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LLMs on reasoning tasks using CoTl

* LLMs are powerful in many reasoning tasks, especially with chain-of-thought (Col)
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LLMs still struggle with more complex reasoning tasks (e.g., longer reasoning steps)

* How to expand existing Col methods to solve more complex problems?

[1] Wei, Jason, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, QuocV. Le, and Denny Zhou. "Chain-of-thought prompting elicits reasoningin large language models." NeurlPS’22
[2] Zhou, Yang, Hongyi Liu, Zhuoming Chen, Yuandong Tian, and Beidi Chen. "GSM-Infinite: How Do Your LLMs Behave over Infinitely Increasing Context Length and Reasoning Complexity?."ICML’25



Chain of continuous thought

Chain-of-Thought (CoT) Chain of Thought (CoconuT)
output token X; Xip1  Xiy2 Xiyi [Answer] [Answer]
(sampling) |
last hidden state
input embedding
input token [Question] = X% = Xiy1 | Xig2 Xigj [Question] <bot> <eot>

Figure credit to [1]

* Continuous Col: directly uses the hidden state as the next input

* Outperforms discrete Cols in various reasoning tasks
* Especially problems with high branching factors/requires searching

* Lacks theoretical understanding of its power and mechanism

[1]1Hao, Shibo, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. "Training large language models to reason in a continuous latent space." COLM’25



Main results

* Construct a 2-layer transformer with Continuous Col that solves
directed graph reachability using O (n) steps (n: # of vertices)

* The best known result for constant-depth transformers with discrete Col
requires 0(n?) steps!

* Insights: Continuous thoughts maintain a “superposition” of
explored vertices, performing a parallel BFS

* Empirical study is aligned with theoretical construction
* Superposition representation emerges during training (no supervision)

[1] Merrill, William, and Ashish Sabharwal. "The expressive power of transformers with chain of thought." arXiv preprintarXiv:2310.07923 (2023).



Problem Definition: Graph reachability

* Given adirected graph G = (V, £), decide whether a node s canreach t
* Many real-world reasoning problem can be abstracted as a graph (e.g., knowledge graph)
* Many theoretical problems can be reduced to it (e.g., Turing machine halting problem)

Step 1
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Step 1: v orvy ?
(hard to decide which branch)

§ oo

Step 1: v and v, !
(explore both branches
simultaneously)

G=,¢&) Search process



Prompt format

Given two candidate destination nodes, decide which one can be reached

directed edge special edge token
\
[ ) I
<bos> s; 4 <e> S, ty <e> e Sm tm <e>
source node target node
g /)
e

Description of the Graph



Prompt format

Given two candidate destination nodes, decide which one can be reached

question token reasoning token
<bos> Graph Description <Q> <R> S

11 !

candidate targets  start node



Prompt format

Given two candidate destination nodes, decide which one can be reached

» Decoding

r Discrete Col

v, v, V3 eee <A> (tqrget

<bos> Graph Description Start / Target Description <

Continuous Col

\ latent latent e e e <A> target



Main theorem

Theorem (informal)

Secret Sauce: Superposition of the embeddings!



Mechanism in a single Atth-MLP block

4 N Copy contents to buffer spaces
buffer —x, 4" x4
content
o S X1 . X3 Xt-1 Xt
J
simplified
embedding _
Attend to several previous tokens
space
Attention as an aggregator: MLP as afilter:
* Aggregate the information along the sequence axis. * Filterout the involved embedding

* Form a superposition of concepts. that are not strong enough



Mechanism in a single Atth-MLP block

MLP as a filter

h = Z 2,4, B Z {1, > £},
V
veVoc h' = W,a(W,h) veVoc
= Ua(UTh) Eliminate noise

U = [uy, Uy, ..., Uy] : the embedding matrix



First-layer attention

Goal: collect all history information together into embedding space.

embedding

space
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positiona
encoding
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[tc]
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Si tl <e>

P3i-1 P3i DP3i+1
attend

Continuous thought at step c

Special answer token
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P3m+3

. C1,Co
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P3m+4 DP3m+5 Pr-1 Pr
J

FFN layers: removing low-attended embeddings



Second-layer attention

embedding
space

content

/buffer’l A

<bos>

small attention
ifs; €V,

large attention

Sj sy € Ve Superposition of all nodes that
add together can be reached within ¢ steps
L
1 -
~e” S [¢c] [tc] — Uy

One-step expansion of V,

FFN layers: removing low-attended embeddings



Continuous Col: Decoding as search




Autoregressive Decoding
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Comparison of continuous and discrete Col

* Dataset: a subset of ProsQAl'!, symbolic sequence, 3-4 steps
* Model: GPT2-style decoder

* Training: multi-stage training, stage i predicts i-th node in the
optimal path using previous thoughts

* Overall results: 2-layer transformer with 2 No CoT
continuous Col (Coconut) beats 12-layer ¢
transformer with discrete CoT (CoT*) 07

[1] Hao, Shibo, Sainbayar Sukhbaatar, Dilia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. "Training large language models to reason in a continuous latent space." arXiv preprintarXiv:2412.06769 (2024).
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Superposition emerges during training

Inner products of the current thought t,] = 1
and each node embedding

Continuous thought 1

Mot Reachable (-0.28)
Reachable (3.62)

1000 Frontier (5.09)

Optimal {6.50)
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COCONUT

800 1

600 1

400 1

200 1

400

300 A

200 1
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0

Continuous thought 2

Mot Reachable {-0.21)
Reachable {1.50})
Frontier {2.52)
Optimal (4.75)

=5 0 5

Continuous thought 4

10

Mot Reachable (-0.14)
Reachable (0.51)
Frontier (2.06)
Optimal (9.38)

Four Kinds of Nodes
* Reachable node (reachable from
start node within i-th steps)
* Frontier node (exactly i-th steps)

 Optimal node (on the shortest
path from the start node to the
destination node)

e Non-reachable node

Coconut automatically learns to
encode frontier/optimal nodes (emerging!)



Discussions

* Continuous thoughts can be powerful but hard to control

* E.g., superposition states can be a subset of tokens (with different
weights)

* |t can emerge even if the training data only contain single discrete traces

* Requires a deeper understanding if we want to use it reliably

* Mechanism for more general tasks
* How superposition emerges during training and how to control it



Thanks!

() £
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