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What LLMs cannot do well yet?

Travel planning

[J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML’24 (Spotlight)]
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Using SoTA LLMs for Travel Planning (not great)

First tool use, 
Then plan the travel 

Ground-truth tool use, 
Then plan the travel 

Even SoTA LLMs struggle for such hard planning problems

[J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML’24 (Spotlight)]



GPT-4-turbo %

[J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML’24 (Spotlight)]

How about o1?



LLM planning is still a hard problem

Number of Cities

Number of People

Trip planning

Meeting planning

[H. S. Zheng et al, NATURAL PLAN: Benchmarking LLMs on Natural Language Planning, arXiv’24]
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Option One: The Scaling Law

More data
More compute
Larger models

Does that work for 
reasoning/planning?

Very expensive

[J. Hoffmann*, S. Borgeaud*, A. Mensch* et al, Training Compute-Optimal Large Language Models]



Option Two: Hybrid Systems

Deep Models

Solver

End2end

Deep Models

Solver

Provide 
data

Deep Models

Solver

Tool use



Option Two: Hybrid Systems

Deep Models

Solver

End2end

Deep Models

Solver

Provide 
data

Deep Models

Solver

Tool use



Language-Driven Guaranteed Travel Planning

LLMs can not handle too many constraints? ->  Combinatorial Solvers can! 

• Realistic dataset: collect from the real world

• User instruction translator: Fine-tuned LLM to convert 

user request into symbolic description, augmented by 

flight/hotel information from database. 

• Impose constraints and formalize the travel planning as 

Mixed Integer Linear Programming (MILP).

• Build a combinatorial solver to give optimal solution.

Ju et al, To the Globe (TTG): Towards Language-Driven Guaranteed Travel Planning (EMNLP’24 Demo) 



Experiments (End-to-end Human Evaluation)

Net Prompter Scores (NPS) and its breakdown in three dimensions: satisfaction, value and efficiency.

Ju et al, To the Globe (TTG): Towards Language-Driven Guaranteed Travel Planning (EMNLP’24 Demo) 



Multi-round Dialogs to Collect Information

User has hidden constraints, 

how to figure out? 

→ Proactively ask!

[Jiang et al, Towards Full Delegation: Designing Ideal Agentic Behaviors for Travel Planning] 

(b) APEC-Travel Agent



APEC Agent Constitution 

LLM agents should be evaluated and optimized not only based on final outcome, but also based on the procedure of 

how agents achieve the goal.

- Accuracy. The quality of the final solution that the agent provides (e.g., number of questions that 

are answered correctly).

- Proactivity. Whether the agent proactively collects useful information to solve the task. Such 

information may be public or private, vague or precise, explicitly provided or inferred from requests.

- Efficiency. Whether the agent can achieve its goal with a minimal number of interactions (e.g., 

number of questions asked, API calls and tool uses).

- Credibility. The reliability with which agents achieve positive outcomes (e.g., amount of 

hallucination and inconsistency).

[Jiang et al, Towards Full Delegation: Designing Ideal Agentic Behaviors for Travel Planning] 



Using Agent Constitution to fine-tune the models 

≈



Agent-as-a-Judge: Evaluate Agents with Agents

≈

[M. Zhuge et al, Agent-as-a-Judge: Evaluate Agents with Agents, arXiv’24] 
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Searchformer: A* Search as a Token Prediction 
Task

0 1 2

2

1

0

Start

Goal

Plan step

Frontier state

Closed state

[L. Lehnert, et al, Beyond A*: Better Planning with Transformers via Search Dynamics Bootstrapping, COLM’24]

Wall



Searchformer: A* Search as a Token Prediction 
Task

<trace><plan>
bos
create 0 2 c0 c3 
close  0 2 c0 c3 
create 0 1 c1 c2 
close  0 1 c1 c2 
create 0 0 c2 c1 
create 1 1 c2 c1 
close  0 0 c2 c1 
create 1 0 c3 c0 
close  1 0 c3 c0 
plan   0 2 
plan   0 1 
plan   0 0 
plan   1 0
eos

0 1 2

2

1

0

Start

Goal

Plan step

Frontier state

Closed state

Wall
<prompt>
bos
start 0 2
goal  1 0
wall  1 2
wall  2 0
eos



Train a Transformer to predict the next token via teacher forcing.

Training Method

Encoder

<prompt> <trace><plan>

DecoderEncoder

<prompt> <plan>

Decoder

Solution-Only Model Search-Augmented ModelModel

(100-400 tokens) (100-6500 tokens)



Search-Augmented vs. Solution-Only Models
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Search-Augmented vs. Solution-Only Models

30x30 Maze Navigation

Search-augmented is much 
more parameter & data efficient!



Search-Augmented vs. Solution-Only Models

Search-augmented is much more parameter & data efficient!

Sokoban



How to go beyond?

Imitation 
Learning

Fine-tuning

Using solver’s trace to train the 
Transformer with teacher forcing

Fine-tune the model to achieve shorter 

trace but still leads to optimal plan!
(Reinforcement Learning task)

Search-augmented Models Searchformer



Search

Augmented

A*

Searchformer

A*

Searchformer

A*
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Beyond A*: 
Improving search 
dynamics via 
bootstrapping



Repeated bootstrapping increases the 

Improved Length Ratio (ILR)

Improving search dynamics via bootstrapping



Fine-tuning improves 

performance initially.

Improving search dynamics via bootstrapping



Searchformer 

outperforms largest 

solution-only model.

Improving search dynamics via bootstrapping



DualFormer (Searchformer v2)

[D. Su et al, Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces, arXiv’24]



DualFormer (Searchformer v2)

Dualformer automatically switches between fast mode (System 1) and slow mode (System 2) 
and works better for dedicated models on either modes. 



Fast mode performance

Slow mode performance



Math Problems

Baseline Dualformer



Math Problems



DualFormer
Dualformer o1-preview (OpenAI)



Option Two: Hybrid Systems

Deep Models
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Nonlinear objective with combinatorial 
constraints

• Real-world domains:
• Computer system planning

• Designing photonic devices

• Throughput optimization

• Antenna design

• Energy grid

Nonlinear + differentiable 
objective 𝑓(𝒙)

Combinatorial 
feasible region



Example: Embedding Table Placement

Given:
• 𝑘 tables

• 𝑛 identical devices

• Table 𝑖 has memory requirement 𝑚𝑖

• Device 𝑗 has memory capacity 𝑀𝑗

Find
• Allocation of tables to devices observing device memory limits

• Minimize latency which is estimated by a neural network (capturing nonlinear 
interactions)



Example: Embedding Table Placement

Given:
• 𝑘 tables

• 𝑛 identical devices

• Table 𝑖 has memory requirement 𝑚𝑖

• Device 𝑗 has memory capacity 𝑀𝑗

Min𝑥 𝑳 {𝑥𝑖𝑗}  s.t. σ𝑖 𝑥𝑖𝑗𝑚𝑖 ≤ 𝑀𝑗 ,  σ𝑗 𝑥𝑖𝑗 = 1 ,  𝑥𝑖𝑗 ∈ {0,1}

Formulation

𝑳 is nonlinear due to system issues (e.g., batching, communication, etc)



Solve the Combinatorial Problem in the Latent 
Space

Original Space Latent Space

min
𝒙

𝑓(𝒙; 𝒚)

s. t  𝒙 ∈ Ω =

Nonlinear optimization with 
combinatorial constraints

Predict surrogate cost 𝒄 = 𝒄(𝒚)

𝒙∗ 𝒚 = argmin
𝒙

𝒄(𝒚)𝑻𝒙

s. t  𝒙 ∈ Ω

𝒙∗ 𝒚  optimizes 𝑓(𝒙; 𝒚) as much as possible

Surrogate optimization 

combinatorial 
constraints

solved by existing combinatorial solvers

[A. Ferber et al, SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems, ICML’23 and outstanding paper in SODS workshop]



Solve the Combinatorial Problem in the Latent 
Space

Original Space Latent Space

min
𝒙

𝑓(𝒙; 𝒚)

s. t  𝒙 ∈ Ω =

Nonlinear optimization with 
combinatorial constraints

Predict surrogate cost 𝒄 = 𝒄(𝒚)

𝒙∗ 𝒚 = argmin
𝒙

𝒄(𝒚)𝑻𝒙

s. t  𝒙 ∈ Ω

𝒙∗ 𝒚  optimizes 𝑓(𝒙; 𝒚) as much as possible

Surrogate optimization 

combinatorial 
constraints

solved by existing combinatorial solvers

Proposal: gradient-based optimization



SurCo: Surrogate combinatorial opt

• Use surrogate MILP to solve original problem

• Find linear coefficients c such that argmin
𝑥∈Ω

𝑓(𝑥) = argmin
𝑥∈Ω

𝑐𝑇𝑥 

[A. Ferber et al, SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems, ICML’23 and outstanding paper in SODS workshop]

Objective
𝑓 𝒙∗

Solver

𝒙∗ 𝒄 = argmin
𝑥∈Ω

𝒄𝑇𝒙

Solution
𝒙∗ 𝒄

Loss
𝑓 𝒙∗

Surrogate 
Coefficients 𝑐

Description → 
coefficients:

𝒄 = 𝒄(𝒚)

Problem 
description 𝒚



Gradient-based Optimization

• Use surrogate MILP to solve original problem

• Find linear coefficients c such that argmin
𝑥∈Ω

𝑓(𝑥) = argmin
𝑥∈Ω

𝑐𝑇𝑥 

Objective
𝑓 𝒙∗

Solver

𝒙∗ 𝒄 = argmin
𝑥∈Ω

𝒄𝑇𝒙

Solution
𝒙∗ 𝒄

Loss
𝑓 𝒙∗

Surrogate 
Coefficients 𝑐

Description → 
coefficients:

𝒄 = 𝒄(𝒚)

Problem 
description 𝒚

∇𝒙𝑓(𝒙)∇𝒄𝒙∗(𝒄)

Assumed 
differentiable

Recent work on differentiable optimization
Differentation of blackbox optimizers
CVXPYLayers
MIPaaL
Etc. 

Assumed 
differentiable

∇w𝒄(𝒚)



Embedding Table Sharding

• Public Deep Learning Recommendation Model (DLRM dataset) placing 
between 10 to 60 tables on 4 GPUs

• Baseline: Greedy

• SoTA: RL approach Dreamshard1

• SurCo: Surrogate NN model learned via CVXPYLayers (differentiable LP 
Solver)

1 Zha et al. NeurIPS 2022
Dataset: https://github.com/facebookresearch/dlrm_datasets 

https://github.com/facebookresearch/dlrm_datasets


Results – Table Sharding



Inverse Photonic Design

• Design physically-viable devices that take light waves and routes 
different wavelengths to correct locations

• Device design misspecification loss 𝑓(𝒙) computed by differentiable 
electromagnetic simulator

• Feasible solution: the design must be the union of brush pattern
• x = binary_opening(x, brush)

• x = ~binary_opening(~x, brush)



Inverse Photonic Design

• Dataset: Ceviche Challenges1 

• Most baselines don’t work here due to combinatorial 
constraints

• SoTA: Brush-based algorithm 1

• SurCo: Surrogate learned via blackbox differentiation2 of brush 
solver

1Schubert et al. ACS Photonics 2022
2Vlastelica et al. ICLR 2019
Dataset: https://github.com/google/ceviche-challenges

Wavelength division multiplexer

Mode converter

Beam splitter

Waveguide bend

https://github.com/google/ceviche-challenges


Inverse photonics Convergence comparison + 
Solution example

Takeaways:
- SurCo-Zero finds loss-0 solutions quickly
- SurCo-Hybrid uses offline training data to get a head start

Wavelength division multiplexer



• Requires ∇𝑥𝑓(𝑥) →Does not apply to nondifferentiable functions 

• Requires ∇𝑐𝒈𝜽(𝑐) →Solver is backpropagatable

[A. Zharmagambetov et al, Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information, NeurIPS’23]

Limitation of SurCo
Recall SurCo: Update linear coefficients 𝒄 such that 𝑥∗(𝒄) improves objective 𝑓(𝑥∗ 𝒄 )  

[A. Ferber et al, GenCO: Generating Diverse Solutions to Design Problems with Combinatorial Nature, ICML’24]



Option Three: Does Deep Model Actually 
Converge to Anything Symbolic? 

Deep Models

Emerging Symbolic 
Structure



https://medium.com/@fenjiro/large-language-models-llms-emergent-abilities-chatgpt-talks-moroccan-dialect-as-an-example-c945f93aa63a 

LLM shows emergent behaviors!!

Debate: Is LLM doing retrieval or true 
reasoning?

https://medium.com/@fenjiro/large-language-models-llms-emergent-abilities-chatgpt-talks-moroccan-dialect-as-an-example-c945f93aa63a


Debate: Is LLM doing retrieval or true 
reasoning?

LLM is just doing retrievals!!



Concrete Example: Modular Addition

𝑎 + 𝑏 = 𝑐 mod 𝑑

[T. Zhou et al, Pre-trained Large Language Models Use Fourier Features to Compute Addition]

Does neural network have an implicit table to do retrieval? 



Concrete Example: Modular Addition

Learned representation = Fourier basis 

Why?  

[T. Zhou et al, Pre-trained Large Language Models Use Fourier Features to Compute Addition]

𝑎 + 𝑏 = 𝑐 mod 𝑑

Does neural network have an implicit table to do retrieval? 



Problem Setup

One-hot(a) One-hot(𝒃) 𝒂 + 𝒃 = 𝒄 mod 𝑑

𝑞 hidden nodes 
(Quadratic Activation)

Bottom layer 

Top layer 

MSE Loss:      𝑀𝑖𝑛 Output – one−hot(𝒄) 2 

𝒘𝑎𝑗 𝒘𝑏𝑗

𝒘𝑐𝑗

𝑗

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]



(Scaled) Fourier Transform

𝑧𝑎𝑘𝑗 = 
𝑚=0

𝑑−1

𝑤𝑎𝑚𝑗𝑒i𝑚𝑘/𝑑

𝑧𝑏𝑘𝑗 = 
𝑚=0

𝑑−1

𝑤𝑏𝑚𝑗𝑒i𝑚𝑘/𝑑

𝑧𝑐𝑘𝑗 = 
𝑚=0

𝑑−1

𝑤𝑐𝑚𝑗𝑒i𝑚𝑘/𝑑

𝑘: frequency 

𝑊𝑎 , 𝑊𝑏 , 𝑊𝑐  are real

Hermitian condition holds

𝑧𝑎𝑘𝑗 = 𝑧𝑎,−𝑘,𝑗

𝑧𝑏𝑘𝑗 = 𝑧𝑏,−𝑘,𝑗

𝑧𝑐𝑘𝑗 = 𝑧𝑐,−𝑘,𝑗



What a Gradient Descent Solution look like?

Frequency

Hidden node index

𝑑 = 7, 𝑞 = 20

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]



Symmetry due to
Hermitian condition

Order-6 
solutions

What a Gradient Descent Solution look like?

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]



Order-6
Order-4

What a Gradient Descent Solution look like?

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]



Order-4 and order-6 
solutions really happen!

More Statistics on Gradient Descent Solutions

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]



Stronger 
weight decay

Effect of Weight Decay

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]



Why?  



Structure of Loss Functions

MSE loss ℓ(𝒛) = 𝑑−1 σ𝑘≠0 ℓ𝑘(𝒛) + 1 − 1/𝑑

ℓ𝑘(𝒛) = −2𝑟𝑘𝑘𝑘 + 

𝑘1𝑘2

𝑟𝑘1𝑘2𝑘
2

+
1

4


𝑝∈{𝑎,𝑏}



𝑘′

𝑟𝑝,𝑘′,−𝑘′,𝑘

2

+
1

4


𝑚≠0



𝑝∈{𝑎,𝑏}



𝑘′

𝑟𝑝,𝑘′,𝑚−𝑘′,𝑘

2

Term 𝑟𝑘1𝑘2𝑘 𝒛 ≔ σ𝑗 𝑧𝑎𝑘1𝑗𝑧𝑏𝑘2𝑗𝑧𝑐𝑘𝑗  and 𝑟𝑝𝑘1𝑘2𝑘 𝒛 ≔ σ𝑗 𝑧𝑝𝑘1𝑗𝑧𝑝𝑘2𝑗𝑧𝑐𝑘𝑗

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]



Structure of Loss Functions

MSE loss ℓ(𝒛) = 𝑑−1 σ𝑘≠0 ℓ𝑘(𝒛) + 1 − 1/𝑑

ℓ𝑘(𝒛) = −2𝑟𝑘𝑘𝑘 + 

𝑘1𝑘2
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𝑝∈{𝑎,𝑏}



𝑘′

𝑟𝑝,𝑘′,𝑚−𝑘′,𝑘

2

Sufficient conditions of Global Optimizers:

𝑅g 𝑅c 𝑅n 𝑅∗

𝑟𝑘𝑘𝑘 = 1 𝑟𝑘1𝑘2𝑘 = 0 𝑟𝑝𝑘′,−𝑘′,𝑘 = 0 𝑟𝑝𝑘′,𝑚−𝑘′,𝑘 = 0

Term 𝑟𝑘1𝑘2𝑘 𝒛 ≔ σ𝑗 𝑧𝑎𝑘1𝑗𝑧𝑏𝑘2𝑗𝑧𝑐𝑘𝑗  and 𝑟𝑝𝑘1𝑘2𝑘 𝒛 ≔ σ𝑗 𝑧𝑝𝑘1𝑗𝑧𝑝𝑘2𝑗𝑧𝑐𝑘𝑗

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]
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How to Optimize?

𝒵1 𝒵2 𝒵3

The objective is highly nonlinear !!
However, nice algebraic structures exist! 

⟨𝒵, +, ∗⟩ is a semi-ring

𝒵 = 𝑞≥0ڂ 𝒵𝑞 :  All 2-layer networks with different number of hidden nodes

        Ring addition +:  Concatenate hidden nodes

        Ring multiplication *:  Kronecker production along the hidden dimensions   



Ring Homomorphism

A function 𝑟 𝒛 : 𝒵 ↦ ℂ is a ring homomorphism, if 

• 𝑟 𝟏 = 1
• 𝑟 𝒛1 + 𝒛2 = 𝑟 𝒛1 + 𝑟 𝒛2

• 𝑟 𝒛1 ∗ 𝒛2 = 𝑟 𝒛1 𝑟 𝒛2
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• 𝑟 𝒛1 ∗ 𝒛2 = 𝑟 𝒛1 𝑟 𝒛2

MSE Loss
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ℓ𝑘(𝒛) = −2𝑟𝑘𝑘𝑘 + 

𝑘1𝑘2

𝑟𝑘1𝑘2𝑘
2

+
1

4


𝑝∈{𝑎,𝑏}



𝑘′

𝑟𝑝,𝑘′,−𝑘′,𝑘

2

+
1

4


𝑚≠0



𝑝∈{𝑎,𝑏}



𝑘′

𝑟𝑝,𝑘′,𝑚−𝑘′,𝑘

2

Partial solution 𝒛1 satisfies 𝑟𝑘1𝑘2𝑘 𝒛1 = 0

Partial solution 𝒛2 satisfies 𝑟𝑝𝑘′,−𝑘′,𝑘 𝒛2 = 0
𝒛 = 𝒛1 ∗ 𝒛2 satisfies both 𝑟𝑘1𝑘2𝑘 𝒛 = 𝑟𝑝𝑘′,−𝑘′,𝑘 𝒛 = 0

A function 𝑟 𝒛 : 𝒵 ↦ ℂ is a ring homomorphism, if 

• 𝑟 𝟏 = 1
• 𝑟 𝒛1 + 𝒛2 = 𝑟 𝒛1 + 𝑟 𝒛2

• 𝑟 𝒛1 ∗ 𝒛2 = 𝑟 𝒛1 𝑟 𝒛2

MSE Loss



Partial solution #1

𝒛syn
(𝑘)

∈ 𝑅c ∩ 𝑅n but 𝒛syn
(𝑘)

∉ 𝑅∗

Partial solution #2

𝒛𝜈
(𝑘)

∈ 𝑅∗ 

Composing Global Optimizers from Partial Ones

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]



Better solution

𝒛syn
(𝑘)

∗ 𝒛𝜈
(𝑘)

∈ 𝑅c ∩ 𝑅n ∩ 𝑅∗

Compositing 
solutions using 
ring multiplication ∗

Partial solution #1

𝒛syn
(𝑘)

∈ 𝑅c ∩ 𝑅n but 𝒛syn
(𝑘)

∉ 𝑅∗

Partial solution #2

𝒛𝜈
(𝑘)

∈ 𝑅∗ 

Composing Global Optimizers from Partial Ones

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]



Better solution

𝒛syn
(𝑘)

∗ 𝒛𝜈
(𝑘)

∈ 𝑅c ∩ 𝑅n ∩ 𝑅∗

Global Optimizer to MSE 
loss ℓ(𝒛) !

𝒛𝐹6 =
𝟏

𝟑
6


𝑘

𝒛syn
(𝑘)

∗ 𝒛𝜈
(𝑘)

Compositing 
solutions using 
ring multiplication ∗

Compositing 
solutions using 
ring addition +

Partial solution #1

𝒛syn
(𝑘)

∈ 𝑅c ∩ 𝑅n but 𝒛syn
(𝑘)

∉ 𝑅∗

Partial solution #2

𝒛𝜈
(𝑘)

∈ 𝑅∗ 

Composing Global Optimizers from Partial Ones

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]



Exemplar constructed global optimizers

Order-6 𝒛𝐹6 (2*3)

Order-4 (2*2, mixed with order-
6)

Perfect memorization 
(order-d per frequency)



Exemplar constructed global optimizers

Order-4 𝒛𝐹4/6 (2*2)

(mixed with order-6)

Perfect memorization 
(order-d per frequency)

Order-6 𝒛𝐹6 (2*3)



Exemplar constructed global optimizers

Perfect memorization 
(order-d per frequency)

Order-4 𝒛𝐹4/6 (2*2)

(mixed with order-6)

Order-6 𝒛𝐹6 (2*3)



Gradient Descent solutions matches with 
construction

𝑞 = 512, 𝑤𝑑 = 5 ⋅ 10−5



Gradient Descent solutions matches with 
construction

100% of the per-freq 
solutions are order-4/6



Gradient Descent solutions matches with 
construction

95% of the solutions are 
factorizable into “2*3” or “2*2” 



Gradient Descent solutions matches with 
construction

Factorization error is very small



Gradient Descent solutions matches with 
construction

98% of the solutions can be 
factorizable into the constructed forms



Gradient Descent solutions matches with 
construction

Distribution of the parameters in the solutions



Possible Implications

Do neural networks end up learning more efficient 
symbolic representations that we don’t know?

Does gradient descent lead to a solution that 
can be reached by advanced algebraic operations?

Will gradient descent become obsolete, eventually?



Thanks!
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