Reasoning by Superposition: A Theoretical Perspective on Chain of Continuous Thought

Hanlin Zhu*, Shibo Hao*, Zhiting Hu, Jiantao Jiao, Stuart Russell, **Yuandong Tian**

LLMs on reasoning tasks using CoT

• LLMs are powerful in many reasoning tasks, especially with chain-of-thought (CoT)

- LLMs still struggle with more complex reasoning tasks (e.g., longer reasoning steps)
- How to expand existing CoT methods to solve more complex problems?

Chain of continuous thought

Figure credit to [1]

- Continuous CoT: directly uses the hidden state as the next input
- Outperforms discrete CoTs in various reasoning tasks
 - Especially problems with high branching factors/requires searching
- Lacks theoretical understanding of its power and mechanism

Main results

- Construct a 2-layer transformer with Continuous CoT that solves directed graph reachability using O(n) steps (n: # of vertices)
 - The best known result for constant-depth transformers with discrete CoT requires $O(n^2)$ steps^[1]
- **Insights:** Continuous thoughts maintain a "superposition" of explored vertices, performing a parallel BFS
- Empirical study is aligned with theoretical construction
 - Superposition representation emerges during training (no supervision)

Problem Definition: Graph reachability

- Given a directed graph $G = (\mathcal{V}, \mathcal{E})$, decide whether a node s can reach t
 - Many real-world reasoning problem can be abstracted as a graph (e.g., knowledge graph)
 - Many theoretical problems can be reduced to it (e.g., Turing machine halting problem)

Problem Definition: Graph reachability

- Given a directed graph $G = (\mathcal{V}, \mathcal{E})$, decide whether a node s can reach t
 - Many real-world reasoning problem can be abstracted as a graph (e.g., knowledge graph)
 - Many theoretical problems can be reduced to it (e.g., Turing machine halting problem)

Step 1: v_1 or v_2 ?

(hard to decide which branch)

Chain of discrete thought

Problem Definition: Graph reachability

- Given a directed graph $G = (\mathcal{V}, \mathcal{E})$, decide whether a node s can reach t
 - Many real-world reasoning problem can be abstracted as a graph (e.g., knowledge graph)
 - Many theoretical problems can be reduced to it (e.g., Turing machine halting problem)

Step 1: v_1 or v_2 ? (hard to decide which branch) Chain of discrete thought Chain of continuous thought Step 1: v_1 and v_2 ! (explore both branches simultaneously)

Prompt format

Given two candidate destination nodes, decide which one can be reached

Description of the Graph

Prompt format

Given two candidate destination nodes, decide which one can be reached

Prompt format

Given two candidate destination nodes, decide which one can be reached

Main theorem

Theorem (informal)

For n-vertex directed graphs, a **2-layer** transformer with continuous CoT can solve reachability using O(n) decoding steps with O(n) embedding dimensions.

Secret Sauce: Superposition of the embeddings!

Mechanism in a single Attn-MLP block

Attention as an aggregator:

- Aggregate the information along the sequence axis.
- Form a superposition of concepts.

MLP as a filter:

 Filter out the involved embedding that are not strong enough

Mechanism in a single Attn-MLP block

$$h = \sum_{v \in \text{Voc}} \lambda_v \vec{u}_v$$

MLP as a filter

$$h' = W_2 \sigma(W_1 h)$$
$$= U \sigma(U^T h)$$

$$h' \propto \sum_{v \in \text{Voc}} \mathbb{I}\{\lambda_v \geq \varepsilon\} \vec{u}_v$$

Eliminate noise

 $U = [\vec{u}_1, \vec{u}_2, ..., \vec{u}_M]$: the embedding matrix

First-layer attention

Goal: collect all history information together into embedding space.

Second-layer attention

FFN layers: removing low-attended embeddings

One-step expansion of \mathcal{V}_c

Continuous CoT: Decoding as search

 $[t_1] = \frac{1}{\sqrt{|\mathcal{V}_1(s)|}} \sum_{v \in \mathcal{V}_s} \vec{u}_v$

Autoregressive Decoding

"Measure" $[t_{\mathcal{C}}]$ using c_1 and c_2

Autoregressive Decoding

"Measure" $[t_{\mathcal{C}}]$ using c_1 and c_2

Comparison of continuous and discrete CoT

- Dataset: a subset of ProsQA^[1], symbolic sequence, 3-4 steps
- Model: GPT2-style decoder
- Training: multi-stage training, stage i predicts i-th node in the optimal path using previous thoughts

 Overall results: 2-layer transformer with continuous CoT (Coconut) beats 12-layer transformer with discrete CoT (CoT*)

Layer 1 Attention Patterns

Layer 1 Attention Patterns

Layer 1 Attention Patterns

Superposition emerges during training

Inner products of the current thought and each node embedding

$$[t_c] = \frac{1}{\sqrt{|\mathcal{V}_c|}} \sum_{v \in \mathcal{V}_c} \vec{u}_v$$

Four Kinds of Nodes

- Reachable node (reachable from start node within i-th steps)
 - $\underline{Frontier\ node}$ (exactly i-th steps)
 - <u>Optimal node</u> (on the shortest path from the start node to the destination node)
- Non-reachable node

Coconut automatically **learns** to encode **frontier/optimal** nodes (**emerging!**)

Discussions

- Continuous thoughts can be powerful but hard to control
 - E.g., superposition states can be a subset of tokens (with different weights)
 - It can emerge even if the training data only contain single discrete traces
- Requires a deeper understanding if we want to use it reliably
 - Mechanism for more general tasks
 - How superposition emerges during training and how to control it

Thanks!

