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Optimizing Nonlinear Functions over 
Combinatorial Regions
• Nonlinear + differentiable objective
• Combinatorial feasible region
• Real-world domains:
• Computer system planning
• Designing photonic devices
• Throughput optimization
• Antenna design
• Energy grid



Example: Embedding Table Placement

Given:
• 𝑘 tables
• 𝑛 identical devices
• Table 𝑖 has memory requirement 𝑚!
• Device memory capacity 𝑀

Find
• Allocation of tables to devices observing device memory limits
• Minimize latency which is estimated by a neural network (capturing nonlinear 

interactions)



Example: Embedding Table Placement

Given:
• 𝑘 tables
• 𝑛 identical devices
• Table 𝑖 has memory requirement 𝑚!
• Device 𝑗 has memory capacity 𝑀"

Min! 𝑳 {𝑥"#} s.t. ∑! 𝑥!"𝑚! ≤ 𝑀" , ∑" 𝑥!" = 1 , 𝑥!" ∈ {0,1}

Formulation

𝑳 is nonlinear due to system issues (e.g., batching, communication, etc)



Nonlinear Optimization is Hard

• Specific domains have specialized solvers

• General solvers are often slow (without very careful modeling)

• Genetic algorithms or gradient-based methods may not find feasible 
solutions



Linear Optimization is Easy(ish)

• MILP solvers (CPLEX, Gurobi, SCIP) easily handle industry-scale 
problems
• Plus other solvers for linear settings
• Greedy
• LP + total unimodularity



Idea: Find a Linear Surrogate

• Learn a MILP objective whose optimal solution x* solves the 
nonlinear problem

Originally Now

min
𝒙
𝑓(𝒙; 𝒚)

s. t 𝒙 ∈ Ω =

Nonlinear optimization with 
combinatorial constraints

Predict surrogate cost 𝒄 = 𝒄(𝒚)
𝒙∗ 𝒚 = argmin

𝒙
𝒄(𝒚)𝑻𝒙

s. t 𝒙 ∈ Ω

𝒙∗ 𝒚 optimizes 𝑓(𝒙; 𝒚) as much as possible

Surrogate optimization 

combinatorial 
constraints

solved by existing combinatorial solvers
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Challenge: how to find the right objective?
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Proposal: gradient-based optimization



Proposal: surrogate learning

• Use surrogate MILP to solve original problem
• Find linear coefficients c such that argmin

#∈%
𝑓(𝑥) ≈ argmin

#∈%
𝑐&𝑥

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Surrogate 
Coefficients 𝑐



SurCo-zero: gradient-based optimization

• Iterative solver based on linear surrogate guided by gradient updates
• Update linear coefficients 𝑐 such that 𝑥∗ 𝑐 improves objective 𝑓 𝑥∗(𝑐)

∇"𝑓(𝑥)∇&𝑥∗(𝑐)
Assumed differentiableRecent work on differentiable optimization

Differentation of blackbox optimizers
CVXPYLayers
MIPaaL
... more in related work

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Surrogate 
Coefficients 𝑐



SurCo-prior: distributional learning

• One pass solver based on model learned offline
• Use neural model based on problem features to predict linear coefficients

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Surrogate Coefficients
𝑐

∇"𝑓(𝑥)
Assumed differentiable

∇&𝑥∗(𝑐)
Recent work on differentiable optimization

Differentation of blackbox optimizers
CVXPYLayers
MIPaaL
... more in related work

Neural Network
𝑐 = 𝑁𝑁 𝑦; 𝜃

𝜃
Model parameters

Problem features
𝑦

∇'𝑁𝑁 𝑦; 𝜃
Standard NN autograd

Pytorch
Tensorflow
JAX etc…



SurCo-prior: distributional learning

• Update neural network parameters from training dataset

Train Model 
parameters 𝜽

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐()*(

Surrogate Coefficients 
𝑐!"#! = 𝑁𝑁(𝑦!"#!; 𝜃)

𝑐+ = 𝑁𝑁 𝑦+; 𝜃



SurCo-hybrid: fine-tuning 
from trained model

Update neural network parameters 
from training dataset Fine-tune surrogate on-the-fly

Train Model 
parameters 𝜽

𝑐+ = 𝑁𝑁 𝑦+; 𝜃

Initial Surrogate Coefficients 
𝑐$ = 𝑁𝑁(𝑦!"#!; 𝜃)



SurCo-zero

No offline training data, just solve a single problem instance on-the-fly

∇"𝑓(𝑥)∇&𝑥∗(𝑐)

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Surrogate 
Coefficients 𝑐



SurCo-prior

Uses offline training data to quickly solve problems at test time with just one solver call

Train Model 
parameters 𝜽

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐()*(

Surrogate Coefficients 
𝑐!"#! = 𝑁𝑁(𝑦!"#!; 𝜃)

𝑐+ = 𝑁𝑁 𝑦+; 𝜃



SurCo-hybrid

Offline train + on-the-fly fine-tuning the surrogate

Train Model 
parameters 𝜽

𝑐+ = 𝑁𝑁 𝑦+; 𝜃

Initial Surrogate Coefficients 
𝑐$ = 𝑁𝑁(𝑦!"#!; 𝜃)
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Embedding Table Sharding
Used in large-scale deep learning systems: recommendation systems, knowledge graph

Place N “tables” (with known memory need 𝑚%) on K devices (𝑥%& = 1: table 𝑖 assigned to device 𝑗)

Min9 𝐿 {𝑥!"} s.t. ∑! 𝑥!"𝑚! ≤ 𝑀", ∑" 𝑥!" = 1 , 𝑥!" ∈ {0,1}

𝐿 : Runtime bottleneck f(x) estimated by NN (longest-running device)

𝐿 is nonlinear due to system issues 
(e.g., batching, communication, etc.)

c 𝑦; 𝜃 gives surrogate ”per-table cost” 𝑐+,
(and ∑+, 𝑐+,𝑥+, is the surrogate latency objective)



Embedding Table Sharding

• Public Deep Learning Recommendation Model (DLRM dataset) placing 
between 10 to 60 tables on 4 GPUs

• Baseline: Greedy
• SoTA: RL approach Dreamshard1

• SurCo: Surrogate NN model learned via CVXPYLayers (differentiable LP 
Solver)

1 Zha et al. NeurIPS 2022
Dataset: https://github.com/facebookresearch/dlrm_datasets

https://github.com/facebookresearch/dlrm_datasets


Inverse Photonic Design

• Design physically-viable devices that take light waves and routes 
different wavelengths to correct locations

• Device design misspecification loss f(x) computed by differentiable 
electromagnetic simulator
• Feasible solution: the design must be the union of brush pattern
• x = binary_opening(x, brush)
• x = ~binary_opening(~x, brush)



Inverse Photonic Design

• Dataset: Ceviche Challenges1

• Most baselines don’t work here due to combinatorial 
constraints
• SoTA: Brush-based algorithm 1

• SurCo: Surrogate learned via blackbox differentiation 2 of brush 
solver

1Schubert et al. ACS Photonics 2022
2Vlastelica et al. ICLR 2019
Dataset: https://github.com/google/ceviche-challenges

Wavelength division multiplexer

Mode converter

Beam splitter

Waveguide bend

https://github.com/google/ceviche-challenges


Results – Table Sharding



Results – Inverse Photonics



Inverse photonics Convergence comparison + 
Solution example
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Takeaways:
- SurCo-Zero finds loss-0 solutions quickly
- SurCo-Hybrid uses offline training data to get a head start

Wavelength division multiplexer



Conclusion

• Handle industrial applications with differentiable optimization

• High-quality solutions to combinatorial nonlinear optimization by 
finding linear surrogates
• Sometimes we can find “easier” surrogate problems that solve much more 

difficult instances

• SurCo works in several data settings
• Zero-shot vs Offline training
• One step inference vs fine-tuning



Thanks!


