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Mastering the game of Go with deep
neural networks and tree search
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John Nham?, Nal Kalchbrenner', Ilya Sutskever?, Timothy Lillicrap’, Madeleine Leach’, Koray Kavukcuoglu’,

Thore Gmepel1 & Demis Hass:lbis'

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-

of-the-art Monte Carlo tree search progr that si

new search algorithm that ines Monte Carlo si

th of random games of self-play. We also introduce a

with value and policy networks. Uslng this search algorithm,
andd Go

our program AlphaGo achieved a 99.8% winning rate against other Go p the human E

champion by 5 games to 0. This is the first time thata

n has ahuman p i playet in the

full-sized game of Go, a feat previously thought to be at least a decade away.

All games of perfect information have an optimal value function, v*(s),
which determines the outcome of the game, from every board position
or state s, under perfect play by all players. These games may be solved
by recursiv ely computing the optimal value function in a search tree
ly b possible seq of moves, where b is
the game’s s breadth (number of legal moves per position) and d is its
depth (game length). In large games, such as chess (b~ 35, d~80)" and
especially Go (b= 250, d~- 150)!, exhaustive search is infeasible*, but
the effective search space can be reduced by two general principles.
First, the depth of the search may be reduced by position evaluation:
truncating the search tree at state s and replacu\g the subtree below s
by an approximate value function v(s) ~v'(s) that predicts the outcome
from state s. This approach has led to superhuman performance in
chess*, checkers® and othello®, but it was believed to be intractable in Go
due to the complexity of the game”. Second, the breadth of the search
may be reduced by sampling actions from a policy p(als) that is a prob-
ability distribution over possible moves a in position s. For example,
Monte Carlo rollouts® search to maximum depth without branching
atall, by sampling long sequences of actions for both players from a
poh‘)' . Averaging over such rollouts can provide an effective posmon
achieving supert per e in back
Scrabble®, and weak amateur level play in Go'.

Monte Carlo tree search (MCTS)*!2 uses Monte Carlo rollouts
to estimate the value of each state in a search tree. As more simu-
lations are executed, the search tree grows larger and the relevant
values become more accurate. The policy used to select actions during
search is also improved over time, by selecting children with higher
values. Asymptotically, this policy ¢ ges to optimal play, and the
evaluations converge to the optimal value function'?, The strongest
current Go programs are based on MCTS, enhanced by policies that
are trained to predict human expert moves'®. These policies are used
to narrow the search to a beam of high-probability actions, and to
sample actions during rollouts. This approach has achieved strong
amateur play'*-!>. However, prior work has been limited to shallow

policies'* ' or value functions'® based on a linear combination of
input features.

Recently, deep convolutional neural networks have achieved unprec-
edented performance in visual domains: for example, image classifica-
tion'7, face recognition*, and playing Atari games'®. They use many
layers of neurons, each arranged in overlapping tiles, to construct
increasingly abstract, localized representations of an image®’. We
employ a similar architecture for the game of Go. We pass in the board
position as a 19 x 19 image and use convolutional layers to constructa
representation of the position. We use these neural networks to reduce
the effective depth and breadth of the search tree: evaluating positions
using a value network, and sampling actions using a policy network.

We train the neural networks using a pipeline consisting of several
stages of machine learning (Fig. 1). We begin by training a supervised
learning (SL) policy network p,. directly from expert human moves.
This provides fast, efficient learning updates with immediate feedback
and high-quality gradients. Similar to prior work'*%, we also traina
fast policy p- that can rapidly sample actions during rollouts. Next, we
train a reinforcement learning (RL) policy network p,, that improves
the SL policy network by optimizing the final outcome of games of self-
play. This adjusts the policy towards the correct goal of winning games,
rather than maximizing predictive accuracy. Finally, we train a value
network v, that predicts the winner of games played by the RL policy
network against itself. Our program AlphaGo efficiently combines the
policy and value networks with MCTS.

Supervised learning of policy networks

For the first stage of the training pipeline, we build on prior work
on predicting expert moves in the game of Go using supervised
learning'*?!-3%, The SL policy network p,{als) alternates between con-
volutional layers with weights o, and rectifier nonlinearities. A final soft-
max layer outputs a probability distribution over all legal moves a. The
input s to the policy network is a simple representation of the board state
(see Extended Data Table 2). The policy network is trained on randomly
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the effective search available, they may impose a ceiling on the performance of systems  value networks. Finally, it uses a simpler tree search that relies upon
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expertise is lacking. Recently, there has been rapid progress towards this
goal, using deep neural ks trained by rei learning.
These systems have outperformed humans in computer games, such
as Atari®’ and 3D virtual environments® '°. However, the most chal-
lenging domains in terms of human intellect—such as the game ofGo
widely viewed as a grand chall for artificial intellj

aprecise and sophisticated lookahead in vast search spaces Fully gene-
ral methods have not previously achieved hi 1p

in these domains.

AlphaGo was the first program to achieve superhuman performance
in Go. The published version'?, which we refer to as AlphaGo Fan,
defeated the European champion Fan Hui in October 2015. AlphaGo
Fan used two deep neural networks: a policy network that outputs
move probabilities and a value network that outputs a position eval-
uation. The policy network was trained initially by supervised learn-
ing to accurately predict human expert moves, and was subsequently
refined by policy-gradient reinforcement learning. The value network
was trained to predict the winner of games played by the policy net-
work against itself. Once trained, these networks were combined with
a Monte Carlo tree search (MCTS)"*!* to provide a lookahead search,
using the policy network to narrow down the search to high-probability
moves, and using the value network (in conjunction with Monte Carlo
rollouts using a fast rollout policy) to evaluate positions in the tree. A
subsequent version, which we refer to as AlphaGo Lee, used a similar
approach (see Methods), and defeated Lee Sedol, the winner of 18 inter-
national titles, in March 2016.

Our program, AlphaGo Zero, differs from AlphaGo Fan and

lookahead search inside the training loop, resulling in rapid improve-
ment and precise and stable learning. Further technical differences in
the search algorithm, training procedure and network architecture are
described in Methods.

Reinforcement learning in AlphaGo Zero

Our new method uses a deep neural network f; with parameters 6.
This neural network takes as an input the raw board representation s
of the position and its history, and outputs both move probabilities and
avalue, (p, v) =fi(s). The vector of move probabilities p represents the
probability of selecting each movea (mdud.mg pass) Pa= Pr(als). The
value v is a scalar eval g the p ility of the current
player winning from position s. This neural network combines the roles
of both policy network and value network'? into a single architecture.
‘The neural network cunslsts of many residual blocks* of convolutional
layers'“'7 with batch ion'® and rectifier nonlinearities'” (see
Methods).

The neural network in AlphaGo Zero is trained from games of self-
play by a novel reinforcement learning algorithm. In each position s,
an MCTS search is executed, guided by the neural network f;. The
MCTS search outputs probabilities 7 of playing each move. These
search probabilities usually select much stronger moves than the raw
move probabilities p of the neural network fy(s); MCTS may therefore
be viewed as a powerful policy improvement operator®*2, Self-play
with search—using the improved MCTS-based policy to select each
move, then using the game winner z as a sample of the value—may
be vnewed as a powerful pollcy evaluation operator. The main idea of

AlphaGo Lee'? in several important aspects. First and fc itis

our learning alg is to use these search operators
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Abstract

The game of chess is the longest-studied domain in the history of artificial intelligence.
The strongest programs are based on a combination of sophisticated search techniques,
domain-specific adaptations, and handcrafted evaluation functions that have been refined
by human experts over several decades. By contrast, the AlphaGo Zero program recently
achieved superhuman performance in the game of Go by reinforcement learning from self-
play. In this paper, we generalize this approach into a single AlphaZero algorithm that can
achieve superhuman performance in many challenging games. Starting from random play
and given no domain knowledge except the game rules, AlphaZero convincingly defeated
a world champion program in the games of chess and shogi (Japanese chess) as well as Go.

The study of computer chess is as old as computer science itself. Charles Babbage, Alan
Turing, Claude Shannon, and John von Neumann devised hardware, algorithms and theory to
analyse and play the game of chess. Chess subsequently became a grand challenge task for
a generation of artificial intelligence researchers, culminating in high-performance computer
chess programs that play at a super-human level (7, 2). However, these systems are highly tuned
to their domain, and cannot be generalized to other games without substantial human effort,
whereas general game-playing systems (3, 4) remain comparatively weak.

A long-standing ambition of artificial intelligence has been to create programs that can in-
stead learn for themselves from first principles (5, 6). Recently, the AlphaGo Zero algorithm
achieved superhuman performance in the game of Go, by representing Go knowledge using
deep convolutional neural networks (7, 8), trained solely by reinforcement learning from games

Q DeepMind

AlphaZero, 2018

Generalization to other games



AlphaZero

Learning without human knowledge

Training Self-play games

Replay
Buffer

Silver et al., A general reinforcement learning algorithm that masters chess, shogi and Go through self-play, Science 2018



‘ Po (3) Policy

‘ Residual Network
20 or 40 blocks

- v, (s) Value

Silver et al., A general reinforcement learning algorithm that masters chess, shogi and Go through self-play, Science 2018



Generating Self-play Games

Monte Carlo Tree Search with most recent model
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Silver et al., A general reinforcement learning algorithm that masters chess, shogi and Go through self-play, Science 2018



AlphaZero Strength

£ 1
2
T —— AlphaZero
—— AlphaGo Zero
T —— AlphaGo Lee
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Training Steps

Silver et al., A general reinforcement learning algorithm that masters chess, shogi and Go through self-play, Science 2018



Self-play games

AlphaGo Zero trained from 4.9 million self-play games!

~150,000 hours* of GPU time!

*Facebook estimates



ELF OpenGo

Reproduce AlphaZero
Gain a deeper understanding

Enable the community

facebook Artificial Intelligence



ELF OpenGo

Reproduce AlphaZero

facebook Artificial Intelligence



ELF OpenGo

e 20 block ResNet model
e 2,000 GPUs, 2 weeks
* 20 million self-play games

facebook Artificial Intelligence



AlphaGo Zero AlphaZero ELF OpenGo
Couct ¢ g 1.5
MCTS virtual loss constant ? 0 1.0
MCTS rollouts (self-play) 1,600 800 1,600
Replay buffer size 500,000 ? 500,000
Training minibatch size 2048 4096 2048
Self-play hardware ¢ 5,000 TPUs 2,000 GPUs
Training hardware 64 GPUs 64 TPUs 8 GPUs




FLF Distributed System

: Server
Client .
Selt-play * Receives self-play games
Client Client  Trains and broadcasts models
Training C|ient

Client Client * Receives model updates
* Performs self-play

Client Client

Client I

Yuandong Tian

Yuxin Wu Larry Zitnick

[Y. Tian et al, ELF: An Extensive, Lightweight and Flexible

facebook Artificial Intelligence :
Research Platform for Real-time Strategy Games, NeurlPS 2017]



FLF OpenGo Timeline

2017
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AlphaZero
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FLF OpenGo Timeline

20-0 win rate
#3 Kim Ji-seok

1
2017 E 2018 #5  Shin Jin-seo
: #23 Park Yeonghun
: #30 Choi Cheolhan
|
I
|
|
Nov ! Jan Feb Apr
l ! l l l
| | | |
AlphaZero ELF OpenGo Amateur Prototype model
paper released Starts level wins against

facebook Artificial Intelligence

professional players

Value

1.0

0.5

0.0 1

100 200 300
Move number

Single Vioo GPU

8ok rollouts

5O seconds

Unlimited thinking time for
human players



FLF OpenGo Timeline

1
2017 1 2018
I
|
|
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|
Nov ! Jan Feb Apr May
1 ! 1 1 1 1
| | | | |
AlphaZero ELF OpenGo Amateur Prototype model Release
paper released Starts level wins against Code/model

professional players



FLF OpenGo Timeline

| i

2017 1 2018 I 2019
I I
| |
| |
| |
| |
| |
| |
| |
: :

Nov : Jan Feb Apr May Oct ! Jan
I ! I I I I I I I
1 1 1 1 1 1 1
AlphaZero ELF OpenGo Amateur Prototype model Release Train final model Release
paper released Starts level wins against Code/model paper, models,

professional players

code, and self-plays



ELF OpenGo

Gain a deeper understanding

facebook Artificial Intelligence



High-variance in training



High-variance in training

Ir =102 Ir =103 Ir=10"%

1.0
2855 \ = Strong amateur level
0.8 - A ,
= Professional level
o 007 \ == Superhuman level
£ (won vs. professional players)
= 04-
0.2 -
Learning rate dropped every
500k mini-batches (1072, 1073, 10™%)
00 n T T
0 500000 1000000 1500000

Training minibatches
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Winrate

A bit unstable with learning rate 107>

Ir = 1072 Ir =103 Ir =104 Ir =107°

1.0
0.8° Once at capacity, new models become
similar to each other?
0.6 -
Replay buffer becomes uniform and
0.4 -
models start to overfit?
0.2 -
0.0

1000000 1500000 2000000
Training minibatches

0 500000



Overfitting issues

—— Value loss
3 - —— Policy loss
—— Total loss

Vw"“"’"“—'\/‘/\v

e

0 500000 1000000 1500000
facebook Ar Training minibatches




Overfitting issues

Dip of the value function

facebook Artificial Intelligence

p—

Overestimate Black resigns
white winrate prematurely

Balanced replay
buffer is the key

Black loses
many games

|

Imbalanced
replay buffer



Learning ladder moves



Learning ladder moves
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When there is only one long path that is
correct, value propagation is inefficient.



Are ladders played correctly?

Ladder unit test —— 1600 rollouts/move
* Eval 100 ladder moves 0.6 - —— 6400 rollouts/move
9
©
o 0.4 -
Q
V4
©
%
S
0.2 -
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0 500000 1000000 1500000
Training minibatches
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Why is the model still strong?

It plays alternative moves to avoid these situations.



How Important is MCTS¢

1.0

0.9 A

0.8 Training is almost always
\/\ constrained by model capacity
0.7 -

(why 40 blocks > 20 blocks)

Winrate of double-rollout bot

0.6 A
O- 5 1 I T T
800 vs. 1600 vs. 3200 vs. 6400 vs. 12800 vs. 25600 vs.
400 800 1600 3200 6400 12800

facebook Artificial Intelligence Rollouts



Black versus White

1.0
—— Black rollouts doubled
09- ——  \White rollouts doubled
- = ~85% winrate
9 0.8
©
£
= 0.7 -
~=> ~65% winrate
0.6 -
0.5 1 : . .
800 vs. 1600 vs. 3200 vs. 6400 vs. 12800 vs. 25600 vs.
400 800 1600 3200 6400 12800

facebook Artificial Intelligence Rollouts



ELF OpenGo

Enable the community
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Open-source

* Code available on Github

* Final models
* Enables benchmarking

* 20 million self-play games

* Public binary for playing Go

. pytorch / ELF ® Watch 174 % Star 2,844 Y Fork 473

<> Code Issues 36 Pull requests 3 Projects 0 Security Insights Intern Dashboard



% Matching Moves 1700 - 2018

1700 1780 1860 1940 2018
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GO community

* Pre-trained weights used in Go Al competition
* Directly used by Raynz, Golois
* Helped to train LeeloZero, Baduki, Yike

* Judge for opening tournament at the Opening Master
Championship by the Korean Go Association

* Used for pair tournament at the US Go congress by the American
Go association.



Can a human beat ELF OpenGo?
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Significant questions remain...

* Stability

* Can we reduce the variance of the algorithm?

* Sample-efficiency
* Can we train with fewer self-play games while covering rare events?

e Adversarial robustness

* Can we reduce the exploitable weaknesses of the bot?
* Can we learn moves requiring significant look ahead?



Thanks!
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