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Data Augmentation
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Setup

The Assumptions of Homogenous Activations

We assume the activation satisfies h(x) = h'(x)x
This includes Linear, ReLU and monomial activations (with additional
constant)

Connect C, [-| with regular variance V||

If a satisfies a;; = K (xgli], xolj]), where K(x,y) = Y=o 1 (x)p; ()

is a kernel, then for any function g(-):
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of the data, and z;(«) is the normalization constant.

Where p;(x; a) = pp (x)d;(x; @) is adjusted density

Example of Kernel-like
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Is CL just loss + blackbox function family?

Boolean hypercube example
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Contrastive loss

[Tables from N. Saunshi et al, Understanding Contrastive Learning Requires Incorporating
Inductive Biases, ICML’22]

Inductive bias matters! (e.g., architecture, optimizer)

When the network is linear, CL can be shown to
perform like PCA (a-CL)
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How to understand the properties

of CL with nonlinear network?

1-layer nonlinear network
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h(w"x) max, Celfol = Co|h(WTx)| = wTA(W)W
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One
node W where A(W) = Ca [35“’]
O X" = x - h'(w'x) is the gated data point
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h(wpx)
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Independent one node objective

Critical Points != Local optima

Local roughness p(w):

[(A@w) —AW)w||, < pW)llv — wll, + O(llv — wl|3)

(for any v in the local neighborhood of w)

[Theorem] if A(w,)w, = A,w,, and Ay, (W) > p(w,),
Then w, is stable (i.e., local maximum)
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a-CL: a unified framework [Tian, NeurlPS’22]
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Pairwise importance a; = a(0;)

The pairwise importance a can be
1. determined by a(0) = arg rréidrql E,(0) — R(a), with different
a

regularization R(«).
2. directly specified (a-CL-direct)

Define £, as the trace of contrastive covariance C,|-|:

E,(0) = %tr Co[fo(x)]

where the contrastive covariance
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‘ v ’ Goal: Analyze the local maxima of the energy function &,

Linear activation Homogenous nonlinear activation
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Changing
A(w)
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¢1(w): Largest eigenvector of A(w)

1. Each wy, can converge to
different patterns
2. More nodes learn more patterns!

1. All w;, = global maximal
eigenvector
2. More nodes do NOT help.

[Theorem] Upper bound of p(w) in Gaussian a,
< Upper bound of p(w) in Uniform «,
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73.58+0.82 6/.28+1.21

Quadratic loss (uniform «)
InfoNCE loss (normalized Gaussian a) 87.86 £0.12 83.70+0.12



