
Towards a unified framework of Neural
and Symbolic Decision Making

Yuandong Tian
Research Scientist Director

Meta AI (FAIR)

Large Language Models (LLMs)

Conversational AI Content Generation AI Agents

Reasoning Planning

Large Language Models (LLMs)

Conversational AI Content Generation AI Agents

Reasoning Planning

What LLMs cannot do well yet?

Travel planning

[J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML’24 (Spotlight)]

What LLMs cannot do well yet?

[J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML’24 (Spotlight)]

Using SoTA LLMs for Travel Planning (not great)

First tool use,
Then plan the travel

Ground-truth tool use,
Then plan the travel

Even SoTA LLMs struggle for such hard planning problems

[J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML’24 (Spotlight)]

GPT-4-turbo %

[J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML’24 (Spotlight)]

How about o1?

LLM planning is still a hard problem

Number of Cities

Number of People

Trip planning

Meeting planning

[H. S. Zheng et al, NATURAL PLAN: Benchmarking LLMs on Natural Language Planning, arXiv’24]

What are the Solutions?

What are the
Solutions?

Option One: Scaling Law

Option Two: Hybrid System

Deep
Models

Solver

End2end

Deep
Models

Solver

Provide
data

Deep
Models

Solver

Call deep models

(policy, values)

Option Three: Emerging Symbolic
Structure from Neural network

Option One: The Scaling Law

More data
More compute
Larger models

Does that work for
reasoning/planning?

Very expensive

[J. Hoffmann*, S. Borgeaud*, A. Mensch* et al, Training Compute-Optimal Large Language Models]

Option Two: Hybrid Systems

Deep Models

Solver

End2end

Deep Models

Solver

Provide
data

Deep Models

Solver

Tool use

Option Two: Hybrid Systems

Deep Models

Solver

End2end

Deep Models

Solver

Provide
data

Deep Models

Solver

Tool use

Language-Driven Guaranteed Travel Planning

LLMs can not handle too many constraints? -> Combinatorial Solvers can!

• Realistic dataset: collect from the real world

• User instruction translator: Fine-tuned LLM to convert

user request into symbolic description, augmented by

flight/hotel information from database.

• Impose constraints and formalize the travel planning as

Mixed Integer Linear Programming (MILP).

• Build a combinatorial solver to give optimal solution.

Ju et al, To the Globe (TTG): Towards Language-Driven Guaranteed Travel Planning (EMNLP’24 Demo)

Experiments (End-to-end Human Evaluation)

Net Prompter Scores (NPS) and its breakdown in three dimensions: satisfaction, value and efficiency.

Ju et al, To the Globe (TTG): Towards Language-Driven Guaranteed Travel Planning (EMNLP’24 Demo)

Multi-round Dialogs to Collect Information

User has hidden constraints,

how to figure out?

→ Proactively ask!

[Jiang et al, Towards Full Delegation: Designing Ideal Agentic Behaviors for Travel Planning]

(b) APEC-Travel Agent

APEC Agent Constitution

LLM agents should be evaluated and optimized not only based on final outcome, but also based on the procedure of

how agents achieve the goal.

- Accuracy. The quality of the final solution that the agent provides (e.g., number of questions that

are answered correctly).

- Proactivity. Whether the agent proactively collects useful information to solve the task. Such

information may be public or private, vague or precise, explicitly provided or inferred from requests.

- Efficiency. Whether the agent can achieve its goal with a minimal number of interactions (e.g.,

number of questions asked, API calls and tool uses).

- Credibility. The reliability with which agents achieve positive outcomes (e.g., amount of

hallucination and inconsistency).

[Jiang et al, Towards Full Delegation: Designing Ideal Agentic Behaviors for Travel Planning]

Using Agent Constitution to fine-tune the models

≈

Agent-as-a-Judge: Evaluate Agents with Agents

≈

[M. Zhuge et al, Agent-as-a-Judge: Evaluate Agents with Agents, arXiv’24]

Option Two: Hybrid Systems

Deep Models

Solver

End2end

Deep Models

Solver

Provide
data

Deep Models

Solver

Tool uses

Searchformer: A* Search as a Token Prediction
Task

0 1 2

2

1

0

Start

Goal

Plan step

Frontier state

Closed state

[L. Lehnert, et al, Beyond A*: Better Planning with Transformers via Search Dynamics Bootstrapping, COLM’24]

Wall

Searchformer: A* Search as a Token Prediction
Task

<trace><plan>
bos
create 0 2 c0 c3
close 0 2 c0 c3
create 0 1 c1 c2
close 0 1 c1 c2
create 0 0 c2 c1
create 1 1 c2 c1
close 0 0 c2 c1
create 1 0 c3 c0
close 1 0 c3 c0
plan 0 2
plan 0 1
plan 0 0
plan 1 0
eos

0 1 2

2

1

0

Start

Goal

Plan step

Frontier state

Closed state

Wall
<prompt>
bos
start 0 2
goal 1 0
wall 1 2
wall 2 0
eos

Train a Transformer to predict the next token via teacher forcing.

Training Method

Encoder

<prompt> <trace><plan>

DecoderEncoder

<prompt> <plan>

Decoder

Solution-Only Model Search-Augmented ModelModel

(100-400 tokens) (100-6500 tokens)

Search-Augmented vs. Solution-Only Models

Search-Augmented vs. Solution-Only Models

30x30 Maze Navigation

Search-Augmented vs. Solution-Only Models

30x30 Maze Navigation

Search-Augmented vs. Solution-Only Models

30x30 Maze Navigation

Search-augmented is much
more parameter & data efficient!

Search-Augmented vs. Solution-Only Models

Search-augmented is much more parameter & data efficient!

Sokoban

How to go beyond?

Imitation
Learning

Fine-tuning

Using solver’s trace to train the
Transformer with teacher forcing

Fine-tune the model to achieve shorter

trace but still leads to optimal plan!
(Reinforcement Learning task)

Search-augmented Models Searchformer

Search

Augmented

A*

Searchformer

A*

Searchformer

A*

0 5000 10000

Searchformer

A*

Sequence Length Averaged per Test Task

S
te

p
 1

S
te

p
 2

S
te

p
 3

Beyond A*:
Improving search
dynamics via
bootstrapping

Repeated bootstrapping increases the

Improved Length Ratio (ILR)

Improving search dynamics via bootstrapping

Fine-tuning improves

performance initially.

Improving search dynamics via bootstrapping

Searchformer

outperforms largest

solution-only model.

Improving search dynamics via bootstrapping

DualFormer (Searchformer v2)

[D. Su et al, Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces, arXiv’24]

DualFormer (Searchformer v2)

Dualformer automatically switches between fast mode (System 1) and slow mode (System 2)
and works better for dedicated models on either modes.

Fast mode performance

Slow mode performance

Math Problems

Baseline Dualformer

Math Problems

DualFormer
Dualformer o1-preview (OpenAI)

Option Two: Hybrid Systems

Deep Models

Solver

End2end

Deep Models

Solver

Provide
data

Deep Models

Solver

Tool uses

Nonlinear objective with combinatorial
constraints

• Real-world domains:
• Computer system planning

• Designing photonic devices

• Throughput optimization

• Antenna design

• Energy grid

Nonlinear + differentiable
objective 𝑓(𝒙)

Combinatorial
feasible region

Example: Embedding Table Placement

Given:
• 𝑘 tables

• 𝑛 identical devices

• Table 𝑖 has memory requirement 𝑚𝑖

• Device 𝑗 has memory capacity 𝑀𝑗

Find
• Allocation of tables to devices observing device memory limits

• Minimize latency which is estimated by a neural network (capturing nonlinear
interactions)

Example: Embedding Table Placement

Given:
• 𝑘 tables

• 𝑛 identical devices

• Table 𝑖 has memory requirement 𝑚𝑖

• Device 𝑗 has memory capacity 𝑀𝑗

Min𝑥 𝑳 {𝑥𝑖𝑗} s.t. σ𝑖 𝑥𝑖𝑗𝑚𝑖 ≤ 𝑀𝑗 , σ𝑗 𝑥𝑖𝑗 = 1 , 𝑥𝑖𝑗 ∈ {0,1}

Formulation

𝑳 is nonlinear due to system issues (e.g., batching, communication, etc)

Solve the Combinatorial Problem in the Latent
Space

Original Space Latent Space

min
𝒙

𝑓(𝒙; 𝒚)

s. t 𝒙 ∈ Ω =

Nonlinear optimization with
combinatorial constraints

Predict surrogate cost 𝒄 = 𝒄(𝒚)

𝒙∗ 𝒚 = argmin
𝒙

𝒄(𝒚)𝑻𝒙

s. t 𝒙 ∈ Ω

𝒙∗ 𝒚 optimizes 𝑓(𝒙; 𝒚) as much as possible

Surrogate optimization

combinatorial
constraints

solved by existing combinatorial solvers

[A. Ferber et al, SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems, ICML’23 and outstanding paper in SODS workshop]

Solve the Combinatorial Problem in the Latent
Space

Original Space Latent Space

min
𝒙

𝑓(𝒙; 𝒚)

s. t 𝒙 ∈ Ω =

Nonlinear optimization with
combinatorial constraints

Predict surrogate cost 𝒄 = 𝒄(𝒚)

𝒙∗ 𝒚 = argmin
𝒙

𝒄(𝒚)𝑻𝒙

s. t 𝒙 ∈ Ω

𝒙∗ 𝒚 optimizes 𝑓(𝒙; 𝒚) as much as possible

Surrogate optimization

combinatorial
constraints

solved by existing combinatorial solvers

Proposal: gradient-based optimization

SurCo: Surrogate combinatorial opt

• Use surrogate MILP to solve original problem

• Find linear coefficients c such that argmin
𝑥∈Ω

𝑓(𝑥) = argmin
𝑥∈Ω

𝑐𝑇𝑥

[A. Ferber et al, SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems, ICML’23 and outstanding paper in SODS workshop]

Objective
𝑓 𝒙∗

Solver

𝒙∗ 𝒄 = argmin
𝑥∈Ω

𝒄𝑇𝒙

Solution
𝒙∗ 𝒄

Loss
𝑓 𝒙∗

Surrogate
Coefficients 𝑐

Description →
coefficients:

𝒄 = 𝒄(𝒚)

Problem
description 𝒚

Gradient-based Optimization

• Use surrogate MILP to solve original problem

• Find linear coefficients c such that argmin
𝑥∈Ω

𝑓(𝑥) = argmin
𝑥∈Ω

𝑐𝑇𝑥

Objective
𝑓 𝒙∗

Solver

𝒙∗ 𝒄 = argmin
𝑥∈Ω

𝒄𝑇𝒙

Solution
𝒙∗ 𝒄

Loss
𝑓 𝒙∗

Surrogate
Coefficients 𝑐

Description →
coefficients:

𝒄 = 𝒄(𝒚)

Problem
description 𝒚

∇𝒙𝑓(𝒙)∇𝒄𝒙∗(𝒄)

Assumed
differentiable

Recent work on differentiable optimization
Differentation of blackbox optimizers
CVXPYLayers
MIPaaL
Etc.

Assumed
differentiable

∇w𝒄(𝒚)

Embedding Table Sharding

• Public Deep Learning Recommendation Model (DLRM dataset) placing
between 10 to 60 tables on 4 GPUs

• Baseline: Greedy

• SoTA: RL approach Dreamshard1

• SurCo: Surrogate NN model learned via CVXPYLayers (differentiable LP
Solver)

1 Zha et al. NeurIPS 2022
Dataset: https://github.com/facebookresearch/dlrm_datasets

https://github.com/facebookresearch/dlrm_datasets

Results – Table Sharding

Inverse Photonic Design

• Design physically-viable devices that take light waves and routes
different wavelengths to correct locations

• Device design misspecification loss 𝑓(𝒙) computed by differentiable
electromagnetic simulator

• Feasible solution: the design must be the union of brush pattern
• x = binary_opening(x, brush)

• x = ~binary_opening(~x, brush)

Inverse Photonic Design

• Dataset: Ceviche Challenges1

• Most baselines don’t work here due to combinatorial
constraints

• SoTA: Brush-based algorithm 1

• SurCo: Surrogate learned via blackbox differentiation2 of brush
solver

1Schubert et al. ACS Photonics 2022
2Vlastelica et al. ICLR 2019
Dataset: https://github.com/google/ceviche-challenges

Wavelength division multiplexer

Mode converter

Beam splitter

Waveguide bend

https://github.com/google/ceviche-challenges

Inverse photonics Convergence comparison +
Solution example

Takeaways:
- SurCo-Zero finds loss-0 solutions quickly
- SurCo-Hybrid uses offline training data to get a head start

Wavelength division multiplexer

• Requires ∇𝑥𝑓(𝑥) →Does not apply to nondifferentiable functions

• Requires ∇𝑐𝒈𝜽(𝑐) →Solver is backpropagatable

[A. Zharmagambetov et al, Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information, NeurIPS’23]

Limitation of SurCo
Recall SurCo: Update linear coefficients 𝒄 such that 𝑥∗(𝒄) improves objective 𝑓(𝑥∗ 𝒄)

[A. Ferber et al, GenCO: Generating Diverse Solutions to Design Problems with Combinatorial Nature, ICML’24]

Option Three: Does Deep Model Actually
Converge to Anything Symbolic?

Deep Models

Emerging Symbolic
Structure

https://medium.com/@fenjiro/large-language-models-llms-emergent-abilities-chatgpt-talks-moroccan-dialect-as-an-example-c945f93aa63a

LLM shows emergent behaviors!!

Debate: Is LLM doing retrieval or true
reasoning?

https://medium.com/@fenjiro/large-language-models-llms-emergent-abilities-chatgpt-talks-moroccan-dialect-as-an-example-c945f93aa63a

Debate: Is LLM doing retrieval or true
reasoning?

LLM is just doing retrievals!!

Concrete Example: Modular Addition

𝑎 + 𝑏 = 𝑐 mod 𝑑

[T. Zhou et al, Pre-trained Large Language Models Use Fourier Features to Compute Addition]

Does neural network have an implicit table to do retrieval?

Concrete Example: Modular Addition

Learned representation = Fourier basis

Why?

[T. Zhou et al, Pre-trained Large Language Models Use Fourier Features to Compute Addition]

𝑎 + 𝑏 = 𝑐 mod 𝑑

Does neural network have an implicit table to do retrieval?

Problem Setup

One-hot(a) One-hot(𝒃) 𝒂 + 𝒃 = 𝒄 mod 𝑑

𝑞 hidden nodes
(Quadratic Activation)

Bottom layer

Top layer

MSE Loss: 𝑀𝑖𝑛 Output – one−hot(𝒄) 2

𝒘𝑎𝑗 𝒘𝑏𝑗

𝒘𝑐𝑗

𝑗

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

(Scaled) Fourier Transform

𝑧𝑎𝑘𝑗 =
𝑚=0

𝑑−1

𝑤𝑎𝑚𝑗𝑒i𝑚𝑘/𝑑

𝑧𝑏𝑘𝑗 =
𝑚=0

𝑑−1

𝑤𝑏𝑚𝑗𝑒i𝑚𝑘/𝑑

𝑧𝑐𝑘𝑗 =
𝑚=0

𝑑−1

𝑤𝑐𝑚𝑗𝑒i𝑚𝑘/𝑑

𝑘: frequency

𝑊𝑎 , 𝑊𝑏 , 𝑊𝑐 are real

Hermitian condition holds

𝑧𝑎𝑘𝑗 = 𝑧𝑎,−𝑘,𝑗

𝑧𝑏𝑘𝑗 = 𝑧𝑏,−𝑘,𝑗

𝑧𝑐𝑘𝑗 = 𝑧𝑐,−𝑘,𝑗

What a Gradient Descent Solution look like?

Frequency

Hidden node index

𝑑 = 7, 𝑞 = 20

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Symmetry due to
Hermitian condition

Order-6
solutions

What a Gradient Descent Solution look like?

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Order-6
Order-4

What a Gradient Descent Solution look like?

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Order-4 and order-6
solutions really happen!

More Statistics on Gradient Descent Solutions

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Stronger
weight decay

Effect of Weight Decay

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Why?

Structure of Loss Functions

MSE loss ℓ(𝒛) = 𝑑−1 σ𝑘≠0 ℓ𝑘(𝒛) + 1 − 1/𝑑

ℓ𝑘(𝒛) = −2𝑟𝑘𝑘𝑘 +

𝑘1𝑘2

𝑟𝑘1𝑘2𝑘
2

+
1

4

𝑝∈{𝑎,𝑏}

𝑘′

𝑟𝑝,𝑘′,−𝑘′,𝑘

2

+
1

4

𝑚≠0

𝑝∈{𝑎,𝑏}

𝑘′

𝑟𝑝,𝑘′,𝑚−𝑘′,𝑘

2

Term 𝑟𝑘1𝑘2𝑘 𝒛 ≔ σ𝑗 𝑧𝑎𝑘1𝑗𝑧𝑏𝑘2𝑗𝑧𝑐𝑘𝑗 and 𝑟𝑝𝑘1𝑘2𝑘 𝒛 ≔ σ𝑗 𝑧𝑝𝑘1𝑗𝑧𝑝𝑘2𝑗𝑧𝑐𝑘𝑗

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Structure of Loss Functions

MSE loss ℓ(𝒛) = 𝑑−1 σ𝑘≠0 ℓ𝑘(𝒛) + 1 − 1/𝑑

ℓ𝑘(𝒛) = −2𝑟𝑘𝑘𝑘 +

𝑘1𝑘2

𝑟𝑘1𝑘2𝑘
2

+
1

4

𝑝∈{𝑎,𝑏}

𝑘′

𝑟𝑝,𝑘′,−𝑘′,𝑘

2

+
1

4

𝑚≠0

𝑝∈{𝑎,𝑏}

𝑘′

𝑟𝑝,𝑘′,𝑚−𝑘′,𝑘

2

Sufficient conditions of Global Optimizers:

𝑅g 𝑅c 𝑅n 𝑅∗

𝑟𝑘𝑘𝑘 = 1 𝑟𝑘1𝑘2𝑘 = 0 𝑟𝑝𝑘′,−𝑘′,𝑘 = 0 𝑟𝑝𝑘′,𝑚−𝑘′,𝑘 = 0

Term 𝑟𝑘1𝑘2𝑘 𝒛 ≔ σ𝑗 𝑧𝑎𝑘1𝑗𝑧𝑏𝑘2𝑗𝑧𝑐𝑘𝑗 and 𝑟𝑝𝑘1𝑘2𝑘 𝒛 ≔ σ𝑗 𝑧𝑝𝑘1𝑗𝑧𝑝𝑘2𝑗𝑧𝑐𝑘𝑗

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

How to Optimize?
The objective is highly nonlinear !!
However, nice algebraic structures exist!

How to Optimize?

𝒵1 𝒵2 𝒵3

The objective is highly nonlinear !!
However, nice algebraic structures exist!

𝒵 = 𝑞≥0ڂ 𝒵𝑞 : All 2-layer networks with different number of hidden nodes

How to Optimize?

𝒵1 𝒵2 𝒵3

The objective is highly nonlinear !!
However, nice algebraic structures exist!

⟨𝒵, +, ∗⟩ is a semi-ring

𝒵 = 𝑞≥0ڂ 𝒵𝑞 : All 2-layer networks with different number of hidden nodes

 Ring addition +: Concatenate hidden nodes

 Ring multiplication *: Kronecker production along the hidden dimensions

Ring Homomorphism

A function 𝑟 𝒛 : 𝒵 ↦ ℂ is a ring homomorphism, if

• 𝑟 𝟏 = 1
• 𝑟 𝒛1 + 𝒛2 = 𝑟 𝒛1 + 𝑟 𝒛2

• 𝑟 𝒛1 ∗ 𝒛2 = 𝑟 𝒛1 𝑟 𝒛2

Ring Homomorphism

𝑟𝑘1𝑘2𝑘(𝒛) and 𝑟𝑝𝑘1𝑘2𝑘 𝒛 are ring

homomorphisms!

A function 𝑟 𝒛 : 𝒵 ↦ ℂ is a ring homomorphism, if

• 𝑟 𝟏 = 1
• 𝑟 𝒛1 + 𝒛2 = 𝑟 𝒛1 + 𝑟 𝒛2

• 𝑟 𝒛1 ∗ 𝒛2 = 𝑟 𝒛1 𝑟 𝒛2

Ring Homomorphism

𝑟𝑘1𝑘2𝑘(𝒛) and 𝑟𝑝𝑘1𝑘2𝑘 𝒛 are ring

homomorphisms!

ℓ𝑘(𝒛) = −2𝑟𝑘𝑘𝑘 +

𝑘1𝑘2

𝑟𝑘1𝑘2𝑘
2

+
1

4

𝑝∈{𝑎,𝑏}

𝑘′

𝑟𝑝,𝑘′,−𝑘′,𝑘

2

+
1

4

𝑚≠0

𝑝∈{𝑎,𝑏}

𝑘′

𝑟𝑝,𝑘′,𝑚−𝑘′,𝑘

2

A function 𝑟 𝒛 : 𝒵 ↦ ℂ is a ring homomorphism, if

• 𝑟 𝟏 = 1
• 𝑟 𝒛1 + 𝒛2 = 𝑟 𝒛1 + 𝑟 𝒛2

• 𝑟 𝒛1 ∗ 𝒛2 = 𝑟 𝒛1 𝑟 𝒛2

MSE Loss

Ring Homomorphism

𝑟𝑘1𝑘2𝑘(𝒛) and 𝑟𝑝𝑘1𝑘2𝑘 𝒛 are ring

homomorphisms!

ℓ𝑘(𝒛) = −2𝑟𝑘𝑘𝑘 +

𝑘1𝑘2

𝑟𝑘1𝑘2𝑘
2

+
1

4

𝑝∈{𝑎,𝑏}

𝑘′

𝑟𝑝,𝑘′,−𝑘′,𝑘

2

+
1

4

𝑚≠0

𝑝∈{𝑎,𝑏}

𝑘′

𝑟𝑝,𝑘′,𝑚−𝑘′,𝑘

2

Partial solution 𝒛1 satisfies 𝑟𝑘1𝑘2𝑘 𝒛1 = 0

Partial solution 𝒛2 satisfies 𝑟𝑝𝑘′,−𝑘′,𝑘 𝒛2 = 0

A function 𝑟 𝒛 : 𝒵 ↦ ℂ is a ring homomorphism, if

• 𝑟 𝟏 = 1
• 𝑟 𝒛1 + 𝒛2 = 𝑟 𝒛1 + 𝑟 𝒛2

• 𝑟 𝒛1 ∗ 𝒛2 = 𝑟 𝒛1 𝑟 𝒛2

MSE Loss

Ring Homomorphism

𝑟𝑘1𝑘2𝑘(𝒛) and 𝑟𝑝𝑘1𝑘2𝑘 𝒛 are ring

homomorphisms!

ℓ𝑘(𝒛) = −2𝑟𝑘𝑘𝑘 +

𝑘1𝑘2

𝑟𝑘1𝑘2𝑘
2

+
1

4

𝑝∈{𝑎,𝑏}

𝑘′

𝑟𝑝,𝑘′,−𝑘′,𝑘

2

+
1

4

𝑚≠0

𝑝∈{𝑎,𝑏}

𝑘′

𝑟𝑝,𝑘′,𝑚−𝑘′,𝑘

2

Partial solution 𝒛1 satisfies 𝑟𝑘1𝑘2𝑘 𝒛1 = 0

Partial solution 𝒛2 satisfies 𝑟𝑝𝑘′,−𝑘′,𝑘 𝒛2 = 0
𝒛 = 𝒛1 ∗ 𝒛2 satisfies both 𝑟𝑘1𝑘2𝑘 𝒛 = 𝑟𝑝𝑘′,−𝑘′,𝑘 𝒛 = 0

A function 𝑟 𝒛 : 𝒵 ↦ ℂ is a ring homomorphism, if

• 𝑟 𝟏 = 1
• 𝑟 𝒛1 + 𝒛2 = 𝑟 𝒛1 + 𝑟 𝒛2

• 𝑟 𝒛1 ∗ 𝒛2 = 𝑟 𝒛1 𝑟 𝒛2

MSE Loss

Partial solution #1

𝒛syn
(𝑘)

∈ 𝑅c ∩ 𝑅n but 𝒛syn
(𝑘)

∉ 𝑅∗

Partial solution #2

𝒛𝜈
(𝑘)

∈ 𝑅∗

Composing Global Optimizers from Partial Ones

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Better solution

𝒛syn
(𝑘)

∗ 𝒛𝜈
(𝑘)

∈ 𝑅c ∩ 𝑅n ∩ 𝑅∗

Compositing
solutions using
ring multiplication ∗

Partial solution #1

𝒛syn
(𝑘)

∈ 𝑅c ∩ 𝑅n but 𝒛syn
(𝑘)

∉ 𝑅∗

Partial solution #2

𝒛𝜈
(𝑘)

∈ 𝑅∗

Composing Global Optimizers from Partial Ones

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Better solution

𝒛syn
(𝑘)

∗ 𝒛𝜈
(𝑘)

∈ 𝑅c ∩ 𝑅n ∩ 𝑅∗

Global Optimizer to MSE
loss ℓ(𝒛) !

𝒛𝐹6 =
𝟏

𝟑
6

𝑘

𝒛syn
(𝑘)

∗ 𝒛𝜈
(𝑘)

Compositing
solutions using
ring multiplication ∗

Compositing
solutions using
ring addition +

Partial solution #1

𝒛syn
(𝑘)

∈ 𝑅c ∩ 𝑅n but 𝒛syn
(𝑘)

∉ 𝑅∗

Partial solution #2

𝒛𝜈
(𝑘)

∈ 𝑅∗

Composing Global Optimizers from Partial Ones

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Exemplar constructed global optimizers

Order-6 𝒛𝐹6 (2*3)

Order-4 (2*2, mixed with order-
6)

Perfect memorization
(order-d per frequency)

Exemplar constructed global optimizers

Order-4 𝒛𝐹4/6 (2*2)

(mixed with order-6)

Perfect memorization
(order-d per frequency)

Order-6 𝒛𝐹6 (2*3)

Exemplar constructed global optimizers

Perfect memorization
(order-d per frequency)

Order-4 𝒛𝐹4/6 (2*2)

(mixed with order-6)

Order-6 𝒛𝐹6 (2*3)

Gradient Descent solutions matches with
construction

𝑞 = 512, 𝑤𝑑 = 5 ⋅ 10−5

Gradient Descent solutions matches with
construction

100% of the per-freq
solutions are order-4/6

Gradient Descent solutions matches with
construction

95% of the solutions are
factorizable into “2*3” or “2*2”

Gradient Descent solutions matches with
construction

Factorization error is very small

Gradient Descent solutions matches with
construction

98% of the solutions can be
factorizable into the constructed forms

Gradient Descent solutions matches with
construction

Distribution of the parameters in the solutions

Possible Implications

Do neural networks end up learning more efficient
symbolic representations that we don’t know?

Does gradient descent lead to a solution that
can be reached by advanced algebraic operations?

Will gradient descent become obsolete, eventually?

Thanks!
90

	Slide 1: Towards a unified framework of Neural and Symbolic Decision Making
	Slide 2: Large Language Models (LLMs)
	Slide 3: Large Language Models (LLMs)
	Slide 4: What LLMs cannot do well yet?
	Slide 5: What LLMs cannot do well yet?
	Slide 6: Using SoTA LLMs for Travel Planning (not great)
	Slide 7
	Slide 8: LLM planning is still a hard problem
	Slide 9: What are the Solutions?
	Slide 10: What are the Solutions?
	Slide 11: Option One: The Scaling Law
	Slide 12: Option Two: Hybrid Systems
	Slide 13: Option Two: Hybrid Systems
	Slide 14: Language-Driven Guaranteed Travel Planning
	Slide 15: Experiments (End-to-end Human Evaluation)
	Slide 16: Multi-round Dialogs to Collect Information
	Slide 17: APEC Agent Constitution
	Slide 18: Using Agent Constitution to fine-tune the models
	Slide 19: Agent-as-a-Judge: Evaluate Agents with Agents
	Slide 20: Option Two: Hybrid Systems
	Slide 21: Searchformer: A* Search as a Token Prediction Task
	Slide 22: Searchformer: A* Search as a Token Prediction Task
	Slide 23: Training Method
	Slide 24: Search-Augmented vs. Solution-Only Models
	Slide 25: Search-Augmented vs. Solution-Only Models
	Slide 26: Search-Augmented vs. Solution-Only Models
	Slide 27: Search-Augmented vs. Solution-Only Models
	Slide 28: Search-Augmented vs. Solution-Only Models
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: DualFormer (Searchformer v2)
	Slide 35: DualFormer (Searchformer v2)
	Slide 36
	Slide 37: Math Problems
	Slide 38: Math Problems
	Slide 39: DualFormer
	Slide 40: Option Two: Hybrid Systems
	Slide 41: Nonlinear objective with combinatorial constraints
	Slide 42: Example: Embedding Table Placement
	Slide 43: Example: Embedding Table Placement
	Slide 44: Solve the Combinatorial Problem in the Latent Space
	Slide 45: Solve the Combinatorial Problem in the Latent Space
	Slide 46: SurCo: Surrogate combinatorial opt
	Slide 47: Gradient-based Optimization
	Slide 48: Embedding Table Sharding
	Slide 49: Results – Table Sharding
	Slide 50: Inverse Photonic Design
	Slide 51: Inverse Photonic Design
	Slide 52: Inverse photonics Convergence comparison + Solution example
	Slide 53: Limitation of SurCo
	Slide 54: Option Three: Does Deep Model Actually Converge to Anything Symbolic?
	Slide 55: Debate: Is LLM doing retrieval or true reasoning?
	Slide 56: Debate: Is LLM doing retrieval or true reasoning?
	Slide 57: Concrete Example: Modular Addition
	Slide 58: Concrete Example: Modular Addition
	Slide 59: Problem Setup
	Slide 60: (Scaled) Fourier Transform
	Slide 61: What a Gradient Descent Solution look like?
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66: Why? 🤔
	Slide 67: Structure of Loss Functions
	Slide 68: Structure of Loss Functions
	Slide 69: How to Optimize?
	Slide 70: How to Optimize?
	Slide 71: How to Optimize?
	Slide 72: Ring Homomorphism
	Slide 73: Ring Homomorphism
	Slide 74: Ring Homomorphism
	Slide 75: Ring Homomorphism
	Slide 76: Ring Homomorphism
	Slide 77: Composing Global Optimizers from Partial Ones
	Slide 78: Composing Global Optimizers from Partial Ones
	Slide 79: Composing Global Optimizers from Partial Ones
	Slide 80: Exemplar constructed global optimizers
	Slide 81: Exemplar constructed global optimizers
	Slide 82: Exemplar constructed global optimizers
	Slide 83: Gradient Descent solutions matches with construction
	Slide 84: Gradient Descent solutions matches with construction
	Slide 85: Gradient Descent solutions matches with construction
	Slide 86: Gradient Descent solutions matches with construction
	Slide 87: Gradient Descent solutions matches with construction
	Slide 88: Gradient Descent solutions matches with construction
	Slide 89
	Slide 90: Thanks!

