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Model Performance

It just memorizes everything
perfectly... and then... POOF!

After forever, it suddenly
understands! It's like

== train_acc
== test acc

---------------
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**What is Grokking?**
The phenomenon where a model first overfits to
the training set (memorization), and then, after

prolonged training, suddenly generalizes to
unseen test samples.

(Source: Power et al., 2022)
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Don't worry, Nobita. This isn't magic.
We just need the right tool! This is the
Li2 Framework Viewer. It lets us see
exactly what's happening inside the
network during training, from first
principles of gradient dynamics.

\

The Li2 Framework:

A novel
mathematical
framework that
explains grokking by
dividing the learning
dynamics of 2-layer
nonlinear networks
Into three key
stages: Lazy,
Independent, and
Interactive learning.
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See? The network’s
journey from
memorization to
generalization isn't one
giant leap. It's a
clear, three-stage
process. Let’s look
at Stage |.
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Exactly! In Stage |, only the
output layer V' learns. It
finds a temporary solution
—a ridge regression—
using the random features
'F from the hidden layer.
This is the
‘memorization circuit”.

So the hidden part
IS just sleeping?!
It's not learning
anything at all?

**Technical Caption**: The backpropagated gradient GF = PL1(Y — FV)VT is initially noise. Without weight I
decay (n = 0), GF’ eventually becomes zero, and feature learning stops entirely.
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Now for the secret ingredient!
A little bit of Weight Decay (n)
prevents the output layer from
fitting perfectly. This “leak” in
the solution allows a structured,
meaningful gradient GF
to flow back.

**Technical Caption*: With n > 0, the backpropagated gradient becomes GF « nYYTF. This signal now carries

information about the target label, triggering the start of feature learning in the hidden layer. (Source: Lemma 1, Eq'“ﬁ-.imm
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And they're learning each neuron independently. Each one

structured patterns, but al
by themselves?

climbs its own “Energy Function” E’.
The peaks—the local maxima—are

Wow! They all woke up! Correct. The gradient GF now acts on
I
the very features they learn!

_7\ r\_

**Energy Function E

**Technlcal ‘Caption*: The dynamlcs of each hidden node w; is exactly the gradient ascent of an energy function:
E(wj) =3 IIYTcr(X w;)||*. The emerging features are the local maxima of E. (Source: Theorem 1)
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Example: Modular Addition

8+5=13=1(mod12)

Learned Features: Fourier Bases

High-Frequency
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Low-Frequency
Cosine Wave

0 A
Q“ ¥l \J

=2 e

et e

[ ‘]l\
-
o's

For a task like modular \

addition, we can prove
exactly what these features
are. They're the irreducible
representations (irreps) of

the task’s algebraic
structure—in this case,
Fourier bases!

So they're learning
the fundamental math
of the problem, which

is way more efficient
than just memorizing
answers!

\_/

**Technical Caption*: For group arithmetic tasks, the local maxima of E are characterizable. For the Abelian group of
modular addition, they are Fourier bases. Reconstructing the target using these 2M-2 features is far more efficient than
a memorization solution requiring M? nodes. (Source: Corollary 2, Theorem 3)
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Li2 Viewer

But the landscape depends on the data! With "
enough data, the generalizable peaks are stable.
With too little, the landscape warps, and the
easiest things to learn are just memorizing
specific examples.

Energy E Landscape

Energy E Landscape

Generalizable Generalizable
Features — .~ Features
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Technical Caption: Data governs the landscape of 'E’. Sufficient training data maintains the shape of generalizable local maxima. ‘
Insufficient data leads to the emergence of non-generalizable, memorization-based local maxima. (Source: Theorems 4 & 5) o
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This allows us to
derive a provable
scaling law! We can

predict the precise
amount of data
needed for the

network to 'grok’. The
theory matches the
experiment perfectly.

Soit's not a

> mystery at all!

Tiheory Meets Experiment:
There's a
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In Stage lll, the neurons are no longer independent. They start to interact. Neurons
with similar features repel each other to promote diversity. The gradient G also
changes to guide them, pointing out the parts of the problem they havent solved yet.

-

Repulsion of similar features.

]

* Repulsion (Thm. 6): Off-diagonal terms in the gradient dynamics push nodes with similar activations apart.
* Top-down Modulation (Thm. 7): Once a subset of irreps S is learned, GF changes to create a modified energy function Es with local maxima only on the missing irreps.
= A NotebookLM
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Advanced tools can help this final stage.
Optimizers like Muon act like a traffic
controller. When it sees too many neurons
learning the same thing, it rebalances
thes their updates to encourage

. exploration of novel features.

.

It's like @ coach
making sure everyone
on the team plays a

| Technical Caption: Muon rebalances gradient updates by discounting directions that are dlff{?':emi
|| already well-represented by other nodes. This enforces diversity and allows all features to be position: .eo
| learned with fewer hidden nodes ("K"). (Source: Theorem 8, Figure 8)
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Li2 Viewer

Ifeanning

for shallow networks! In

layer and progresses up.
This is also why residual

connections help so much—
they're an express lane for

the gradient signal!

And these ideas aren't just

deep models, the meaningful

gradient originates at the top
and travels all the way back.

Learning starts at the bottom

*¥*Technical Caption**: The Li2 framework extends to deeper architectures. A meaningful gradient propagates from the
output, initiating feature learning sequentially from the lowest layer upwards. Residual connections provide a cleaner,
stronger signal to these lower layers. (Source: Sec 6)
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So "sharp” doesn't just
mean "bad,” it can
mean “early stage

overfitting." And the
good, generalizable
solutions are “flat”
because they
represent real,
efficient features!

Common Heuristic

Sharp Optima =
Memorization

Flat Optima =
Generalization

Li2 Framework View

Stage |: Overfitting
on random features

Stage II: Learned
features are provably
flat local maxima of 'E

Exactly. The initial
memortion in grokking
corresponds to the
sharp optimum of the
Stage | ridge solution.

True generalization
comes from finding the
provably flat local
maxima of the energy
function E". (Source:
Sec 7, Corollary 1)
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Grokking: From Magic to Mechanism.

a Stage I: “ Stage ll:
Lazy Learning Independent Ascent

Weight
Decay n

& Stage Il
Interactive Learning

Ugh! It's just...

magic! §&?!!
Why does it

suddenly work?!

GF
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The journey is not a switch from memorization to generalization, but a structured,
three-stage process of feature emergence driven by gradient dynamics.

& NotebooklLM


https://arxiv.org/abs/2509.21519

Paper link

**Doraemon’s Concluding Thought**

The Li2 framework demystifies grokking by modeling the precise dynamics of how
features emerge. It reveals that grokking is the observable effect of a network
transitioning from overfitting on random features to learning the true, efficient
stficient structure of the data, governed by a data-dependent energy landscape.

By understanding the mechanism, we derive provable scaling laws that connect theory

directly to practice.

| get it now! First, the networ
cheats by memorizing with
random guesses (Lazy Learning).
Then, thanks to weight decay, the
hidden parts learn the problem's
basic rules on their own
(Independent Learning). Finally,
they team up to perfect their
solution (Interactive
Learning)!
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