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Large Language Models (LLMs)
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tennis balls does he have now? tennis balls does he have now?
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Large Language Models (LLMs)

Conversational Al
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Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

A: The answer is 27. x

Chain of Thought Prompting

Input \
Q: Roger has 5 tennis balls. He buys 2 more cans of

tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

Cnswer is9. &
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What LLMs cannot do well yet?

/I’m going from Seattle

to California from
November 6 to 10,

< 2023. | have a budget of

I |$6,000. For lodging, |

User prefer an entire room

and the accommodations

\must be pet-friendly. )

Travel planning

facebook Artificial Intelllgence [J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML 24 (Spotlight)]



The plan must adhere to

What LLMs cannot do well yet? rcrsranie e v

also vital to ...
User Needs (Hard Constraints)
1. Budget: $6000 a('. fa
2. Room Type: Entire Room dok
Information Collection 3. Room Rule: Pet-friendly
Commonsense Constraints
[Tool] CitySearch[California] 1. Reasonable City Route 9
[Result] san Francisco, Los 2. Diverse Restaurants XS R
Angeles San Diego 3. Diverse Attractions
g Tt g O\ 4. Non-conflicting Transportation
(o \ [Tool] FlightSearch[Seattle, San Francisco, 5. Accommodation meets Minimum Night
I'm going from Seattle 2023-11-06
to California from -11-06]
v [Result] No Flights.

$6,000. For lodging, |

< November 6 to 10, .
2023. | have a budget of » [Tool] FlightSearch[Seattle, Los Angeles, LGy L

User f ti 2023-11-06] : . o 1o blogo» Seate
pred et|r1 e ‘:jo‘;'_’ [Result] Flight Number: F123, THEE | B | gt T | JEED
and the accommodations 13:40-16:12, Cost: $120 " i
\must be pet-friendly. D e ton
[Tool] DistanceMatrix[Los Angeles,

San Diego, taxi]
[Result] Duration: 1 hour 57 mins,
Distance: 193 km, Cost: $200

Seattle -> Los Angeles

* Flight: F123, (13:40-16:12), Cost: $120

~ | * Accommodation: Luxury building studio
* Dinner: The Attraction

facebook Artificial Intelllgence [J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML'24 (Spotlight)]



Using SOTA LLMs for Travel Planning (not great)

Even SoTA LLMs struggle for such hard planning problems

Validation (#180) Test (#1,000)
Delivery Commonsense Hard Constraint Final Delivery Commonsense Hard Constraint Final
Pass Rate Pass Rate Pass Rate Pass Rate
Rate Pass Rate  Rate Pass Rate
Micro Macro Micro Macro Micro Macro Micro Macro
Greedy Search 100 74.4 0 60.8 37.8 0 100 72.0 0 52.4 31.8 0
TI'wo-stage

First tool use Mistral-7B-32K (Jiang et al., 2023) 8.9 5.9 0 0 0 0 7.0 4.8 0 0 0 0

’ Mixtral-8x7B-MoE (Jiang et al., 2024) 49.4 30.0 0 1.2 0.6 0 51.2 32.2 0.2 0.7 0.4 0

Then plan the travel Gemini Pro (G Team et al., 2023) 289 189 0 05 06 0 391 249 0 06 0.1 0

GPT-3.5-Turbo (OpenAl, 2022) 86.7 54.0 0 0 0 0 91.8 57.9 0 0.5 0.6 0
GPT-4-Turbo (OpenAl, 2023) 89.4 61.1 2.8 15.2 10.6 0.6 93.1 63.3 2.0 10.5 55 0.6

Sole-planning
DirectaPT—3.5—Turbo 100 60.2 4.4 11.0 2.8 0 100 59.5 2.7 9.5 4.4 0.6
CoTapPT—3.5-Turbo 100 66.3 3.3 11.9 5.0 0 100 64.4 2.3 9.8 3.8 0.4
Ground-truth tool Use,  Reactapr. 55 e 822 476 39 114 6.7 06 8.6 459 25 107 3.1 0.7
Then plan the travel Reflexiongpt—3.5-Turbo 93.9 53.8 2.8 11.0 2.8 0 92.1 52.1 2.2 9.9 3.8 0.6
DireCtMixtra.]—Sx?B—MoE 100 681 50 33 1.1 O 993 670 37 39 16 07
DirectGemini Pro 93.9 65.0 8.3 9.3 4.4 0.6 93.7 64.7 7.9 10.6 4.7 2.1
DirectGpr—4-Turbo 100 804 172 471 222 44 100 80.6 152 443 231

[J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML 24 (Spotlight)]



How about 0l1?

100
Final 2
-Pass Rate
0
50
0
0
0 25
0
GPT-4-turbo —[0.6%
0
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B Commonsense Micro B Commonsense Macro I Hard Micro B Hard Macro I Final Pass Rate
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[J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML'24 (Spotlight)]



LLM planning is still a hard problem

B GPT-3.5 GPT-4 B GPT-40 B Gemini 1.5 Flash B Gemini 1.5 Pro
0.8
. Trip planning
0.4
0.2 d II
0.0 |I M | n
3 4 5 6 7 8 9 10
Number of Cities
B GPT-3.5 GPT-4 B GPT-40 M Gemini 1.5 Flash B Gemini 1.5 Pro
1.00
. Meeting planning

0.50
0.00 I - II I-I l.-.l = B a
4 5 6 7 8

Number of People

[H. S. Zheng et al, NATURAL PLAN: Benchmarking LLMs on Natural Language Planning, arXiv'24]
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Plan Length vs Correct Predictions for all Models on
Mystery Blocksworld - Plan Generation Zero Shot
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What are the Solutions?



Option One: Scaling Law

r—— =

=
Models Models ] Models
What are the Tor tm |+
(policy, values) data I
e
|

: saver soer
Solutions?

Option Two: Hybrid System

\ Option Three: Emerging Symbolic
Structure from Neural network
facebook Artificial Intelligence



Option One: The Scaling Law

More data
More compute
Larger models

Very expensive

Does that work for
reasoning/planning?

107 10'® 10" 10%° 10?* 10%
FLOPS

facebook Artificial Intelligence [J. Hoffmann*, S. Borgeaud*, A. Mensch* et al, Training Compute-Optimal Large Language Models]



Option Two: Hybrid Systems

—————————————————

I |

I I

I |

Deep Models Deep Models M Deep Models §
: :

| |

|

TooI use Prowde : + '
data | |

| |

I I

| |

Solver Solver ! Solver |
: :

| |

! End2end !
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Option Two: Hybrid Systems

Deep Models
lTooI use

Solver

facebook Artificial Intelligence



Language-Driven Guaranteed Travel Planning

Inference

Flight/hotel

information

@4[

User

LLMs can not handle too many constraints? -> Combinatorial Solvers can!

“I want to go to SFO for 3
days. 1 have a budget of
$1000 ..

Agent

{
“from": "Seattle”,
“to”: “San Francisco”,
”budget": 10007,
“constraints”: |
“lodging”: [“entire
room”, “pet friendly”]

1
“candidate_flights™: [...],
“candidate_hotels": [...]

}

Symbolic description of
the user request

facebook Artificial Intelligence

“You can take flight A134,
departing at &:05pm, ..

“Al134",
“duration”: “1:50",
L

{

“itinerary”: [
“flight number":
depart”: “6:05pm

{ “hotel"”: “Marriott” }
I

}

Symbolic description of
the optimal itinerary

Realistic dataset: collect from the real world

User instruction translator: Fine-tuned LLM to convert
user request into symbolic description, augmented by
flight/hotel information from database.

Impose constraints and formalize the travel planning as
Mixed Integer Linear Programming (MILP).

Build a combinatorial solver to give optimal solution.

Ju et al, To the Globe (TTG): Towards Language-Driven Guaranteed Travel Planning (EMNLP’24 Demo)



Experiments (End-to-end Human Evaluation)

&

Response phase Time (s)
Instruction Translator  2.508+0.116
MILP Solver

- Loading constraints  0.04740.061
- Solving 0.5274+0.457
- Total 0.575+0.507

User Guides

B e, L L Ly -
o 15 Ao sappeeind AL O DR SRDL LAY, CLE VA VK, BV M08,
T, SO, PV LA, LT AK
gt s et A st Most e, oot e bt

D e s N (WD

s

Question

Detractors %

Promoters %| | Net %

...fully satisfies the...request

...offers good value for the money...

...1s efficient...

+53.3 +40.0
+52.0 +35.1
+53.1 +36.9

Net Prompter Scores (NPS) and its breakdown in three dimensions: satisfaction, value and efficiency.

Ju et al, To the Globe (TTG): Towards Language-Driven Guaranteed Travel Planning (EMNLP’24 Demo)



Multi-round Dialogs to Collect Information

Hi, I'm planning a trip with a specific itinerary in mind. Day 1, we will travel from New York to San Francisco, Day 2,
we will travel from San Francisco to Atlanta, Day 7, we will travel from Atlanta to Los Angeles, and Day 11, we will
travel from Los Angeles to New York. | have some specific preferences and constraints that I'd like to share with you.

Great! Thank you for sharing your itinerary. I'm glad to assist : That sounds a great trip! Can you te{l me a bit more
you. Before we proceed, can you please confirm if you are about your travel style? Are you looking for luxury,
traveling with a child? budget-friendly, or something in between? (Prioritization)
No, | am not ﬁ I'd say I'm looking for mid-range cost.
That helps rule out some family-friendly options. Next, are [Think]: The traveler is looking for mid-range cost
you looking to book this trip as part of a frequent traveler options, which suggests they have a budget in mind. |
program or would you like to earn rewards points for your ; should ask about their budget next. [End Think] Can you
travel in the future? (Not prioritize important questions) tell me what your budget is for this trip? (Clarification) . .
I'd prefer to book this trip as part of ﬁ My budget is $3900. ﬁ USGF haS hldden COHStraIntS,
&oquent fraveler Progran. [Think]: With a budget of $3900, | should ask about their h fi 3
» Tlerrific! Frequent traveler programs can definitely reward you preferred airline to see if we can find options within their
for your loyaity.(No clarification) Now, in terms of budget, | budget. [End Think] Do you have a preferred airline that ow to Ig ure o Ut *
E want to get a better sense of what you're comfortable : you'd like to use for this trip?
spending on this trip. Are you looking to spend under i ° I k
$1,000, between $1,000 and $2,500, between $2,500 and Yee, 1.pictor Deka Akines: - Proactive Yy as !
$5,000, or over $5,000 per person for this trip? What type of cabin would you prefer? For example,
: would you like economy, premium economy, business,
I'd say my budget for this trip is around $3, 900. or first class?

Traveler: Yes, | do have a disability that requires Do you require disability access for your

How can | assist you further? (Not proactive) I'd prefer business class.

some accommodations. accommodations or transportation? (Proactiveness)
E Thank you for sharing this with me. Safety and accessibility area Yes, | do require disability access. ﬁ
top priority for our guests with disabilities. :
@ (a) Llama3.1-8B-Instruct  Accuracy: 0.231 (b ) APEC-Travel Age Nt Accuracy: 0.279

P I N :
acebook Artificial Intelligence [Jiang et al, Towards Full Delegation: Designing Ideal Agentic Behaviors for Travel Planning]



APEC Agent Constitution

LLM agents should be evaluated and optimized not only based on final outcome, but also based on the procedure of
how agents achieve the goal.

- Accuracy. The quality of the final solution that the agent provides (e.g., number of questions that
are answered correctly).

- Proactivity. Whether the agent proactively collects useful information to solve the task. Such

information may be public or private, vague or precise, explicitly provided or inferred from requests.

- Efficiency. Whether the agent can achieve its goal with a minimal number of interactions (e.g.,

number of questions asked, API calls and tool uses).

- Credibility. The reliability with which agents achieve positive outcomes (e.g., amount of

hallucination and inconsistency).

[Jiang et al, Towards Full Delegation: Designing Ideal Agentic Behaviors for Travel Planning]



Using Agent Constitution to fine-tune the models

Model Average Accuracy Efficiency Agentic Scores (Full score in each axis: 5)
#Rounds Overall Critical Overall Critical Plan & Priority Proactive Clarification Total
Llama-3.1-8B 15.49 0.231 0.301 0.015 0.019 3.88 4.07 3.90 11.86
Llama-3.1-8B-Reasoning 15.50 0.217 0.287 0.014 0.018 3.80 4.06 3.87 11.75
APEC-Travel-SFT 9.39 0.261 0.417 0.029 0.047 4.46 4.25 3.68 12.41
APEC-Travel-DPO
Iteration 1 11.19 0.286 0.423 0.027 0.041 4.36 4.22 3.86 12.46
Iteration 2 9.77 0.279 0.425 0.031 0.047 4.48 4.32 4.13 12.95 |
Iteration 3 11.18 0.295 0.442 0.029 0.044 4.35 4.30 3.99 12.67
Iteration 2+3 11.36 0.296 0.448 0.028 0.043 4.44 4.28 3.79 12.52
Other SoTA LLMs
Llama3.1-70B 15.49 0.243 0.308 0.016 0.020 3.95 4.19 3.84 12.00

Llama3.1-70B-Reasoning 15.48 0.229 0.310 0.015 0.020 3.93 4.31 4.02 12.28




Agent-as-a-Judge: Evaluate Agents with Agents

only.

)

o)

LLM A

The Federal Reserve
buys bonds in the
secondary market to
increase the money
supply.

Judge LLM

24

question.

Accuracy:

10/10
Instruct-Following:

5/10

If the FED buys bonds in the secondary market (A) the
money supply will increase. (B) the money supply will
decrease. (C) the money supply will not be affected. (D)
the discount rate would be affected. Output the answer

is better because it gives the correct option
directly, following the required format of the

Metrics-based Judge

N

(Conversation Task)

@6 Lm

(A) the money supply
will increase.

Accuracy:

10/10
Instruct-Following:
10/10

LLM-as-a-Judge

facebook Artificial Intelligence

Upg

~

User (Agentic Task)

Hi! Please follow the instruction and set up the script from the
blog https://www.factsmachine.ai/p/hidden-in—

plain-sight to generate 1080p images with hidden text
Save

(“FUTURE,” in src/visualize.py.
results/ and verify the text is embedded.

them in

Agent
Workspace O 3 “‘:\‘, Workspace
L0 s i "~ src
C
visualize.py N A ) & N visualize.py
@ ) 8
' <: W 5" docker <: W ’
results
>_ e

= hidden jpg

2B Environment W Workspace

Judge Agent = =

Interact

vide_te:

4 print(“Er

is better because it runs and generates the required
files, fulfiling the user's request. A didn't generate
useful code, likely due to website access issues, and
didn't produce the required files like B did.

Time: 1800.6 s
Cost: $1.7
Requirements:
Satisfied 0/2 (0%)

Time: 500.7s

Cost: $1.5
Requirements:
Satisfied 2/2 (100%)

Metrics-based Judge

Agent-as-a-Judge

Req

lace

[M. Zhuge et al, Agent-as-a-Judge: Evaluate Agents with Agents, arXiv'24]

As a Developer
\_ P

\

User (Agentic Task)

Hi! Please follow the instruction and set up the script from the
blog https://www.factsmachine.ai/p/hidden-in—
plain-sight to generate 1080p images with hidden text
(“FUTURE,” in src/visualize.py. Save them in
results/ and verify the text is embedded.

Agent

Workspace

LE e

& visualize.py N

‘Warkspace

@ visualize.py

results

> I

= hidden jpg

@@ Workspace
=

&)

&y It starts to run

728 Environment I Workspace

User ¢ =@

Interact
< It starts to run
&% Navigate the website

2 It can't browse the web
G £ Jump to GitHub

== Stuck in an strange loop

, % Writing codes
@ Codes are unreliable

&i Execute and get images

As a User

After step-by-step checks, it's clear Agent is better and
satisfy two requirements of the query. But comparing these
agents or evaluate them took too much time. As a developer,
this would be a bottleneck due to the heavy manual effort.

Human-as-a-Judge



Option Two: Hybrid Systems

Deep Models

Provide
data

Solver

facebook Artificial Intelligence



Searchformer: A* Search as a Token Prediction

Start
/ Wall

1\ 2
Goal

@©-» Planstep
‘ Frontier state

Closed state

facebook Artificial Intelligence [L. Lehnert, et al, Beyond A*: Better Planning with Transformers via Search Dynamics Bootstrapping, COLM’24]



Searchformer: A* Search as a Token Prediction

/ Start Wall <prompt> <trace><plan>
bos bos
2 O start 0 2 create 0 2 c0@ c3
goal 1 0 )
1 * wall 1 2 create 0 1 c1 c2
wall 2 0
0 @ €eos create 0 0 c2 c1
create 1 1 c2 c1
0 1 2
create 1 @ c3 c0
Goal
@©-» Planstep plan 0 2
O Frontier state plan 0 1
plan Q0 0
Closed state olan 10

eo0s
facebook Artificial Intelligence



Training Method

Train a Transformer to predict the next token via teacher forcing.

Model Solution-Only Model Search-Augmented Model

== 4 Decoder

1 I

<prompt> <plan> <prompt> <trace><plan>

(100-400 tokens) (100-6500 tokens)

facebook Artificial Intelligence



Search-Augmented vs. Solution-Only Models

- —100-
D =
> ~ 80-
O =
P % 60 —
=) 8 40—
§ =
S O 20—
S
0= 1
50k 100k 500k 1M

Number of Training Sequences



Search-Augmented vs. Solution-Only Models

5 —100- — 30x30 Maze Navigation
D = 80 —
= \
O =
) % 60 —
=) S 40—
§ =
S 0 20—
O R Solution Only, 175M
U 1
50k 100k 500k 1M

Number of Training Sequences



Search-Augmented vs. Solution-Only Models

5 —100- B 30x30 Maze Navigation
o
g i 80 — Search Augmented, 15M
O i—,
N ¢ 60— Search Augmented, 46M
T,
8 Ic—s 40— Search Augmented, 175M
S O 20—
S Solution Only, 175M

0

[ [ [ [
50k 100k 500k 1M

Number of Training Sequences
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Search-Augmented vs. Solution-Only Models

5 —100- B 30x30 Maze Navigation
o
g i 80 — Search Augmented, 15M
O i—,
N ¢ 60— Search Augmented, 46M
T,
8 Ic—s 40— Search Augmented, 175M
S O 20—
S Solution Only, 175M

0

[ [ [ [
50k 100k 500k 1M

Number of Training Sequences >Search-augmented is much
more parameter & data efficient!

facebook Artificial Intelligence



Search-Augmented vs. Solution-Only Models

E;SE;SE;HE;SEESEESEES b ) 96 =
r-A Z o 94_
: = = Search Augmented
i 5 S o
> 2 90— .
% —= O Solution Only
) T T
BB - £ £ 97
= R g %"
Shmmmmmmm - T T

46M 175M 747M

Sokob
an Model Parameters

Search-augmented is much more parameter & data efficient!



How to go beyond?

Imitation

Learning

Using solver’s trace to train the
Transformer with teacher forcing

e

Search-augmented Models

facebook Artificial Intelligence

Fine-tuning

Fine-tune the model to achieve shorter

trace but still leads to optimal plan!
(Reinforcement Learning task)

"

Searchformer
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Improving search

dynamics via 5}
()  Searchformer =
bootstrapping | | |

Q.

g

()  Searchformer—

| | |

(qp) A* — %
Q.

g

()  Searchformer—

0 5000 10000
Sequence Length Averaged per Test Task



Improving search dynamics via bootstrapping

Params. Model ILR-on-solved ILR-on-optimal
Solution only - -
Search augmented 0.908 +0.020 0.919 +0.019
45M  Searchformer, step 1  1.054 +0.025 1.062 +0.015
Searchformer, step 2 1.158 +0.025 1.181 +0.012
Searchformer, step 3  1.292 +0.044 1.343 +0.067
176M Solution only - —
Search augmented 0.925 +0.010 0.933 +0.011
757TM  Solution only - =

facebook Artificial Intelligence

Repeated bootstrapping increases the
Improved Length Ratio (ILR)



Improving search dynamics via bootstrapping

Params. Model Solved (%) Optimal (%)

Solution only 90.3 +1.0 86.8 0.3

Search augmented 92.5 1.0 90.8 +1.6

45M  Searchformer, step 1  95.5 +1.0 93.5 +£1.0
Searchformer, step 2  96.0 +0.5 93.4 +0.6
Searchformer, step 3  95.5 +0.8 03.7 +1.6

175M Solution only 05.7 +0.2 90.0 +0.8
Search augmented 95.2 4+0.9 93.2 £+1.0

757M  Solution only 96.5 +0.1 02.2 +1.2

facebook Artificial Intelligence

Fine-tuning improves
performance initially.



Improving search dynamics via bootstrapping

Params. Model Solved (%) Optimal (%)

Solution only 90.3 +1.0 86.8 +0.3

Search augmented 92.5 1.0 90.8 +1.6

45M  Searchformer, step 1  95.5 +1.0 93.5 +£1.0
Searchformer, step 2  96.0 +0.5 93.4 +0.6
Searchformer, step 3  95.5 +0.8 03.7 +1.6

175M Solution only 05.7 +0.2 90.0 +0.8
Search augmented 95.2 4+0.9 93.2 £+1.0

757M  Solution only 96.5 +0.1 02.2 +1.2

facebook Artificial Intelligence

Searchformer
outperforms largest
solution-only model.



DualFormer (Searchformer v2)

bos /Structured Trace Dropping Strategieh
(create 0 2 cO0 c3

. clese 0 2 0l =2 D1 (drop a close clause) LvL 1 = D1 // drop all the close clauses

S create 0 1 cl c2

= close 0 1 cl c2 LvL 2 = D1 + D2 // drop all the close clauses

5 create 0 0 c2 ¢l « D2 (drop cost tokens in + all the cost tokens

§ create 1 1 c2 cl a clause)

o close 0 0 c2 cl Lvl 3 = D1 + D2 + sampled D3 // Lvl 2 + drop some

< kcreate 1 0c3 cle——p3 (drop a create clause) SR (SRR
close 1 0 c3 cO0

(1 4 = drop the entire trace /

facebook Artificial Intelligence [D. Su et al, Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces, arXiv'24]



DualFormer (Searchformer v2)

Method Avg Trace Length 1-Optimal-64 / 3-Optimal-64 1-Solved-64 / 3-Solved-64 SWC  Diversity
Dualformer (auto) 222 99.7 / 994 99.9 / 99.8 0.999 12.52
Maze 15x 15 Complete-Trace 495 94.6/90.1 96.7/93.0 0.964 7.60
Solution-Only - 72.0/68.9 82.7/80.1 0.610 1.52
Dualformer (auto) 351 99.5 / 98.6 99.9 / 99.3 0.997 20.28
Maze 20 x 20 Complete-Trace 851 98.3/95.5 08.8/93.0 0.987 14.53
Solution-Only - 56.3/52.0 71.9/67.5 0.690 1.52
Dual former (auto) 427 98.6 / 96.9 99.8 / 99.0 0.998 24 81
Maze 25 x 25 Complete-Trace 1208 95.2/85.7 97.0/90.4 0.968 18.85
Solution-Only - 39.7/34.7 60.3/55.4 0.570 1.9
Dual former (auto) 617 96.6 / 92.1 984 / 97.7 0.989 24.42
Maze 30 x 30 Complete-Trace 1538 03.3/82.4 95.9/88.1 0.964 7.60
Solution-Only - 30.0/26.0 54.1/47.8 0.500 1.86
Dualformer (auto) 494 94.0 / 90.0 97.4 / 94.7 0.979 4.97
Sokoban Complete-Trace 3600 929/844 94.7789.0 0.944 2.91
Solution-Only - 86.8/83.4 92.8/90.0 0.919 1.24

Dualformer automatically switches between fast mode (System 1) and slow mode (System 2)
and works better for dedicated models on either modes.

facebook Artificial Intelligence



Fast mode performance

Method 1-Optimal-64 / 3-Optimal-64 1-Solved-64 / 3-Solved-64 SWC  Diversity

Maze 15x15 Dualformer (fast) 91.8 / 87.6 97.1 / 94.8 0.960 9.05
Solution-Only 72.0/68.9 82.7/80.1 0.610 1.52

Maze 20x20 Dualformer (fast) 90.9 / 84.0 97.0 / 94.0 0.960 17.27
Solution-Only 56.3/52.0 71.9/67.5 0.690 1.52

Maze 25x25 Dualformer (fast) 83.9 /729 95.5 / 90.6 0.940 21.23
Solution-Only 39.7/34.7 60.3/55.4 0.570 1.9

Maze 30x30 Dualformer (fast) 80.0 / 66.0 91.8 / 85.7 0.906 18.23
Solution-Only 30.0/26.0 54.1/47.8 0.500 1.86

Sokoban Dualformer (fast) 973 / 944 94.8 / 90.0 0.970 4.92
Solution-Only 86.8/83.4 92.8/90.0 0919 1.24

Slow mode performance

Method Avg Trace Length 1-Optimal-64 / 3-Optimal-64 1-Solved-64 / 3-Solved-64 SWC  Diversity
Maze 15x 15 Dudlformer (slow) 278 99.6 / 99.2 99.9 / 99.9 0.999 12.54
Complete-Trace 495 94.6/90.1 96.7/93.0 0.964 7.60
Maze 20 x 20 Dualformer (slow) 439 98.9 / 97.8 99.9 / 99.7 0.998 18.86
Complete-Trace 851 98.3/95.5 98.8/93.00 0.987 14.53
Maze 25 x 25 Dualformer (slow) 589 99.9 / 97.2 99.7 / 99.3 0.997 25.05
Complete-Trace 1208 95.2/85.7 97.0/90.4 0.968 18.85
Maze 30 x 30 Dualformer (slow) 854 97.6 / 93.2 99.5 / 98.2 0.993 25.77
Complete-Trace 1538 93.3/824 95.9/88.1 0.964 7.60
Dualformer (slow) 1482 94.5 / 87.6 97.4 / 94.1 0.970 4.66
Sokoban Complete-Trace 3600 929/84.4 94.7/89.0 0.944 291
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Math Problems

Llama-3-Aug (baseline) Here is a detailed
step-by-step explanation of the reasoning:

» Step 1: Understand the problem and the
given information. We are asked to find
the sum of the elements in the tenth row
of Pascal’s Triangle, given that the third
row has four elements and their sum is 8.

 Step 2: Recall the formula for the sum of
the elements in a row of Pascal’s Triangle.
The sum of the elements in the nth row is
given by the formula: (3) + (7) + (5) +

()=

» Step 3: Identify the relationship between
the sum of the elements in a row and the
sum of the elements in the previous row.
Since the sum of the elements in the nth
row is 2", the sum of the elements in the
(n-1)th row is 271,

» Step 4: Recognize that the sum of the ele-
ments in the third row is 8, which is equal
to 23. This is because the sum of the ele-
ments in the third row is (g) + (:1;) + (g) =
1+ 3+ 3 = 7, and the extra 1 comes from
the top row, which is counted as the Oth

row.

facebook Artificial Intelligence

Question 1

In Pascal’s Triangle, the third row has four elements, and the sum of these elements is 8. What is the
sum of the elements in the tenth row? (Note that we are counting the top row with a single 1 as the

0th row).

Step 5: Use the relationship between the
sums of the elements in consecutive rows
to find the sum of the elements in the tenth
row. Since the sum of the elements in
the third row is 23, and the sum of the
elements in the (n-1)th row is 2"~ 1, we
can set up the equation: 23 = 210-1,

Step 6: Solve the equation for n. Tak-
ing the logarithm of both sides, we get:
3log2 = (10 — 1) log 2. Simplifying, we
get: 3log 2 = 9log 2, which implies that
log 2 = 0. This is a contradiction, since
log 2 is a positive number.

Step 7: Conclude that the equation 23 =
2191 has no solution, and therefore, the
sum of the elements in the tenth row is not
equal to 2101,

Step 8: Recognize that the sum of the ele-
ments in the tenth row is still given by the
formula: () +(7) + () +++++ (10) =
210

The answer is: 1024.

Baseline

Llama-3-Aug (p=0.4, ours) Here is a de-
tailed step-by-step explanation of the reason-
ing:

* Step 1: Understand the problem and the

given information. We are asked to find
the sum of the elements in the tenth row of
Pascal’s Triangle, given that the third row
has four elements and their sum is 8.

Step 2: Recall the properties of Pascal’s
Triangle. The elements in each row of
Pascal’s Triangle are the binomial coeffi-
cients, which represent the number of ways
to choose k items from a set of n items. The
sum of the elements in each row is equal to
2™ where n is the row number.

Step 3: Identify the relationship between
the sum of the elements in the third row
and the sum of the elements in the tenth
row. Since the sum of the elements in each
row is equal to 2", we can write the sum
of the elements in the third row as 2% = 8.
Similarly, the sum of the elements in the
tenth row is 210,

Step 4: Calculate the sum of the elements
in the tenth row. 210 = 1024.

The answer is: 1024.

Dualformer



Math Problems

Model Dataset & Dropping Prob | Greedy@1(%) (slow / fast) Trace Length | Pass@20(%) (slow / fast) Trace Length
Aug-MATH (baseline) 16.9 / 9.6 527 / - 59.6 / 29.8 521 / -
Aug-MATH (p=0.1) 186 /11.3 508 / - 61.6 / 32.0 479 / -

Mistral-7B Aug-MATH (p=0.2) 17.8 / 11.2 A77 / - 61.4 / 31.9 470 / -
Aug-MATH (p=0.3) 17.8 / 11.8 497 / - 61.9 / 31.7 466 / -
Aug-MATH (p=0.4) 17.0 / 11.0 434 / - 56.4 / 28.9 397 / -
MATH 13.1 / 8.5 290 / - 53.0 / 29.4 227 / -
Aug-MATH (baseline) 19.7 / 13.1 548 / - 62.7 / 35.6 535 / -
Aug-MATH (p=0.1) 20.1 / 13.3 544 / - 63.4 / 36.2 522 / -

Llama-3-8B  Aug-MATH (p=0.2) 20.5 / 13.8 525 / - 63.9 / 36.7 497 / -
Aug-MATH (p=0.3) 20.5 / 13.5 515 / - 63.4 / 37.5 474 / -
Aug-MATH (p=0.4) 20.4 / 13.5 490 / - 63.4 / 37.2 450 / -
MATH 13.3 / 12.6 432 / - 52.8 / 35.5 332 / -




DualFormer
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Option Two: Hybrid Systems

—————————————————

Deep Models

I |
[ |
I |
I |
I |
I |
I |
I |
I |
[ |
I |
I |
I |
I |
I |
I |
I |
[ |
I |
I |
' End2end!

Solver
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Nonlinear objective with combinatorial
constraints

Nonlinear + differentiable

gl objective f(x)

* Real-world domains:
* Computer system planning
e Designing photonic devices
* Throughput optimization
* Antenna design
* Energy grid

Combinatorial <~
feasible region




Example: Embedding Table Placement

Given:
 k tables
* n identical devices
* Table i has memory requirement m;
* Device j has memory capacity M;

(=Ri--BENRI-"RIS RN NN L

Find

Naive Sharding

Z
\

(=]
(]
a

5

|

10

15)

T

Bottleneck !

* Allocation of tables to devices observing device memory limits
* Minimize latency which is estimated by a neural network (capturing nonlinear

interactions)

Balanced Sharding




Given:
GPU1
e k tables |
. . . o« GPU2
* n identical devices 3 |
* Table i has memory requirement m; - i
* Device j has memory capacity M; GPU4 35.95
! 10 20 30 40 50
Timestamp (millisecond)
Formulation

Minx L({XU}) S.1. Zixijmi < M], Z] Xij = 1, Xij € {0,1}

L is nonlinear due to system issues (e.g., batching, communication, etc)



Solve the Combinatorial Problem in the Latent
Space

Original Space Latent Space

Nonlinear optimization with
combinatorial constraints

Surrogate optimization

min f(x; y) x*(y) = argmin c(y)Tx
* < - ° Predict surrogate cost ¢ = ¢(y) X
— ® °
5.t x € () — S.tx €0
combinatorial solved by existing combinatorial solvers
constraints

x*(y) optimizes f(x;y) as much as possible

[A. Ferber et al, SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems, ICML 23 and outstanding paper in SODS workshop]



Solve the Combinatorial Problem in the Latent
Space

Original Space Latent Space

Nonlinear optimization with
combinatorial constraints

Surrogate optimization

min f(x; y) x*(y) = argmin c(y)Tx
* < - ° Predict surrogate cost ¢ = ¢(y) X
— ® °
5.t x € () — s.tx €N
combinatorial solved by existing combinatorial solvers
constraints

x*(y) optimizes f(x;y) as much as possible

Proposal: gradient-based optimization



SurCo: Surrogate combinatorial opt

e Use surrogate MILP to solve original problem

* Find linear coefficients ¢ such that argmin f (x) = argmin ¢’ x

x €l xX €l
Problem Surrogate Solution Loss
description y Coefficients ¢ x*(c) f(x*)
Description = Solver e
) | coefficients: | NN | () — argmin cTy | M) ) >
c=c(y) XEQ

[A. Ferber et al, SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems, ICML 23 and outstanding paper in SODS workshop]




Gradient-based Optimization

e Use surrogate MILP to solve original problem
* Find linear coefficients ¢ such that argmin f(x) = argmin ¢’ x

x€() x€()

Problem Surrogate Solution Loss
description y Coefficients ¢ x*(c) f(x*)
Description = Solver e
) | coefficients: | NN | () — argmin cTy | M) ) >

c=c(y) XEQ
V() o S Vof (%)
Assumed Recent work on differentiable optimization Assumed
differentiable Differentation of blackbox optimizers differentiable
CVXPYLayers
MIPaal

facebook Artificial Intelligence Etc.




Embedding Table Sharding -

GPU4
[

L 1 1 1 I i
10 20 30 40 50 60
Timestamp (millisecond)

* Public Deep Learning Recommendation Model (DLRM dataset) placing
between 10 to 60 tables on 4 GPUs

* Baseline: Greedy
* SOoTA: RL approach Dreamshard?

e SurCo: Surrogate NN model learned via CVXPYLayers (differentiable LP
Solver)

1Zha et al. NeurlPS 2022
Dataset: https://github.com/facebookresearch/dlrm datasets



https://github.com/facebookresearch/dlrm_datasets

Results — Table Sharding

Table Sharding Solution Loss (Latency) Table Sharding Deployment Runtime (s)
50 2.5
? _
2 / =
2 40 g © 2.0
% A f B Domain Heuristic E
= 5 . Greedy g
o 30 5 B SurCo-zero = L5
3 v e »
- g
= 20 - 1.0
S Z g
2 , i _
S 10 Z & 05
«w . ” a
0 0.0
DLRM-10 DLRM-20 DLRM-30 DLRM-40 DLRM-50 DLRM-60 DLEM-10 DLEM-20 DLEM-30 DLEM-40 DLEM-50 DLEM-G0
Setting Setting
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E, magnitude E, magnitude
first wavelength ~ secon d wavelength

Inverse Photonic Design

* Design physically-viable devices that take light waves and routes
different wavelengths to correct locations
2
)

2 2

L(S) = ( softplus (g 5 . Scutot )
mln(wvalid)

* Device design misspecification loss f (x) computed by differentiable

electromagnetic simulator

* Feasible solution: the design must be the union of brush pattern
* x = binary_opening(x, brush)
e x = ~binary_opening(~x, brush)




Inverse Photonic Design

 Dataset: Ceviche Challenges!

e Most baselines don’t work here due to combinatorial
constraints

* SOTA: Brush-based algorithm ! ez splter

 SurCo: Surrogate learned via blackbox differentiation? of brush m@

solver

Mode converter

1Schubert et al. ACS Photonics 2022
2\/|astelica et al. ICLR 2019
Dataset: https://github.com/google/ceviche-challenges

Wavelength division multiplexer


https://github.com/google/ceviche-challenges

Inverse photonics Convergence comparison +

Solution example

Inverse Photonics Loss Convergence

Method

1.0
Pass-Through
g === SurCo-zero
'fg 0.8 = SurCo-hybrid
B=
o 0.6
=
99]
R
= 0.4
=
=Y0]
Z
A 0.2 \
0.0
0 25 50 75 100 125 150 175 200
Step
Takeaways:

- SurCo-Zero finds loss-0 solutions quickly
- SurCo-Hybrid uses offline training data to get a head start

Device Design

E, magnitude E, magnitude
first wavelength second wavelength

Wavelength division multiplexer



Limitation of SurCo

Recall SurCo: Update linear coefficients ¢ such that x*(c¢) improves objective f(x*(c))

Surrogate ' ‘ Solution : Loss
Coefficients ¢ x*(c) f(x*)

JE Y Z f ) — x*(c) =S‘;':§é‘11inch ‘ Ot;i(e:fi)ve —
mm Z 20(v:): 2; | . ‘
L A 4

V.x"(c) Vef (x)

go(y) = arg minxeo x ' co(y)

* Requires V.. f(x) -2Does not apply to nondifferentiable functions
* Requires V.gg(c) —2Solver is backpropagatable

[A. Zharmagambetov et al, Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information, NeurlPS'23]
[A. Ferber et al, GenCO: Generating Diverse Solutions to Design Problems with Combinatorial Nature, ICML’24]



Option Three: Does Deep Model Actually
Converge to Anything Symbolic?

Emerging Symbolic
Structure

Deep Models

facebook Artificial Intelligence



Debate: Is LLM doing retrieval or true
reasoning?

LLM shows emergent behaviors!!

facebook Artificial Intel “8€ nce https://medium.com/@fenjiro/large-language-models-lims-emergent-abilities-chatgpt-talks-moroccan-dialect-as-an-example-c945f93aa63a



https://medium.com/@fenjiro/large-language-models-llms-emergent-abilities-chatgpt-talks-moroccan-dialect-as-an-example-c945f93aa63a

Debate: Is LLM doing retrieval or true
reasoning?

Yann LeCun & «
@ylecun

Do LLMs perform reasoning or approximate retrieval?
There is a continuum between the two, and Auto-Regressive LLMs are

largely on the retrieval side.

Z Subbarao Kambhampati (S0250a°¢3 a5 \o°af)) &

@5 @rao2z

Emergent Abilities (noun): The preferred euphemism for what your LLM
does, when saying "approximate retrieval" sounds too unsexy.

#AlAphorisms

facebook Artificial Intelligence

LLM is just doing retrievals!!

Models

ol-preview -17.5

Gemma-T7b-it |—20.6

Mistral-7b-v0.3-24.0]

Mistral-7b-v0.1 ~ -28.3]

01-mini -29.1|

Mistral-7b-instruct-v0.1 | -29.6

Gemma2-2b-it —31.8|

GPT-40 -32.0|

Gemma2-2b -38.6 |

GPT-40-mini -40.0|
Mistral-7b-instruct-v0.3 —4(].3|

Phi-2 -44.9|
Llama3-8b-instruct -57.4 |
Phi-3-medium-128k-instruct -97.8 |
Mathstral-7b-v0.1 —59.7|
Gemma2-27b-it —59.7|
Phi-3.5-mini-instruct —62.5|
Gemma2-9b-it —63.0|
Gemma2-9b —63.0|
Phi-3-small-128k-instruct -64.0)
Phi-3-mini-128k-instruct —65.7|

0 —10 —20 30 —40 —50 —60
GSM8K — GSM-NoOp Accuracy Drop(%)



Concrete Example: Modular Addition

a+b=cmodd

Does neural network have an implicit table to do retrieval?

[T. Zhou et al, Pre-trained Large Language Models Use Fourier Features to Compute Addition]



Concrete Example: Modular Addition

Logits for Top Fourier Components

—— Period 520.00
Period 47.27
Period 10.00
Period 5.00

A,

a+b=cmodd

Magnitude
(@)

~N

Learned representation = Fourier basis @ 6

85 90 95 100 108 115 120 125 130
Number Space

W hy? @ (a) Final logits for top Fourier components

facebook Artificial Intelligence
[T. Zhou et al, Pre-trained Large Language Models Use Fourier Features to Compute Addition]



Problem Setup

MSE Loss:

Top layer

Bottom layer

Min ||Output —one-hot(c)||,

WCj

J

O-0O-0O--- g hidden nodes

(Quadratic Activation)

ij

One-hot(a)

One-hot(b) a+b=cmodd

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



(Scaled) Fourier Transform

d—1
— E imk/d
Zakj = Wamj€ /

m=0
d—1
— imk/d
Zpkj = z Whmj€ /
m=0
d—1
— imk/d
Zckj = E Wemj€ /
m=0

facebook Artificial Intelligence

k: frequency

W, Wy, W.} are real

$

Hermitian condition holds

Zakj — Za,—k,j

Zbkj = Zb,~k,j

chj Zc,—k,j



What a Gradient Descent Solution look like?

|2, d=7,q=20
0
2
X
4
6
Frequency O 2 4 6 8 10 12 14 16 18

J
e eeeeeeeee®> Hid d €N NOd € iNdEX

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



What a Gradient Descent Solution look like?

Order-6
solutions

Symmetry due to
Hermitian condition

o 2 4 o6 8 10 12 14 16 18
J

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



What a Gradient Descent Solution look like?

zc| at t =2900

Order-6
Order-4

O 2 4 o6 8 10 12 14 16 18
J

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



MSE Loss

More Statistics on Gradient Descent Solutions

Training/test loss/accuracy ford = 23

Distribution of Solution order at 10k epochs

facebook Artificial Intelligence

1.0 6 1
L 0.8 5 1
—-—=- test loss > 4 -
~—- train_loss [ 90 ® E
3 3 .
— test acc L 04 O S
—— train_acc < 5
05 Order-4 and order-6
it S ' 1 solutions really happen!
. = Y — B BN .
150 200 0 2 4 6 8 10

Solution order at all frequencies

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



Effect of Weight Decay

Stronger

d=23, wd=1e-05

40 A

20 A

Counts

d=71, wd=1e-05

50 A

Counts

d=127, wd=1e-05

200 - !
I
I
I

100 A

Counts

Solution order

facebook Artificial Intelligence

d=23, wd=5e-05

20 A

d=23, wd=0.0001

20 -

10 -

d=71, wd=5e-05

100 A

50 A

d=71, wd=0.0001

100 -

50 1

d=127, wd=5e-05

200 -

100 A

0 5
Solution order

10

d=127, wd=0.0001

100 -

5

10

Solution order

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]

d=23, wd=0.0002

> weight decay

d=23, wd=0.0005

! I
20 1 20 -
0 - 0
d=71, wd=0.0002 d=71, wd=0.0005
"B HE
100 - I b
: 1001 !
50 A 1 1 1
| |
| |
0 - 0 - —t
d=127, wd=0.0002 d=127, wd=0.0005
I I
1 1 1 1
200 - L 200 - .
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
O - 1 T 1 T 0' 1 T 1 T
0 5 10 0 5 10

Solution order

Solution order



Why? )



Structure of Loss Functions

MSE loss #(z) =d 1Y, .0 fk(2) +1—1/d

2 2
2 1 1
O (2) = —27rppp + Z |Tk1k2k| + 2 Z z Tpi! -k k| T 4 7 7 7 Tp k' m-k'k
kik, p€{a,b} k' m#0 pe{a,b} | k'

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



Structure of Loss Functions

MSEloss £(z) =d~ 'Y, .0fk(2)+1—1/d

2 2
2 1 1
tr(z) = =21 + Z |7”k1k2k| - Z Z Tok'—k'k| T 4 Z Z z Ty k' m—k'k
kik, p€{a,b} k' m#0 pe{a,b} | k'

Sufficient conditions of Global Optimizers:

Tk = 1 Tklkzk—o Tok! - k_O rpkmkk_O

facebook Artificial Intelligence [Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



How to Optimize?

The objective is highly nonlinear !!
However, nice algebraic structures exist!



How to Optimize?

The objective is highly nonlinear !!
However, nice algebraic structures exist!

< > < >~ < 2 X X

Z = Ugs0 44 All 2-layer networks with different number of hidden nodes



How to Optimize?

The objective is highly nonlinear !!
However, nice algebraic structures exist!

- N B - B

< > < >~ < 2 X X

V4 Z5 Z3

Z = Ugs0 44 All 2-layer networks with different number of hidden nodes

Ring addition +: Concatenate hidden nodes
Ring multiplication *: Kronecker production along the hidden dimensions

(Z,+, *)is asemi-ring



Ring Homomorphism

A function r(z): Z — Cis a ring homomorphism, if
r(1) =1
r(zy +2;) =1(zy) +7(2;,)
r(z, x z;) = 1(z)7(2;)



Ring Homomorphism

@rklkzk(z) and 7, 1, (Z) are ring
homomorphisms!




Ring Homomorphism

homomorphisms!
MSE Loss )
. 1 2 1
£(2) = =27y + 2 |7”k1k2k| + 4 z z i~k k| T 4 7 7 7 Tp k' m-k'k
ki1k, pe{a,b} k' m#0 pe{a,b} | k'




Ring Homomorphism

homomorphisms!
MSE Loss
2 1
tyx(2) = —2rp + 2 |7”k1k2k| + 4 z zrp,k’,—k’,k
kik; pe{a,b} k'

Partial solution z; satisfies 1y, . x(z;) = 0

Partial solution z,, satisfies 7,/ 1, (z,) = 0

FE Y
4/ .

S“ Tpk' m-k'k

m=+0 pe{a,b}

kl

2



Ring Homomorphism

homomorphisms!
MSE Loss )
2
2 1 1
Ox(2) = —27ppp + 2 |7”k1k2k| + 4 z zrp,k’,—k’,k + 4 7 7 7 Tpk' m-k'k
ki1k, pe{a,b} k' m#0 pe{a,b} | k'

Partial solution z; satisfies 1y, . x(z;) = 0 N
z = z, * z, satisfies both 1y ;. (2) = Tok! —k' (z) =0
Partial solution z,, satisfies 7,/ 1, (z,) = 0



Composing Global Optimizers from Partial Ones

Partial solution #1

(k) ¢ R,

syn

= R.NR,butz

syn
Partial solution #2

zgk) € R,

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv'24]



Composing Global Optimizers from Partial Ones

Compositing
solutions using
ring multiplication *

Partial solution #1 Better solution
z{5) € Re N Ry but 255, & R, 23+ 2,0 € Re.NRy NR,

Partial solution #2

zgk) € R,

facebook Artificial Intelli gence [Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv'24]



Composing Global Optimizers from Partial Ones

Compositing Compositing
solutions using solutions using
ring multiplication * ring addition +

Partial solution #1 Better solution Global Optimizer to MSE
loss £(z) !
A erenRybutzl R, 220 eRonR R, ol
» z (), 5 ()
Partial solution #2 F6 = \/— Zsyn *
zf,k) € R,

facebook Artificial Intelli gence [Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv' 24]



Exemplar constructed global optimizers

 (d21)/2
Order-6 zg¢ (2*3) Zpe = 6 Z zéﬁ& * 257 * Yy
k=1



Exemplar constructed global optimizers

Order-6 zp (2*3)

Order-4 zp, 6 (2%2)
(mixed with order-6)

(d—1)/2
1
o= g 2. Heetu,
k=1



Exemplar constructed global optimizers

Order-6 zp¢ (2*3)

Order-4 zp, 6 (2%2)
(mixed with order-6)

Perfect memorization
(order-d per frequency)

1 (d—1)/2
_ (k) (k)
zF6_3_ Z zsyn*zu * Yk
A
1 1 (d—1)/2
s (ko) (k)
ZF4/6 = 552 F6 + K7 D Zri
kzl,k#k{]
d—1 | d—1
zazz'u,ﬁl, zbzz'u:g
7=0 7=0



Gradient Descent solutions matches with

construction
Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
d k) . B[k . (k) | (k) . (k)
order-4/6| order-4 | order-6 || order-4 | order-6 ||z, *x 2, |2, * 2., ,5|%v  * Zsyn| others
23 || 0.040.0 {0.0040.00/5.71+5.71{|0.05+0.01|4.804+0.96(|47.07+1.88| 11.31+1.76 [39.80+2.11({1.82+1.82
71 (| 0.040.0 {0.004+0.00[{0.00+0.00{{0.0340.00/5.02+0.25||72.57+0.70| 4.00+1.14 |21.144+2.14|2.2941.07
127|| 0.040.0 {1.5040.92|0.00+0.00[{0.2640.14|0.93+0.18(|82.96+0.39| 2.25+0.64 |14.13+0.87|0.66+0.66

g=512,wd=5-107°



Gradient Descent solutions matches with

construction
Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
order-4/6| order-4 | order-6 || order-4 | order-6 z,(f":)i * zék) z,(/k’:)i * zs(;fr)l’a 5 25 « zS(IBfr)l others
23 Il 0.040.0 |0.0040.00/5.71+5.71{|0.05+0.01|4.804+0.96(|47.07+1.88| 11.31+1.76 [39.80+2.11({1.82+1.82
71 [l 0.040.0 ]0.0040.00[{0.00+0.00{{0.0340.00/5.02+0.25||72.57+0.70| 4.00+1.14 [21.144+2.14|2.2941.07
1270 0.040.0 |1.504+0.92|0.00+0.00[{0.2640.14|0.93+0.18(|82.96+0.39| 2.25+0.64 |14.13+0.87|0.66+0.66

100% of the per-freq
solutions are order-4/6




Gradient Descent solutions matches with

construction
Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
d k) . ()| (k) . (k) | (k) . _(K)
order-4/6| order-4 | order-6 || order-4 | order-6 ||z, *x 2. |2, * 2., ,5|%v  * Zsyn| others
23 || 0.040.0 [0.0040.00/5.71+5.7110.05+0.01|4.804+0.96(|47.07+1.88| 11.31+1.76 [39.80+2.11({1.82+1.82
71 (| 0.040.0 ]0.0040.00[{0.00+0.00[{0.034+0.00/5.02+0.25||72.57+0.70| 4.00+1.14 |21.144+2.14|2.2941.07
127|| 0.040.0 |1.5040.92|0.00+0.00[{0.2640.14|0.93+0.18(|82.96+0.39| 2.25+0.64 |14.13+0.87|0.66+0.66

95% of the solutions are
factorizable into “2*3” or “2*2”




Gradient Descent solutions matches with

construction
Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
d k) . ()| (k) . (k) | (k) . _(K)
order-4/6| order-4 | order-6 || order-4 | order-6 ||z,”; *x 2. |2, * 2., ,5|%v  * Zsyn| others
23 || 0.040.0 {0.0040.00/5.71+5.71(10.05+0.01|4.804+0.96||47.07+1.88| 11.31+1.76 [39.80+2.11({1.82+1.82
71 (| 0.040.0 {0.0040.00[{0.00+0.00({10.0340.00/5.02+0.25|| 72.57+0.70| 4.00+1.14 |21.144+2.14|2.2941.07
127|| 0.040.0 [1.504+0.92|0.00+0.00[]0.264+0.14|0.93+0.18|82.96+0.39| 2.25+0.64 |14.13+0.87|0.66+0.66

Factorization error is very small




Gradient Descent solutions matches with

construction
Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
d k) . ()| (k) . (k) | (k) . _(K)
order-4/6| order-4 | order-6 || order-4 | order-6 |z,2; *x 2. (2,2 * 2., ,5|%v  * Zsyn| others
23 || 0.040.0 {0.0040.00/5.71+5.71{|0.05+0.01|4.804+0.96}|47.07+1.88| 11.31+1.76 [39.80+2.11({1.82+1.82
71 (| 0.040.0 {0.0040.00[{0.00+0.00{{0.034+0.00/5.02+0.25)| 72.57+0.70| 4.00+1.14 |21.144+2.14|2.2941.07
127|| 0.040.0 [{1.5040.92|0.00+0.00[{0.2640.14|0.93+0.18)|82.96+0.39| 2.25+0.64 |14.13+0.87|0.66+0.66

98% of the solutions can be
factorizable into the constructed forms




Gradient Descent solutions matches with
construction

Distribution of the parameters in the solutions
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Possible Implications

Do neural networks end up learning more efficient
symbolic representations that we don’t know?

Does gradient descent lead to a solution that
can be reached by advanced algebraic operations?

Will gradient descent become obsolete, eventually?
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