\erification of Hierarchical Intuitions

C =20, Nep = 2 C =20, Nop =3 C =30, Nep = 2
(No, N1) (10, 20) (20, 30) (10, 20) (20, 30) (10, 20) (20, 30)
NCorr (s =0) | 0.99+0.01 | 0.97+0.02 | 1.00+0.00 | 0.96+0.02 | 0.99 +0.01 | 0.94 =+ 0.04
NCorr (s =1) | 0.81+£0.05 | 0.80+0.05 | 0.69+0.05 | 0.68£0.04 | 0.73+0.08 | 0.74 £ 0.03

C =30 Now =3 C =50, Nep = 2 C =50, Non = 3
(No, N1) (10, 20) (20, 30) (10, 20) (20, 30) (10, 20) (20, 30)
NCorr (s =0) | 0.99+£0.01 | 0.95+0.03 | 0.99+0.01 | 0.95=+0.03 | 0.99+0.01 | 0.95 = 0.03
NCorr (s =1) | 0.72+£0.04 | 0.66+0.02 | 0.58 +£0.02 | 0.55=+0.01 | 0.64+0.02 | 0.61=+0.04

Table 1: Normalized correlation between the latents and their best matched hidden node in MLP
of the same layer. All experiments are run with 5 random seeds.




MobileLLM

Zero-shot commonsense reasoning
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Take away messages

» Architecture v/ training dynamics v

* Nonlinearity is not formidable!
* Transformer can be analyzed following gradient descent rules

* Property of self-attention
* Attention becomes sparse over training

* Inductive bias
* Favor the learning of strong co-occurred tokens
* Deter the learning of weakly co-occurred tokens, avoiding spurious correlation.

* Key insights lead to broad applications
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Thanks!
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