Emergence of Various Structures via the Lens of Transformer Training Dynamics

Yuandong Tian Research Scientist Director

Meta GenAl

Large Language Models (LLMs)

Conversational AI

Content Generation

AI Agents

Reasoning

facebook Artificial Intelligence [A. Vaswani et al, Attention is all you need, NeurIPS'17]

How does Transformer work?

"Some Nonlinear Transformation"

Black-box versus White-box

White box

What routes should we take?

Start From the First Principle

• Training follows Gradient and its variants (SGD, Adams, etc)

$$\dot{\boldsymbol{w}} \coloneqq \frac{\mathrm{d}\boldsymbol{w}}{\mathrm{d}t} = -\nabla_{\boldsymbol{w}}J(\boldsymbol{w})$$

- First principle → Understand the behavior of the neural networks by checking the gradient dynamics induced by the neural architectures.
- Sounds complicated.. Is that possible? Yes

What Gradient Descent gives us?

What Gradient Descent gives us?

Understanding Attention in 1-layer Setting

 $U = [\boldsymbol{u}_1, \boldsymbol{u}_2, \dots \boldsymbol{u}_M]^T$: token embedding matrix $\widehat{\boldsymbol{u}}_T = \sum_{t=1}^{T-1} b_{tT} \boldsymbol{u}_{x_t} = U^T X^T \boldsymbol{b}_T$ Decoding & Softmax Normalization Self-attention $b_{tT} := \frac{\exp(\boldsymbol{u}_{x_T}^\top W_Q W_K^\top \boldsymbol{u}_{x_t} / \sqrt{d})}{\sum_{t=1}^{T-1} \exp(\boldsymbol{u}^\top W_Q W_K^\top \boldsymbol{u}_{x_t} / \sqrt{d})}$ χ_T χ_1 x_2 x_{T-1} x_{T+1} Contextual tokens Last/query token Next token Normalized version $\widetilde{\boldsymbol{u}}_T = U^T LN(X^T \boldsymbol{b}_T)$ **Objective:** $\max_{W_K, W_Q, W_V, U} J = \mathbb{E}_D \left[\boldsymbol{u}_{\boldsymbol{x}_{T+1}}^T W_V \widetilde{\boldsymbol{u}}_T - \log \sum \exp(\boldsymbol{u}_l^T W_V \widetilde{\boldsymbol{u}}_T) \right]$

facebook Artificial Intelligence

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurIPS'23]

Reparameterization

- Parameters W_K , W_Q , W_V , U makes the dynamics complicated.
- Reparameterize the problem with independent variable Y and Z
 Y = UW_V^TU^T
 - $Z = UW_Q W_K^T U^T$ (pairwise logits of self-attention matrix)
- Then the dynamics becomes easier to analyze

Major Assumptions

- No positional encoding
- Sequence length $T \to +\infty$
- Learning rate of decoder Y larger than self-attention layer Z ($\eta_Y \gg \eta_Z$)
- Other technical assumptions

Distinct tokens: There exists unique n so that $\mathbb{P}(l|n) > 0$ **Common tokens:** There exists multiple n so that $\mathbb{P}(l|n) > 0$

 $\mathbb{P}(l|m,n) = \mathbb{P}(l|n)$ is the conditional probability of token l given last token $x_T = m$ and $x_{T+1} = n$

Assumption: $m = \psi(n)$, i.e., no next token shared among different last tokens

Question: Given the data distribution, how does the self-attention layer behave?

facebook Artificial Intelligence

Co-occurrence probability $\tilde{c}_{l|n_1} := \mathbb{P}(l|m, n_1) \exp(z_{ml})$

Initial condition: $z_{ml}(0) = 0$

 z_m : All logits of the contextual tokens when attending to last token $x_T = m$

Common Token Suppression

(a) $\dot{z_{ml}} < 0$, for common token l

Winners-emergence

(a) $\dot{z_{ml}} < 0$, for common token l

(b) $\dot{z_{ml}} > 0$, for distinct token l

Learnable TF-IDF (Term Frequency, Inverse Document Frequency)

Winners-emergence

(a) $\dot{z_{ml}} < 0$, for common token l

(b) $\dot{z_{ml}} > 0$, for distinct token l

(c) $z_{ml}(t)$ grows faster with larger $\mathbb{P}(l|m,n)$

Attention looks for **discriminative** tokens that **frequently co-occur** with the query.

Winners-emergence

(c) $z_{ml}(t)$ grows faster with larger $\mathbb{P}(l|m,n)$

Theorem 3 Relative gain $r_{l/l'|n}(t) \coloneqq \frac{\tilde{c}_{l|n}^2(t)}{\tilde{c}_{l'|n}^2(t)} - 1$ has a close form:

$$r_{l/l'|n}(t) = r_{l/l'|n}(0)\chi_l(t)$$

If l_0 is the dominant token: $r_{l_0/l|n}(0) > 0$ for all $l \neq l_0$ then

$$e^{2f_{nl_0}^2(0)B_n(t)} \le \chi_{l_0}(t) \le e^{2B_n(t)}$$

where $B_n(t) \ge 0$ monotonously increases, $B_n(0) = 0$

(c) $z_{ml}(t)$ grows faster with larger $\mathbb{P}(l|m,n)$

Theorem 3 Relative gain $r_{l/l'|n}(t) \coloneqq \frac{\tilde{c}_{l|n}^2(t)}{\tilde{c}_{l'|n}^2(t)} - 1$ has a close form:

$$r_{l/l'|n}(t) = r_{l/l'|n}(0)\chi_l(t)$$

If l_0 is the dominant token: $r_{l_0/l|n}(0) > 0$ for all $l \neq l_0$ then

$$e^{2f_{nl_0}^2(0)B_n(t)} \le \chi_{l_0}(t) \le e^{2B_n(t)}$$

where $B_n(t) \ge 0$ monotonously increases, $B_n(0) = 0$

Theorem 4 When $t \to +\infty$, $B_n(t) \sim \ln\left(C_0 + 2K\frac{\eta_z}{\eta_Y}\ln^2\left(\frac{M\eta_Y t}{K}\right)\right)$ **Attention scanning:** When training starts, $B_n(t) = O(\ln t)$

Attention snapping: When $t \ge t_0 = O\left(\frac{2K \ln M}{\eta_Y}\right)$, $B_n(t) = O(\ln \ln t)$

(1) η_z and η_Y are large, $B_n(t)$ is large and attention is sparse

(2) Fixing η_z , large η_Y leads to slightly small $B_n(t)$ and denser attention

facebook Artificial Intelligence

Larger learning rate η_z leads to faster phase transition

$$B_n(t) \sim \ln\left(C_0 + 2K\frac{\eta_z}{\eta_Y}\ln^2\left(\frac{M\eta_Y t}{K}\right)\right)$$

Simple Real-world Experiments

WikiText2 (original parameterization)

Figure 7: Attention patterns in the lowest self-attention layer for 1-layer (top) and 3-layer (bottom) Transformer trained on WikiText2 using SGD (learning rate is 5). Attention becomes sparse over training.

Further study of sparse attention → Deja Vu, H2O and StreamingLLM

[Z. Liu et al, Deja vu: Contextual sparsity for efficient LLMs at inference time, ICML'23 (oral)]
 [Z. Zhang et al, H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models, NeurIPS'23]
 [G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR'24]

How to get rid of the assumptions?

- A few annoying assumptions in the analysis
 - No residual connections
 - No embedding vectors
 - The decoder needs to learn faster than the self-attention ($\eta_Y \gg \eta_Z$).
 - Single layer analysis
- How to get rid of them?
- New research work: **JoMA**

JoMA: <u>JO</u>int Dynamics of <u>MLP/A</u>ttention layers

Main Contributions:

- 1. Find a joint dynamics that connects MLP with self-attention.
- 2. Understand self-attention behaviors for linear/nonlinear activations.
- 3. Explain how data hierarchy is learned in multi-layer Transformers.

JoMA Settings

$$oldsymbol{f} = U_C oldsymbol{b} + oldsymbol{u}_q$$

 U_C and $oldsymbol{u}_q$ are embeddings

 $h_k = \phi(\boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{f})$

$$\boldsymbol{b} = \sigma(\boldsymbol{z}_q) \circ \boldsymbol{x}/A$$

$$\begin{cases} \text{SoftmaxAttn: } b_l = \frac{x_l e^{z_q l}}{\sum_l x_l e^{z_q l}} \\ \text{ExpAttn: } b_l = x_l e^{z_q l} \\ \text{LinearAttn: } b_l = x_l z_{ql} \end{cases}$$

Assumption (Orthogonal Embeddings $[U_C, u_q]$)

Cosine similarity between embedding vectors at different layers.

JoMA Dynamics

Theorem 1 (JoMA). Let $v_k := U_C^\top w_k$, then the dynamics of Eqn. 3 satisfies the invariants:

• <u>Linear attention</u>. The dynamics satisfies $\boldsymbol{z}_m^2(t) = \sum_k \boldsymbol{v}_k^2(t) + \boldsymbol{c}$.

- Exp attention. The dynamics satisfies $\boldsymbol{z}_m(t) = \frac{1}{2} \sum_k \boldsymbol{v}_k^2(t) + \boldsymbol{c}$.
- Softmax attention. If $\bar{\mathbf{b}}_m := \mathbb{E}_{q=m}[\mathbf{b}]$ is a constant over time and $\mathbb{E}_{q=m}\left[\sum_k g_{h_k} h'_k \mathbf{b} \mathbf{b}^{\top}\right] = \bar{\mathbf{b}}_m \mathbb{E}_{q=m}\left[\sum_k g_{h_k} h'_k \mathbf{b}\right]$, then the dynamics satisfies $\mathbf{z}_m(t) = \frac{1}{2}\sum_k \mathbf{v}_k^2(t) \|\mathbf{v}_k(t)\|_2^2 \bar{\mathbf{b}}_m + \mathbf{c}$.

Under zero-initialization ($\boldsymbol{w}_k(0) = 0$, $\boldsymbol{z}_m(0) = 0$), then the time-independent constant $\boldsymbol{c} = 0$.

There is residual connection.

Joint dynamics works for any learning rates between self-attention and MLP layer. No assumption on the data distribution.

Verification of JoMA dynamics

 $z_m(t)$: Real attention logits $\hat{z}_m(t)$: Estimated attention logits by JoMA

$$\hat{\boldsymbol{z}}_{m}(t) = \frac{1}{2} \sum_{k} \boldsymbol{v}_{k}^{2}(t) - \|\boldsymbol{v}_{k}(t)\|_{2}^{2} \overline{\boldsymbol{b}}_{m} + \boldsymbol{c}$$

$$\hat{\boldsymbol{z}}_{m1}(t) \qquad \hat{\boldsymbol{z}}_{m2}(t)$$

Implication of Theorem

Key idea: folding self-attention into MLP

 \rightarrow A Transformer block becomes a modified MLP

Saliency is defined as
$$\Delta_{lm} = \mathbb{E}[g|l, m] \cdot \mathbb{P}[l|m]$$

Nonlinear case (ϕ nonlinear, K = 1)

Most salient feature grows, and others catch up (Attention becomes sparser and denser)

facebook Artificial Intelligence

Discriminancy

CoOccurrence

JoMA for Linear Activation

Theorem 2

We can prove
$$\frac{\operatorname{erf}(v_l(t)/2)}{\Delta_{lm}} = \frac{\operatorname{erf}(v_{l'}(t)/2)}{\Delta_{l'm}}$$
 $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt \in [-1,1]$

Only the most salient token $l^* = \operatorname{argmax} |\Delta_{lm}|$ of \boldsymbol{v} goes to $+\infty$ other components stay finite.

 $\dot{\boldsymbol{v}} = \boldsymbol{\Delta}_m \circ \exp\left(\frac{\boldsymbol{v}^2}{2}\right)$ Modified MLP (lower layer)

facebook Artificial Intelligence

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurIPS'23]

What if we have more nodes (K > 1)?

• $V = U_C^{\top} W \in \mathbb{R}^{M_C \times K}$ and the dynamics becomes

$$\dot{V} = \frac{1}{A} \operatorname{diag}\left(\exp\left(\frac{V \circ V}{2}\right) \mathbf{1}\right) \Delta \qquad \Delta = [\Delta_1, \Delta_2, \dots, \Delta_K], \qquad \Delta_k = \mathbb{E}[g_k \mathbf{x}]$$

We can prove that V gradually becomes low rank

• The growth rate of each row of V varies widely.

Due to $\exp\left(\frac{V \circ V}{2}\right)$, the weight gradient \dot{V} can be even more low-rank \rightarrow GaLore

GaLore: Pre-training 7B model on RTX 4090 Memory Comparsion 60 Rank Retain grad Memory **BF16** Adafactor 8-bit AdamW Yes 40GB 50 8-bit Adam Memory cost (GB) 8-bit GaLore 16 Yes 28GB 8-bit GaLore (retaining grad) 8-bit GaLore 128 Yes 29GB 8-bit GaLore 30 16-bit GaLore 128 Yes 30GB RTX 4090 16-bit GaLore 128 No 18GB 208-bit GaLore 1024 Yes 36GB 10 * SVD takes around 10min for 7B model, but runs every T=500-1000 steps. 350M 1B**3**B 7BThird-party evaluation by @llamafactory ai Model Size

Token/s

1434

1532

1532

1615

1587

1238

Memory Saving with GaLore

facebook

<u>GaLore</u>

 $\begin{array}{l} G_t \leftarrow -\nabla_W \phi(W_t) \\ \text{If t } \% \text{ T == 0:} \\ \text{Compute } P_t = \text{SVD}(G_t) \in \mathbb{R}^{m \times r} \\ R_t \leftarrow P_t^T G_t \quad \{\text{project}\} \\ \tilde{R}_t \leftarrow \rho(R_t) \quad \{\text{Adam in low-rank}\} \\ \tilde{G}_t \leftarrow P_t \tilde{R}_t \quad \{\text{project-back}\} \\ W_{t+1} \leftarrow W_t + \eta \tilde{G}_t \end{array}$

	Memory Usage	Weight (W)	Optim States (M_t, V_t)	Projection (<i>P</i>)	Total
	Full-rank	mn	2 <i>mn</i>	0	3 <i>mn</i>
	Low-rank adaptor	mn + mr + nr	2(mr + nr)	0	mn + 3(mr + nr)
	GaLore	mn	2nr	mr	mn + mr + 2nr
Ar	tificial Intelligence	$\mathbf{\hat{f}}_{W_t}$	$\mathbf{\hat{R}}_{t}$	$\mathbf{\hat{P}}_t$	

Pre-training Results (LLaMA 7B)

Params	Hidden	Intermediate	Heads	Layers	Steps	Data amount
60M	512	1376	8	8	10K	1.3 B
130M	768	2048	12	12	20K	$2.6~\mathrm{B}$
350M	1024	2736	16	24	60K	$7.8~\mathrm{B}$
$1 \mathrm{B}$	2048	5461	24	32	100K	$13.1 \mathrm{~B}$
$7 \mathrm{B}$	4096	11008	32	32	150K	$19.7~\mathrm{B}$

		Mem	40K	80K	120K	150K
6	8-bit GaLore	18G	17.94	15.39	14.95	14.65
	8-bit Adam	26G	18.09	15.47	14.83	14.61
-	Tokens (B)		5.2	10.5	15.7	19.7

* Experiments are conducted on 8 x 8 A100

	60M	130M	350M	1B
Full-Rank	34.06 (0.36G)	25.08 (0.76G)	18.80 (2.06G)	15.56 (7.80G)
GaLore	34.88 (0.24G)	25.36 (0.52G)	18.95 (1.22G)	15.64 (4.38G)
Low-Rank	78.18 (0.26G)	45.51 (0.54G)	37.41 (1.08G)	142.53 (3.57G)
LoRA	34.99 (0.36G)	33.92 (0.80G)	25.58 (1.76G)	19.21 (6.17G)
ReLoRA	37.04 (0.36G)	29.37 (0.80G)	29.08 (1.76G)	18.33 (6.17G)
r/d_{model}	128 / 256	256 / 768	256 / 1024	512 / 2048
Training Tokens	1.1 B	2.2B	6.4B	13.1B

* On LLaMA 1B, ppl is better (~14.97) with ½ rank (1024/2048)

JoMA for Nonlinear Activation

Theorem 3

If x is sampled from a mixture of C isotropic distributions, (i.e., "local salient/non-salient map"), then

$$\dot{\boldsymbol{v}} = \frac{1}{\|\boldsymbol{v}\|_2} \sum_c a_c \theta_1(r_c) \overline{\boldsymbol{x}}_c + \frac{1}{\|\boldsymbol{v}\|_2^3} \sum_c a_c \theta_2(r_c) \boldsymbol{v}$$

Here $a_c \coloneqq \mathbb{E}_{q=m,c}[g_{h_k}]\mathbb{P}[c]$, $r_c = v^{\top}\overline{x}_c + \int_0^t \mathbb{E}_{q=m}[g_{h_k}h'_k]dt$, and θ_1 and θ_2 depends on nonlinearity

What does the dynamics look like?

$$\dot{\boldsymbol{v}} = (\boldsymbol{\mu} - \boldsymbol{v}) \circ \exp\left(\frac{\boldsymbol{v}^2}{2}\right)$$

 $\mu \sim \overline{x}_c$: Critical point due to nonlinearity (one of the cluster centers)

 $\overline{x_1}$

0000

0

 \overline{x}_2

JoMA for Nonlinear activation $\dot{v} = (\mu - v) \circ \exp\left(\frac{v^2}{2}\right)$

Theorem 4

Salient components grow much faster than non-salient ones:

 $\frac{\text{ConvergenceRate}(j)}{\text{ConvergenceRate}(k)} \sim \frac{\exp(\mu_j^2/2)}{\exp(\mu_k^2/2)}$

ConvergenceRate $(j) \coloneqq \ln 1/\delta_j(t)$ $\delta_j(t) \coloneqq 1 - v_j(t)/\mu_j$

Nonlinear

Modified

MLP (lower laver)
JoMA for Nonlinear activation $\dot{v} = (\mu - v) \circ \exp\left(\frac{v^2}{2}\right)$

Nonlinear

Modified

MLP (lower layer)

Real-world Experiments

Real-world Experiments

facebook Artificial Intelligence

Stable Rank of the lower layer of MLP shows the "bouncing back" effects as well.

Why is this "bouncing back" property useful?

It seems that it only slows down the training??

Not useful in 1-layer, but useful in multiple Transformer layers!

Data Hierarchy & Multilayer Transformer

Data Hierarchy & Multilayer Transformer

Theorem 5
$$\mathbb{P}[l|m] \approx 1 - \frac{H}{L}$$

H: height of the common latent ancestor (CLA) of l & m

L: total height of the hierarchy

Learning the current hierarchical structure by

facebook Artificial Intelligence

slowing down the association of tokens that are not directly correlated

Shallow Latent Distribution

Hierarchy-agnostic Learning

Verification of Hierarchical Intuitions

	$C=20,~N_{ m ch}=$	$= 2 \qquad \qquad C = 2$	$C=20,~N_{ m ch}=3$		$C=30,\ N_{ m ch}=2$	
(N_0,N_1)	(10, 20) $(20,$	(10, 20)	(20, 30)	(10, 20)	(20, 30)	
NCorr $(s = 0)$	$0.99 \pm 0.01 \mid 0.97$	$\pm 0.02 \mid 1.00 \pm 0.0$	$0 \mid 0.96 \pm 0.02 \mid$	0.99 ± 0.01	0.94 ± 0.04	
NCorr $(s=1)$	0.81 ± 0.05 0.80	$\pm 0.05 \mid 0.69 \pm 0.0$	$5 0.68 \pm 0.04$	0.73 ± 0.08	0.74 ± 0.03	
	$C = 30 N_{\rm ch} =$	C = 5	$C=50,~N_{ m ch}=2$		$C=50,\ N_{ m ch}=3$	
(N_0,N_1)	(10, 20) $(20,$	(10, 20)	(20, 30)	(10, 20)	(20, 30)	
NCorr $(s = 0)$ NCorr $(s = 1)$	$ \begin{vmatrix} 0.99 \pm 0.01 \\ 0.72 \pm 0.04 \end{vmatrix} \begin{vmatrix} 0.95 \\ 0.66 \end{vmatrix} $	$\begin{array}{c c} \pm \ 0.03 \\ \pm \ 0.02 \end{array} \middle \begin{array}{c} 0.99 \pm 0.0 \\ 0.58 \pm 0.02 \end{array}$	$\begin{array}{c c c}1 & 0.95 \pm 0.03 \\2 & 0.55 \pm 0.01\end{array}$	$\begin{array}{c} 0.99 \pm 0.01 \\ 0.64 \pm 0.02 \end{array}$	$\begin{array}{c} 0.95 \pm 0.03 \\ 0.61 \pm 0.04 \end{array} \right $	

Table 1: Normalized correlation between the latents and their best matched hidden node in MLP of the same layer. All experiments are run with 5 random seeds.

Take away messages

• Architecture \checkmark training dynamics \checkmark

- Nonlinearity is not formidable!
 - Transformer can be analyzed following gradient descent rules
- Property of self-attention
 - Attention becomes sparse over training
 - Inductive bias
 - Favor the learning of strong co-occurred tokens
 - Deter the learning of weakly co-occurred tokens, avoiding spurious correlation.
- Key insights lead to broad applications

What Gradient Descent gives us?

Dichotomy: Symbolic and Neural Representation

Neural Representation

Symbolic Representation $\nabla \cdot \mathbf{E} = \frac{\rho_{v}}{\varepsilon} \qquad (Gauss'Law)$ $\nabla \cdot \mathbf{H} = 0 \qquad (Gauss'Law \text{ for Magnetism})$ $\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t} \qquad (Faraday's Law)$ $\nabla \times \mathbf{H} = \mathbf{J} + \varepsilon \frac{\partial \mathbf{E}}{\partial t} \qquad (Ampere's Law)$

Unification of Symbolic and Neural Representation

Debate: Is LLM doing retrieval or true reasoning?

LLM shows emergent behaviors!!

facebook Artificial Intelligence

https://medium.com/@fenjiro/large-language-models-llms-emergent-abilities-chatgpt-talks-moroccan-dialect-as-an-example-c945f93aa63a

Debate: Is LLM doing retrieval or true reasoning?

...

...

Yann LeCun 🤣 🙉

Do LLMs perform reasoning or approximate retrieval? There is a continuum between the two, and Auto-Regressive LLMs are largely on the retrieval side.

Subbarao Kambhampati (కంభంపాటి సుబ్బారావు) 🤣 @rao2z

Emergent Abilities (noun): The preferred euphemism for what your LLM does, when saying "approximate retrieval" sounds too unsexy.

#AIAphorisms

LLM is just doing retrievals!!

	o1-preview -17.5
	Gemma-7b-it -20.6
	Mistral-7b-v0.3-24.0
	Mistral-7b-v0.1 -28.3
	o1-mini -29.1
	Mistral-7b-instruct-v0.1 -29.6
	Gemma2-2b-it -31.8
	GPT-40 -32.0
	Gemma2-2b -38.6
S	GPT-4o-mini -40.0
ode	Mistral-7b-instruct-v0.3 -40.3
Μ	Phi-2 -44.9
	Llama3-8b-instruct -57.4
	Phi-3-medium-128k-instruct -57.8
	Mathstral-7b-v0.1 -59.7
	Gemma2-27b-it -59.7
	Phi-3.5-mini-instruct -62.5
	Gemma2-9b-it -63.0
	Gemma2-9b -63.0
	Phi-3-small-128k-instruct -64.0
	Phi-3-mini-128k-instruct -65.7
(0 -10 -20 -30 -40 -50 -60
	$GSM8K \rightarrow GSM-NoOp Accuracy Drop(\%)$

Concrete Example: Modular Addition

$a + b = c \mod d$

Does neural network have an *implicit table* to do retrieval?

Concrete Example: Modular Addition

[T. Zhou et al, *Pre-trained Large Language Models Use Fourier Features to Compute Addition*, NeurIPS'24] [S. Kantamneni, *Language Models Use Trigonometry to Do Addition*, arXiv'25]

Problem Setup

MSE Loss: $Min \| \text{Output} - \text{one-hot}(\mathbf{c}) \|_2$

(Scaled) Fourier Transform

$$z_{akj} = \sum_{m=0}^{d-1} w_{amj} e^{imk/d}$$

$$z_{bkj} = \sum_{m=0}^{d-1} w_{bmj} e^{\mathrm{i}mk/d}$$

$$z_{ckj} = \sum_{m=0}^{d-1} w_{cmj} e^{imk/d}$$

k: frequency

$$\{W_a, W_b, W_c\}$$
 are real

Hermitian condition holds

$$z_{akj} = \overline{z_{a,-k,j}}$$

$$z_{bkj} = \overline{z_{b,-k,j}}$$

$$z_{ckj} = \overline{z_{c,-k,j}}$$

What a Gradient Descent Solution look like?

What a Gradient Descent Solution look like?

What a Gradient Descent Solution look like?

$|z_c|$ at t = 2900

More Statistics on Gradient Descent Solutions

facebook Artificial Intelligence

Effect of Weight Decay

facebook Artificial Intelligence

Structure of Loss Functions

MSE loss $\ell(z) = d^{-1} \sum_{k \neq 0} \ell_k(z) + 1 - 1/d$

$$\ell_{k}(\mathbf{z}) = -2r_{kkk} + \sum_{k_{1}k_{2}} \left| r_{k_{1}k_{2}k} \right|^{2} + \frac{1}{4} \left| \sum_{p \in \{a,b\}} \sum_{k'} r_{p,k',-k',k} \right|^{2} + \frac{1}{4} \sum_{m \neq 0} \sum_{p \in \{a,b\}} \left| \sum_{k'} r_{p,k',m-k',k} \right|^{2}$$

Term $r_{k_1k_2k}(\mathbf{z}) \coloneqq \sum_j z_{ak_1j} z_{bk_2j} z_{ckj}$ and $r_{pk_1k_2k}(\mathbf{z}) \coloneqq \sum_j z_{pk_1j} z_{pk_2j} z_{ckj}$

Structure of Loss Functions

MSE loss $\ell(z) = d^{-1} \sum_{k \neq 0} \ell_k(z) + 1 - 1/d$

$$\ell_{k}(\mathbf{z}) = -2r_{kkk} + \sum_{k_{1}k_{2}} \left| r_{k_{1}k_{2}k} \right|^{2} + \frac{1}{4} \left| \sum_{p \in \{a,b\}} \sum_{k'} r_{p,k',-k',k} \right|^{2} + \frac{1}{4} \sum_{m \neq 0} \sum_{p \in \{a,b\}} \left| \sum_{k'} r_{p,k',m-k',k} \right|^{2}$$

Term $r_{k_1k_2k}(\mathbf{z}) \coloneqq \sum_j z_{ak_1j} z_{bk_2j} z_{ckj}$ and $r_{pk_1k_2k}(\mathbf{z}) \coloneqq \sum_j z_{pk_1j} z_{pk_2j} z_{ckj}$

Sufficient conditions of Global Optimizers:

$$R_{g}$$
 R_{c}
 R_{n}
 R_{*}
 $r_{kkk} = 1$
 $r_{k_1k_2k} = 0$
 $r_{pk',-k',k} = 0$
 $r_{pk',m-k',k} = 0$

facebook Artificial Intelligence

How to Optimize?

The objective is highly nonlinear !! However, nice *algebraic structures* exist!

How to Optimize?

The objective is highly nonlinear !! However, nice *algebraic structures* exist!

 $\mathcal{Z} = \bigcup_{q \ge 0} \mathcal{Z}_q$: All 2-layer networks with different number of hidden nodes

How to Optimize?

The objective is highly nonlinear !! However, nice *algebraic structures* exist!

 $\mathcal{Z} = \bigcup_{q \ge 0} \mathcal{Z}_q$: All 2-layer networks with different number of hidden nodes **Ring addition +:** Concatenate hidden nodes **Ring multiplication *:** Kronecker production along the hidden dimensions

 $\langle \mathcal{Z}, +, * \rangle$ is a *semi-ring*

A function $r(\mathbf{z}): \mathcal{Z} \mapsto \mathbb{C}$ is a *ring homomorphism*, if

- r(1) = 1
- $r(z_1 + z_2) = r(z_1) + r(z_2)$
- $r(z_1 * z_2) = r(z_1)r(z_2)$

A function $r(z): \mathcal{Z} \mapsto \mathbb{C}$ is a *ring homomorphism*, if

- r(1) = 1
- $r(z_1 + z_2) = r(z_1) + r(z_2)$
- $r(\mathbf{z}_1 * \mathbf{z}_2) = r(\mathbf{z}_1)r(\mathbf{z}_2)$

$\bigcirc r_{k_1k_2k}(z)$ and $r_{pk_1k_2k}(z)$ are <u>ring</u> <u>homomorphisms</u>!

A function $r(z): \mathcal{Z} \mapsto \mathbb{C}$ is a *ring homomorphism*, if

- r(1) = 1
- $r(z_1 + z_2) = r(z_1) + r(z_2)$
- $r(\mathbf{z}_1 * \mathbf{z}_2) = r(\mathbf{z}_1)r(\mathbf{z}_2)$

$$\bigcirc r_{k_1k_2k}(z)$$
 and $r_{pk_1k_2k}(z)$ are ring

<u>homomorphisms</u>! MSE Loss

$$\ell_{k}(\mathbf{z}) = -2r_{kkk} + \sum_{k_{1}k_{2}} \left| r_{k_{1}k_{2}k} \right|^{2} + \frac{1}{4} \left| \sum_{p \in \{a,b\}} \sum_{k'} r_{p,k',-k',k} \right|^{2} + \frac{1}{4} \sum_{m \neq 0} \sum_{p \in \{a,b\}} \left| \sum_{k'} r_{p,k',m-k',k} \right|^{2}$$

A function $r(z): \mathcal{Z} \mapsto \mathbb{C}$ is a *ring homomorphism*, if

- r(1) = 1
- $r(z_1 + z_2) = r(z_1) + r(z_2)$
- $r(z_1 * z_2) = r(z_1)r(z_2)$

$$Orgin{array}{c} r_{k_1k_2k}(z) \text{ and } r_{pk_1k_2k}(z) \text{ are } \underline{ring}$$

<u>homomorphisms</u>! MSE Loss

$$\ell_{k}(\mathbf{z}) = -2r_{kkk} + \sum_{k_{1}k_{2}} \left| r_{k_{1}k_{2}k} \right|^{2} + \frac{1}{4} \left| \sum_{p \in \{a,b\}} \sum_{k'} r_{p,k',-k',k} \right|^{2} + \frac{1}{4} \sum_{m \neq 0} \sum_{p \in \{a,b\}} \left| \sum_{k'} r_{p,k',m-k',k} \right|^{2}$$

Partial solution \mathbf{z}_1 satisfies $r_{k_1k_2k}(\mathbf{z}_1) = 0$

Partial solution \mathbf{z}_2 satisfies $r_{pk',-k',k}(\mathbf{z}_2) = 0$

A function $r(z): \mathcal{Z} \mapsto \mathbb{C}$ is a *ring homomorphism*, if

- r(1) = 1
- $r(z_1 + z_2) = r(z_1) + r(z_2)$
- $r(z_1 * z_2) = r(z_1)r(z_2)$

$$\bigcirc r_{k_1k_2k}(z)$$
 and $r_{pk_1k_2k}(z)$ are ring

<u>homomorphisms</u>! MSE Loss

$$\ell_{k}(\mathbf{z}) = -2r_{kkk} + \sum_{k_{1}k_{2}} \left| r_{k_{1}k_{2}k} \right|^{2} + \frac{1}{4} \left| \sum_{p \in \{a,b\}} \sum_{k'} r_{p,k',-k',k} \right|^{2} + \frac{1}{4} \sum_{m \neq 0} \sum_{p \in \{a,b\}} \left| \sum_{k'} r_{p,k',m-k',k} \right|^{2}$$
Partial solution \mathbf{z}_{1} satisfies $r_{k_{1}k_{2}k}(\mathbf{z}_{1}) = 0$
Partial solution \mathbf{z}_{2} satisfies $r_{pk',-k',k}(\mathbf{z}_{2}) = 0$

$$\left. \right\} \quad \mathbf{z} = \mathbf{z}_{1} * \mathbf{z}_{2}$$
 satisfies both $r_{k_{1}k_{2}k}(\mathbf{z}) = r_{pk',-k',k}(\mathbf{z}) = 0$
Composing Global Optimizers from Partial Ones

Partial solution #1

 $\mathbf{z}_{syn}^{(k)} \in R_{c} \cap R_{n}$ but $\mathbf{z}_{syn}^{(k)} \notin R_{*}$

Partial solution #2

 $\mathbf{z}_{v}^{(k)} \in R_{*}$

Composing Global Optimizers from Partial Ones

$$\mathbf{z}_{v}^{(k)} \in R_{*}$$

Composing Global Optimizers from Partial Ones

Exemplar constructed global optimizers

Order-6 z_{F6} (2*3)

$$m{z}_{F6} = rac{1}{\sqrt[3]{6}} \sum_{k=1}^{(d-1)/2} m{z}_{
m syn}^{(k)} * m{z}_{
u}^{(k)} * m{y}_k$$

Exemplar constructed global optimizers

Order-6 z_{F6} (2*3)

$$m{z}_{F6} = rac{1}{\sqrt[3]{6}} \sum_{k=1}^{(d-1)/2} m{z}_{
m syn}^{(k)} * m{z}_{
u}^{(k)} * m{y}_k$$

Order-4 $z_{F4/6}$ (2*2) (mixed with order-6)

$$oldsymbol{z}_{F4/6} = rac{1}{\sqrt[3]{6}} \hat{oldsymbol{z}}_{F6}^{(k_0)} + rac{1}{\sqrt[3]{4}} \sum_{k=1, k
eq k_0}^{(d-1)/2} oldsymbol{z}_{F4}^{(k)}$$

.

Exemplar constructed global optimizers

Order-6 z_{F6} (2*3)

$$m{z}_{F6} = rac{1}{\sqrt[3]{6}} \sum_{k=1}^{(d-1)/2} m{z}_{
m syn}^{(k)} * m{z}_{
u}^{(k)} * m{y}_k$$

Order-4 $z_{F4/6}$ (2*2) (mixed with order-6)

Perfect memorization (order-d per frequency)

$$oldsymbol{z}_{F4/6} = rac{1}{\sqrt[3]{6}} \hat{oldsymbol{z}}_{F6}^{(k_0)} + rac{1}{\sqrt[3]{4}} \sum_{k=1, k
eq k_0}^{(d-1)/2} oldsymbol{z}_{F4}^{(k)}$$

$$oldsymbol{z}_a = \sum_{j=0}^{d-1} oldsymbol{u}_a^j, \qquad oldsymbol{z}_b = \sum_{j=0}^{d-1} oldsymbol{u}_b^j \ oldsymbol{z}_M = d^{-2/3} oldsymbol{z}_a * oldsymbol{z}_b$$

4	%not	%non-factorable		error ($\times 10^{-2}$)		solution distribution (%) in factorable ones			
	order-4/6	order-4	order-6	order-4	order-6	$ig oldsymbol{z}_{ u= ext{i}}^{(k)}*oldsymbol{z}_{\xi}^{(k)}$	$ig oldsymbol{z}_{ u= ext{i}}^{(k)} stoldsymbol{z}_{ ext{syn},lphaeta}^{(k)}$	$ig oldsymbol{z}_ u^{(k)} st oldsymbol{z}_{ ext{syn}}^{(k)}$	others
23	0.0+0.0	0.00 ± 0.00	5.71 ± 5.71	0.05 ± 0.01	4.80 ± 0.96	47.07 ± 1.88	11.31 + 1.76	39.80 ± 2.11	1.82 ± 1.82
71	0.0 ± 0.0	0.00 ± 0.00	0.00 ± 0.00	0.03 ± 0.00	5.02 ± 0.25	72.57 ± 0.70	4.00 ± 1.14	21.14 ± 2.14	2.29 ± 1.07
127	0.0 ± 0.0	$1.50{\pm}0.92$	0.00 ± 0.00	0.26 ± 0.14	$0.93{\pm}0.18$	82.96 ± 0.39	$2.25{\pm}0.64$	$ 14.13 \pm 0.87 $	$0.66 {\pm} 0.66$

$$q = 512, wd = 5 \cdot 10^{-5}$$

d	%not order-4/6	%non-fa order-4	ctorable order-6	error (> order-4	$\times 10^{-2}$) order-6	$ig egin{subarray}{c} ext{solution} \ oldsymbol{z}_{ u= ext{i}}^{(k)} st oldsymbol{z}_{\xi}^{(k)} \end{array}$	distribution (%) $ig oldsymbol{z}_{ u=\mathrm{i}}^{(k)} * oldsymbol{z}_{\mathrm{syn},lphaeta}^{(k)}$) in factorabl $ig oldsymbol{z}_{ u}^{(k)} st oldsymbol{z}_{ ext{syn}}^{(k)}$	e ones others
23	$0.0{\pm}0.0$	$0.00 {\pm} 0.00$	5.71 ± 5.71	$0.05{\pm}0.01$	4.80 ± 0.96	47.07 ± 1.88	11.31 ± 1.76	39.80 ± 2.11	1.82 ± 1.82
71	$0.0{\pm}0.0$	$0.00 {\pm} 0.00$	$0.00 {\pm} 0.00$	$0.03{\pm}0.00$	5.02 ± 0.25	72.57 ± 0.70	$4.00 {\pm} 1.14$	21.14 ± 2.14	$2.29 {\pm} 1.07$
127	$0.0{\pm}0.0$	$1.50{\pm}0.92$	0.00 ± 0.00	$ 0.26{\pm}0.14 $	0.93 ± 0.18	$ 82.96 \pm 0.39 $	2.25 ± 0.64	$ 14.13 \pm 0.87 $	$0.66 {\pm} 0.66$

100% of the per-freq solutions are order-4/6

d	%not	%non-factorable		error ($\times 10^{-2}$)		solution distribution (%) in factorable ones			
	order-4/6	order-4	order-6	order-4	order-6	$ig oldsymbol{z}_{ u= ext{i}}^{(k)}*oldsymbol{z}_{\xi}^{(k)}$	$oxed{z_{ u= ext{i}}^{(k)} st oldsymbol{z_{ ext{syn},lphaeta}}}$	$oxed{z}_{ u}^{(k)} st oldsymbol{z}_{ ext{syn}}^{(k)}$	others
23	0.0 ± 0.0	0.00 ± 0.00	$5.71 {\pm} 5.71$	$0.05{\pm}0.01$	4.80 ± 0.96	47.07 ± 1.88	$11.31{\pm}1.76$	$39.80{\scriptstyle\pm2.11}$	1.82 ± 1.82
71	0.0 ± 0.0	$0.00 {\pm} 0.00$	$0.00 {\pm} 0.00$	$0.03{\pm}0.00$	5.02 ± 0.25	72.57 ± 0.70	$4.00 {\pm} 1.14$	21.14 ± 2.14	$2.29{\pm}1.07$
127	0.0 ± 0.0	$1.50{\pm}0.92$	$0.00 {\pm} 0.00$	$0.26{\scriptstyle\pm0.14}$	0.93 ± 0.18	82.96 ± 0.39	$2.25{\pm}0.64$	14.13 ± 0.87	$0.66 {\pm} 0.66$
I	1		1		I I	I	1	1	1

95% of the solutions are factorizable into "2*3" or "2*2"

<i>d</i>	%not %non-factorable		error ($\times 10^{-2}$)		solution distribution (%) in factorable ones				
	order-4/6	order-4	order-6	order-4	order-6	$oxed{z}_{ u=\mathrm{i}}^{(k)}st oldsymbol{z}_{\xi}^{(k)}$	$ig oldsymbol{z}_{ u= ext{i}}^{(k)} stoldsymbol{z}_{ ext{syn},lphaeta}^{(k)}$	$ig oldsymbol{z}_ u^{(k)} st oldsymbol{z}_{ ext{syn}}^{(k)}$	others
23	0.0 ± 0.0	0.00 ± 0.00	5.71 ± 5.71	0.05 ± 0.01	$4.80{\pm}0.96$	47.07 ± 1.88	11.31 ± 1.76	39.80 ± 2.11	1.82 ± 1.82
71	0.0 ± 0.0	0.00 ± 0.00	$0.00 {\pm} 0.00$	$0.03 {\pm} 0.00$	$5.02{\pm}0.25$	$72.57{\pm}0.70$	$4.00 {\pm} 1.14$	21.14 ± 2.14	2.29 ± 1.07
127	0.0 ± 0.0	1.50 ± 0.92	$0.00 {\pm} 0.00$	$0.26{\scriptstyle\pm0.14}$	$0.93{\pm}0.18$	82.96 ± 0.39	$2.25{\pm}0.64$	14.13 ± 0.87	$0.66 {\pm} 0.66$
•	•	·					•		I

Factorization error is very small

<i>d</i>	%not	%non-factorable		$\ \text{ error } (\times 10^{-2})$		solution distribution (%) in factorable ones			
	order-4/6	order-4	order-6	order-4	order-6	$ig oldsymbol{z}_{ u= ext{i}}^{(k)}*oldsymbol{z}_{\xi}^{(k)}$	$ig oldsymbol{z}_{ u= ext{i}}^{(k)} stoldsymbol{z}_{ ext{syn},lphaeta}^{(k)}$	$ig oldsymbol{z}_ u^{(k)} st oldsymbol{z}_{ ext{syn}}^{(k)}$	others
23	0.0 ± 0.0	0.00 ± 0.00	5.71 ± 5.71	$0.05{\pm}0.01$	$4.80{\pm}0.96$	47.07 ± 1.88	$11.31{\pm}1.76$	39.80 ± 2.11	1.82 ± 1.82
71	0.0 ± 0.0	$0.00 {\pm} 0.00$	$0.00 {\pm} 0.00$	$0.03{\pm}0.00$	$5.02{\pm}0.25$	72.57 ± 0.70	$4.00 {\pm} 1.14$	21.14 ± 2.14	$2.29{\pm}1.07$
127	0.0 ± 0.0	$1.50{\pm}0.92$	$0.00 {\pm} 0.00$	$0.26{\scriptstyle\pm0.14}$	$0.93{\pm}0.18$	82.96 ± 0.39	$2.25{\pm}0.64$	14.13 ± 0.87	$0.66 {\pm} 0.66$

98% of the solutions can be factorizable into the constructed forms

Gradient

Dynamics

Theorem [The Occam's Razer] If z = y * z' and both z and z' are global optimal, then there exists a path of zero loss connecting z and z'.

Gradient

Dynamics

Theorem [The Occam's Razer] If z = y * z' and both z and z' are global optimal, then there exists a path of zero loss connecting z and z'.

L2 regularization will push the solution to e * z' (simpler solutions), since $||e * z'||_2 \le ||y * z'||_2$

Another Example: Symbolic from Neural Representation

Task: Learn a 2-layer Transformer for predicting shortest path in the graph

[A. Cohen et al, Spectral Journey: How Transformers Predict the Shortest Path, ICLR Workshop 2025]

What representations it learns?

What representations it learns?

Graph Edge Embedding of various dimensions

Computed edge embedding with trained Transformers

Normalized Correlation > 0.9

Spectral Line Navigator (SLN)

Simple Algorithms of Graph Shortest Path

- 1. Compute Line Graph \tilde{G} of existing graph G
- 2. Compute eigenvectors of normalized Laplacian $L(\tilde{G})$
- 3. i = source
- 4. While $i \neq target$ do $distance(j,k;i) \coloneqq ||v_{ij} - v_{k,target}||_2$ Find $j = \operatorname{argmin}_{j,k} distance(j,k;i)$ Let i = j

>99% optimal for small random graph (size < 10)

o3-mini-high implementation: <u>https://chatgpt.com/share/67b027f9-fb28-8012-aa64-a1f7479134b7</u>

Possible Implications

Do neural networks end up learning more efficient **symbolic representations** that we don't know?

Does gradient descent lead to a solution that can be reached by **advanced algebraic operations**?

Will gradient descent become **obsolete**, eventually?

Thanks!

Thanks!