On the Role of Nonlinearity in Training Dynamics of Contrastive Learning on 1-layer Network

00 Meta Al

Background

$x[i'] \longrightarrow f[i']$ $x_0[i] \sim p(\cdot)$ $x[i] \longrightarrow f[i']$ $x_0[i] \sim p(\cdot)$ $x[i] \longrightarrow f[i']$ $x_0[i] \sim p(\cdot)$ $x[i] \longrightarrow f[i]$ $x_0[i] \sim p(\cdot)$ $x[i] \longrightarrow f[i']$ $x_0[i] \sim p(\cdot)$ $x[i] \sim p(\cdot)$ $x_0[i] \sim p(\cdot)$

E.g., InfoNCE loss: $\mathcal{L}_{nce} \coloneqq -\tau \sum_{i=1}^{\tau} \log \frac{1}{\epsilon e^{-d_i^2/\tau} + \sum_{j \neq i} e^{-d_{ij}^2/\tau}}$

Is CL just loss + blackbox function family?

[Tables from N. Saunshi et al, Understanding Contrastive Learning Requires Incorporating Inductive Biases, ICML'22]

Inductive bias matters! (e.g., architecture, optimizer)

When the network is linear, CL can be shown to perform like PCA (α -CL)

How to understand the properties of CL with nonlinear network?

α -CL: a unified framework [Tian, NeurlPS'22]

$$m{ heta}_{t+1} = m{ heta}_t + \eta \nabla_{m{ heta}} \mathcal{E}_{\overline{\mathrm{sg}}(\alpha_t)}(m{ heta}_t)$$
Pairwise importance $\alpha_t = \alpha(m{ heta}_t)$

The pairwise importance α can be

- 1. determined by $\alpha(\boldsymbol{\theta}) = \arg\min_{\alpha \in \mathcal{A}} \mathcal{E}_{\alpha}(\boldsymbol{\theta}) \mathcal{R}(\alpha)$, with different regularization $\mathcal{R}(\alpha)$.
- 2. directly specified (α -CL-direct)

Define \mathcal{E}_{α} as the *trace* of *contrastive covariance* $\mathbb{C}_{\alpha}[\cdot]$:

$$\mathcal{E}_{\alpha}(\boldsymbol{\theta}) \coloneqq \frac{1}{2} \operatorname{tr} \mathbb{C}_{\alpha}[f_{\boldsymbol{\theta}}(\boldsymbol{x})]$$

where the *contrastive covariance*

$$\mathbb{C}_{\alpha}[x] := \frac{1}{2N^2} \sum_{i,j} \alpha_{ij} [(x[i] - x[j])(x[i] - x[j])^T - (x[i] - x[i'])(x[i] - x[i'])^T]$$

Goal: Analyze the local maxima of the energy function $\mathcal{E}_{\pmb{lpha}}$

Setup

The Assumptions of Homogenous Activations

We assume the activation satisfies h(x) = h'(x)xThis includes Linear, ReLU and monomial activations (with additional constant)

Connect $\mathbb{C}_{\alpha}[\cdot]$ with regular variance $\mathbb{V}[\cdot]$

If α satisfies $\alpha_{ij} = \mathcal{K}(\mathbf{x}_0[i], \mathbf{x}_0[j])$, where $\mathcal{K}(\mathbf{x}, \mathbf{y}) = \sum_{l=0}^{+\infty} \phi_l(\mathbf{x}) \phi_l(\mathbf{y})$

is a kernel, then for any function $oldsymbol{g}(\cdot)$:

$$\mathbb{C}_{\alpha}[\boldsymbol{g}(\boldsymbol{x})] \to \sum_{l=0}^{+\infty} z_l^2 \mathbb{V}_{x_0 \sim \tilde{p}_l(\cdot;\alpha)} \left[\mathbb{E}_{\boldsymbol{x} \sim p_{\mathrm{aug}(\cdot|x_0)}}[\boldsymbol{g}(\boldsymbol{x})] \right]$$

Where $\tilde{p}_l(x; \alpha) \coloneqq \frac{1}{z_l(\alpha)} p_D(x) \phi_l(x; \alpha)$ is adjusted density of the data, and $z_l(\alpha)$ is the normalization constant.

Example of Kernel-like α

Uniform
$$\alpha_{\mathrm{u}}\coloneqq 1$$

$$\operatorname{Gaussian} \alpha_{\mathrm{g}}\coloneqq \exp\left(-\frac{\left\|h(\mathbf{w}^T\mathbf{x}_0[i]) - h(\mathbf{w}^T\mathbf{x}_0[j])\right\|_2^2}{2\tau}\right)$$

1-layer nonlinear network

 $\max_{\|\boldsymbol{w}\|_2=1} \mathbb{C}_{\alpha}[f_{\boldsymbol{\theta}}] = \mathbb{C}_{\alpha}[h(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x})] = \boldsymbol{w}^{\mathrm{T}}A(\boldsymbol{w})\boldsymbol{w}$

where $A(w) \coloneqq \mathbb{C}_{\alpha}[\widetilde{x}^w]$

 $\widetilde{\mathbf{x}}^{\mathbf{w}} \coloneqq \mathbf{x} \cdot h'(\mathbf{w}^{\mathrm{T}}\mathbf{x})$ is the **gated** data point

 $\max_{\|\boldsymbol{w}_k\|_2=1} \operatorname{tr} \mathbb{C}_{\alpha}[\boldsymbol{f}_{\boldsymbol{\theta}}] = \sum_{k=1}^{K} \max_{\|\boldsymbol{w}_k\|_2=1} \boldsymbol{w}_k^{\mathrm{T}} A(\boldsymbol{w}_k) \boldsymbol{w}_k$ $1 \le k \le K$

Independent one node objective

Critical Points != Local optima

Local roughness $\rho(w)$:

$$\left\| \left(A(\boldsymbol{v}) - A(\boldsymbol{w}) \right) \boldsymbol{w} \right\|_2 \le \rho(\boldsymbol{w}) \|\boldsymbol{v} - \boldsymbol{w}\|_2 + \mathcal{O}(\|\boldsymbol{v} - \boldsymbol{w}\|_2^2)$$
 (for any \boldsymbol{v} in the local neighborhood of \boldsymbol{w})

[Theorem] if $A(w_*)w_* = \lambda_* w_*$, and $\lambda_{\rm gap}(w_*) > \rho(w_*)$, Then w_* is stable (i.e., local maximum)

Linear activation

 $\phi_1(\mathbf{w})$: Largest eigenvector of $A(\mathbf{w})$

- 1. All $w_k \rightarrow$ global maximal eigenvector
- 2. More nodes do NOT help.

Homogenous nonlinear activation

- 1. Each w_k can converge to different patterns
- 2. More nodes learn more patterns!

[Theorem] Upper bound of $\rho(\mathbf{w})$ in Gaussian $\alpha_{\rm g}$ \ll Upper bound of $\rho(\mathbf{w})$ in Uniform $\alpha_{\rm u}$

	CIFAR-10	STL-10
Quadratic loss (uniform α)	73.58 ± 0.82	67.28 ± 1.21
InfoNCE loss (normalized Gaussian α)	87.86 ± 0.12	83.70 ± 0.12