Reasoning by Superposition:
A Theoretical Perspective on Chain of
Continuous Thought

Hanlin Zhu’, Shibo Hao", Zhiting Hu, Jiantao Jiao, Stuart Russell, Yuandong Tian

Center for
Human-Compatible
Artificial
Intelligence

00 Meta

LLMs on reasoning tasks using CoTl

* LLMs are powerful in many reasoning tasks, especially with chain-of-thought (Col)

Qwen-2.5-72B-Instruct Hard
Accuracy on Zero, 8K, 16K, 32K Context

Standard Prompting Chain-of-Thought Prompting
Model Input Model Input - s:m comtext
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of 0.8 __:__ ;g:
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?
A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls 06
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.)
Q: The cafeteria had 23 apples. If they used 20 to >
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to g
do they have? make lunch and bought 6 more, how many apples S
do they have? < 04
——0\.
Model Output Model Output
0.2
. ; A: The cafeteria had 23 apples originally. They used
A: The answer is 27.
x 20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 +6=9. The
answer is 9.
0.0
5 10 15 20 25 30

Reasoning Step

Figure credit to [1] Figure credit to [2]

LLMs still struggle with more complex reasoning tasks (e.g., longer reasoning steps)

* How to expand existing Col methods to solve more complex problems?

[1] Wei, Jason, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, QuocV. Le, and Denny Zhou. "Chain-of-thought prompting elicits reasoningin large language models." NeurlPS’22
[2] Zhou, Yang, Hongyi Liu, Zhuoming Chen, Yuandong Tian, and Beidi Chen. "GSM-Infinite: How Do Your LLMs Behave over Infinitely Increasing Context Length and Reasoning Complexity?."ICML’25

Chain of continuous thought

Chain-of-Thought (CoT) Chain of Thought (CoconuT)
output token X; Xip1 Xiy2 Xiyi [Answer] [Answer]
(sampling) |
last hidden state
input embedding
input token [Question] = X% = Xiy1 | Xig2 Xigj [Question] <bot> <eot>

Figure credit to [1]

* Continuous Col: directly uses the hidden state as the next input

* Outperforms discrete Cols in various reasoning tasks
* Especially problems with high branching factors/requires searching

* Lacks theoretical understanding of its power and mechanism

[1]1Hao, Shibo, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. "Training large language models to reason in a continuous latent space." COLM’25

Main results

* Construct a 2-layer transformer with Continuous Col that solves
directed graph reachability using O (n) steps (n: # of vertices)

* The best known result for constant-depth transformers with discrete Col
requires 0(n?) steps!

* Insights: Continuous thoughts maintain a “superposition” of
explored vertices, performing a parallel BFS

* Empirical study is aligned with theoretical construction
* Superposition representation emerges during training (no supervision)

[1] Merrill, William, and Ashish Sabharwal. "The expressive power of transformers with chain of thought." arXiv preprintarXiv:2310.07923 (2023).

Problem Definition: Graph reachability

* Given adirected graph G = (V, £), decide whether a node s canreach t
* Many real-world reasoning problem can be abstracted as a graph (e.g., knowledge graph)
* Many theoretical problems can be reduced to it (e.g., Turing machine halting problem)

Step 1

PAPAN

G=,¢&) Search process

Problem Definition: Graph reachability

* Given adirected graph G = (V, £), decide whether a node s canreach t
* Many real-world reasoning problem can be abstracted as a graph (e.g., knowledge graph)
* Many theoretical problems can be reduced to it (e.g., Turing machine halting problem)

Step 1: v orvy ?
(hard to decide which branch)

Step | /O

G=,¢&) Search process

Problem Definition: Graph reachability

* Given adirected graph G = (V, £), decide whether a node s canreach t
* Many real-world reasoning problem can be abstracted as a graph (e.g., knowledge graph)
* Many theoretical problems can be reduced to it (e.g., Turing machine halting problem)

Step 1

Step 1: v orvy ?
(hard to decide which branch)

§ oo

Step 1: v and v, !
(explore both branches
simultaneously)

G=,¢&) Search process

Prompt format

Given two candidate destination nodes, decide which one can be reached

directed edge special edge token
\
[) I
<bos> s; 4 <e> S, ty <e> e Sm tm <e>
source node target node
g /)
e

Description of the Graph

Prompt format

Given two candidate destination nodes, decide which one can be reached

question token reasoning token
<bos> Graph Description <Q> <R> S

11 !

candidate targets start node

Prompt format

Given two candidate destination nodes, decide which one can be reached

» Decoding

r Discrete Col

v, v, V3 eee <A> (tqrget

<bos> Graph Description Start / Target Description <

Continuous Col

\ latent latent e e e <A> target

Main theorem

Theorem (informal)

Secret Sauce: Superposition of the embeddings!

Mechanism in a single Atth-MLP block

4 N Copy contents to buffer spaces
buffer —x, 4" x4
content
o S X1 . X3 Xt-1 Xt
J
simplified
embedding _
Attend to several previous tokens
space
Attention as an aggregator: MLP as afilter:
* Aggregate the information along the sequence axis. * Filterout the involved embedding

* Form a superposition of concepts. that are not strong enough

Mechanism in a single Atth-MLP block

MLP as a filter

h = Z 2,4, B Z {1, > £},
V
veVoc h' = W,a(W,h) veVoc
= Ua(UTh) Eliminate noise

U = [uy, Uy, ..., Uy] : the embedding matrix

First-layer attention

Goal: collect all history information together into embedding space.

embedding

space

/buffer‘l A

positiona
encoding
-

l

J

<bos>

[tc]

copy
Si
t;

Si tl <e>

P3i-1 P3i DP3i+1
attend

Continuous thought at step c

Special answer token

C1

P3m+3

. C1,Co
Co <R> S [tl] [tc] <A>
P3m+4 DP3m+5 Pr-1 Pr
J

FFN layers: removing low-attended embeddings

Second-layer attention

embedding
space

content

/buffer’l A

<bos>

small attention
ifs; €V,

large attention

Sj sy € Ve Superposition of all nodes that
add together can be reached within ¢ steps
L
1 -
~e” S [¢c] [tc] — Uy

One-step expansion of V,

FFN layers: removing low-attended embeddings

Continuous Col: Decoding as search

Autoregressive Decoding

[t:] =
embedding VEV,
space
/buffer1\
————————— add
buffer 2 €1, C2
content <s> <e> <Q> C1 Cy <R> s [t1] .. [t]
_ J

“Measure” [t.] using ¢; and ¢,

The target c that overlaps with reachable set will be picked and returned

u Reachable set from
/ |v v the starting point

[tc]

Autoregressive Decoding

[t:] =
embedding VEV,
space
/buffer1\
————————— add
buffer 2 €1, C2
content <s> <e> <Q> C1 Cy <R> s [t1] .. [t]
_ J

“Measure” [t.] using ¢; and ¢,

The target c that overlaps with reachable set will be picked and returned

u Reachable set from
/ |v v the starting point

[tc]

Comparison of continuous and discrete Col

* Dataset: a subset of ProsQAl'!, symbolic sequence, 3-4 steps
* Model: GPT2-style decoder

* Training: multi-stage training, stage i predicts i-th node in the
optimal path using previous thoughts

* Overall results: 2-layer transformer with 2 No CoT
continuous Col (Coconut) beats 12-layer ¢
transformer with discrete CoT (CoT*) 07

[1] Hao, Shibo, Sainbayar Sukhbaatar, Dilia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. "Training large language models to reason in a continuous latent space." arXiv preprintarXiv:2412.06769 (2024).

Layer 1
Attention Patterns

<s>
5
15

<e>

Input Tokens (Query)

11
16

<e>

<e>
14
17

<e>

<e>

Input Tokens (Key)

(9

w o
Attention Weight

Layer 1
Attention Patterns

<s>

Input Tokens

<e>

<e>

<S>

15
<e>

—i
—i

O — ™M <
=R A

Input Tokens (Key)

I~
—

<e>

14
<e>

B (%)

w
Attention Weight

Layer 1
Attention Patterns

<s>
5
15

<e>

Input Tpkens (Query)

<e>

<e>

<S>

<e>

O — ™M <

Input Tokens (Key)

I~
—

<e>

14
<e>

(9

w o
Attention Weight

Superposition emerges during training

Inner products of the current thought t,] = 1
and each node embedding

Continuous thought 1

Mot Reachable (-0.28)
Reachable (3.62)

1000 Frontier (5.09)

Optimal {6.50)

800

600

400 4

200 A

U T T T T
-5 0 5 10
Continuous thought 3

700 - Mot Reachable (-0.02)
Reachable {0.68)

600 4 Frentier (1.87)
Optimal (6.19)

500 -

400 A

300 A

200 1

100

ﬂ T L T T
-5 0 5 10

COCONUT

800 1

600 1

400 1

200 1

400

300 A

200 1

100

0

Continuous thought 2

Mot Reachable {-0.21)
Reachable {1.50})
Frontier {2.52)
Optimal (4.75)

=5 0 5

Continuous thought 4

10

Mot Reachable (-0.14)
Reachable (0.51)
Frontier (2.06)
Optimal (9.38)

Four Kinds of Nodes
* Reachable node (reachable from
start node within i-th steps)
* Frontier node (exactly i-th steps)

 Optimal node (on the shortest
path from the start node to the
destination node)

e Non-reachable node

Coconut automatically learns to
encode frontier/optimal nodes (emerging!)

Discussions

* Continuous thoughts can be powerful but hard to control

* E.g., superposition states can be a subset of tokens (with different
weights)

* |t can emerge even if the training data only contain single discrete traces

* Requires a deeper understanding if we want to use it reliably

* Mechanism for more general tasks
* How superposition emerges during training and how to control it

Thanks!

() £

	Slide 1: Reasoning by Superposition: A Theoretical Perspective on Chain of Continuous Thought
	Slide 2: LLMs on reasoning tasks using CoT
	Slide 3: Chain of continuous thought
	Slide 4: Main results
	Slide 5: Problem Definition: Graph reachability
	Slide 6: Problem Definition: Graph reachability
	Slide 7: Problem Definition: Graph reachability
	Slide 8: Prompt format
	Slide 9: Prompt format
	Slide 10: Prompt format
	Slide 11: Main theorem
	Slide 12: Mechanism in a single Attn-MLP block
	Slide 13: Mechanism in a single Attn-MLP block
	Slide 14: First-layer attention
	Slide 15: Second-layer attention
	Slide 16: Continuous CoT: Decoding as search
	Slide 17: Autoregressive Decoding
	Slide 18: Autoregressive Decoding
	Slide 19: Comparison of continuous and discrete CoT
	Slide 20: Layer 1 Attention Patterns
	Slide 21: Layer 1 Attention Patterns
	Slide 22: Layer 1 Attention Patterns
	Slide 23: Superposition emerges during training
	Slide 24: Discussions
	Slide 25: Thanks!

