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1 Graphical Models

1.1 Why Graphical Models? Part 1

1) A powerful tool for modeling dependencies among random variables.

2) An efficient way to do “probability inference”. → Factorization

1.2 Classification of Graphical Models

There are two kinds of graphical models:

1) Directed Acyclic Graph(DAG)

2) Undirected graphical models

1.3 Directed Acyclic Graph(Bayesian Network)

1.3.1 Basic Ideas

An easy sample(See 1). The corresponding joint probability function is:

p(x1, x2, x3, x4, x5, x6, x7) (1)
= p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x6|x3, x4)p(x5)p(x7|x1, x4, x5)

1.3.2 Formal Definition

Generally, a Bayesian Network represents a high-dimensional joint probability
function p(x) x = [x1, x2, . . . xn] so that

p(x) =
n∏

i=1

p(xi|pai) (2)

pai is the parent nodes of node i, i.e., the nodes pointing to node i.
Note: From Eqn. 2, we can have an idea what the term “factorization” is.
The characteristics of Bayesian Network:
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Figure 1: A simple example of Bayesian Network
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Figure 2: Hidden Markov Model

1) An intuitive way for modeling → All identities appearing in Bayesian
Network have intuitive meanings.

2) A less insightful way for solution. → What does “probability inference”
really means? Find Max/Min/Sum on Functions!

1.3.3 Typical Example: Hidden Markov Chain

See Fig. 2. Joint probability function: (set p(x1|x0) = p(x1))

p(x,y) =
n∏

i=1

p(xi|xi−1)p(yi|xi) (3)

1.4 Undirected graphical model

1.4.1 Basic Ideas

An easy sample (See 3).
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Figure 3: A simple example of Undirected graphical model. It is DIFFERENT
from Bayesian Network, although they look like the same.

The corresponding joint probability function is:

p(x1, x2, x3, x4, x5, x6, x7) (4)
= p(x1, x4, x7)p(x3, x4, x6)p(x2, x4)p(x5, x7)

Note: It is DIFFERENT from Bayesian Network, although they look like the
same.

1.4.2 Formal Definition

The joint probability of an undirected graphical model is:

p(x) =
1
Z

∏

all maximal clique C

φC(xC) (5)

How to get all C.(See Algorithm 1.4.2)

while Graph G still has edge(s) do
Find one maximal clique C. Warning: This step potentially takes exponential
time;
Pick it out, delete all the edges of C (but not its node!)
Add it to Eqn. 5.

end while

φC(xC): Potential function defined on C, xC is the corresponding variables
of C. Warning: φC(xC) is not necessarily probability function; any function
works.

Z =
∑

x

∏
C φC(xC): Partition function.
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x1,1 x1,nx1,2 ......

x2,1 x2,nx2,2 ......

xm,1 xm,nxm,2 ......

Figure 4: Markov Random Field.

x1 xnx2

y=[y1,y2,...,ym]

......

Figure 5: Conditional Random Field.

1.4.3 Typical example: MRF & CRF

See Fig. 4 for Markov Random Field and Fig. 5 for Conditional Random Field.
The joint probability of MRF is:

p(x) =
1
Z

∏

i is neighbor of j

φij(xi, xj) (6)

It has a maximal clique of 2.
The conditional probability of CRF is:

p(x|y) =
1
Z

n∏

i=2

φi(xi, xi−1,y) (7)

It has a maximal clique of 3. Note: CRF only model the conditional probability
rather than joint probability.

1.5 Why Graphical Models? Part 2

Why graphical models? Why not just have one p(x) rather than a complicated
Factorization of small functions?
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The answer is: Factorization is efficient in computation.
We know HMM(See Eqn. 3) is efficiently solved by Dynamic Programming.

Then . . . , what is Dynamic Programming?
Taken HMM as an example, it is nothing but the following trick:

p(x∗,y) = max
x

p(x,y) (8)

= max
x

n∏

i=1

p(xi|xi−1)p(yi|xi)

= max
xn

p(yn|xn)max
xn−1

p(yn−1|xn−1)p(xn|xn−1)

. . . max
x2

p(y2|x2)p(x3|x2)max
x1

p(x2|x1)p(y1|x1)p(x1)

If each xi can take k possible values, then finding maximum of Eqn. 9 by
brute-force takes O(kn), an impractical method. But if we define:

f1(x1) = p(x1) (9)
f2(x2) = max

x1
f1(x1)p(y1|x1)p(x2|x1)

f3(x3) = max
x2

f2(x2)p(y2|x2)p(x3|x2)
. . .

fn(xn) = max
xn−1

fn−1(xn−1)p(yn−1|xn−1)p(xn|xn−1)

p(x∗,y) = max
xn

fn(xn)p(yn|xn)

it only takes O(nk2)! Note that all max notation can be replaced by
∑

so that
one can evaluate the marginalized distribution.

That’s the power of factorization, that’s essentially the reason why
graphical model is so useful.

1.6 Factor Graph and Belief Propagation (BP)

Basic concept:“Belief Propagation” is nothing but Dynamic Programming,
i.e.,change the order of min/max/sum to efficiently optimize the objective func-
tions.

The basic principle is:

1) For directed acyclic graph (Bayesian Network), it guarantees to give global
optimal solution (or “exact inference”). Yet how fast it is depends on the
maximum number of arguments in functions P (xi|pai). The
more arguments, the slower it will be.

2) For other situations, first convert the graph to Factor Graph.

a) If the factor graph is loop-free, then exact inference can be performed
by Belief Propagation. The time complexity of the algorithm also
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depends on the maximum number of arguments in
function nodes of Factor Graph.

b) In loopy case, it cannot have exact inference by Belief Propagation.
Yet, one can eliminate loopy case by “merging” variables together
and apply BP (See Fig. 6). This will (substantially) increase the
computational complexity.

We can see why factorization is so important from highlight words.
Here (See Fig. 6)is an easy sample for conversion to factor graph. The key

idea is: See the functions!.
I will not give the details of Belief Propagation. Here is a brief introduction.
If the problem visualized by the factor graph can be stated in the following:

f(x) =
∑
α

fα(xα) (10)

And what we want is to find its maximal value f(x∗) = maxx f(x). Then Belief
Propagation is:

mα→i(xi) = max
xα\xi

fα(xα)
∑

j∈N (α)\i
mj→α(xj) (11)

mi→α(xi) =
∑

β∈N (i)\α
mβ→i(xi) (12)

Once the maximum number of iterations is reached, the optimal x is given by:

x∗i = arg max
xi

∑
α

mα→i(xi) (13)

2 Mixture Models and EM

2.1 What is mixture model?

Again, rather than giving probability background, explain it functionally!.
A mixture model looks like:

p(x) =
∏

i

∑
zi

pi(xi, zi) (14)

Why it cannot be solved by general methods like Belief Propagation? The
answer is computational infeasible!

To see that, we notice that a pure
∑

/
∏

/max is ready for BP. But for a
mixture of

∑
and

∏
, it gives exponential terms if simple expansion is applied.
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Figure 7: Gaussian Mixture Model

2.2 Examples of mixture models

Gaussian Mixture Model is a typical one. See Fig. 7 for the graphical models.
Its joint probability function is:

p(x;µ,Σ, π) =
N∏

i=1

p(xi;µ,Σ, π) (15)

=
N∏

i=1

∑
zi

p(xi, zi;µ,Σ, π)

=
N∏

i=1

∑
zi

p(xi|zi;µ,Σ)p(zi;π)

2.3 The Expectation-Maximization Algorithm

Still, we don’t take care of its name and its background on probability, but
directly attack the most important part: What does EM do?

Here is the principle:

1) The optimization problem maxθ f(θ) is too hard;

2) Try finding a function g(θ,w) so that f(θ) = maxw g(θ,w) for each x;

3) Then the problem becomes maxθ maxw g(θ,w).

4) Use coordinate-ascending algorithm to solve it.
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The so-called Expectation Maximization algorithm does exactly the same
by Jensen Inequality:

log p(x; θ) =
∑

i

log
∑
zi

pi(xi, zi; θ) (16)

=
∑

i

log
∑
zi

wi,zi

pi(xi, zi; θ)
wi,zi

s.t.
∑
zi

wi,zi
= 1

≥
∑

i

∑
zi

wi,zi (log pi(xi, zi; θ)− log wi,zi)

Here f(θ) = log p(x; θ) and g(θ,w) =
∑

i

∑
zi

wi,zi
(log pi(xi, zi; θ)− log wi,zi

).
One can verify that g(θ,w) does touch f(θ) when

wi,zi
=

pi(xi, zi; θ)∑
zi

pi(xi, zi; θ)
= pi(zi|xi; θ). (17)

3 Approximate Inference

3.1 Motivation

1) Use a partially factorized function to approximate computational
intractable function.

2) Make estimation/inference by 1).

3.2 Mean field theory (MFT)

A typical way to approximate an intractable function with tractable functions.
It is originated from Statistics Physics.

We have the following joint probability function p(x):

p(x) =
1
Z

exp(−H(x)
T

) (18)

H is “Energy”(Hamilton), an intractable function defined in high dimension.
Define F = −T log Z = −T log

∑
x exp(−H(x)/T ) the “free energy”. Apply

Jensen Inequality, we easily get:

F = −T log
∑
x

q(x)
exp(−H(x)/T )

q(x)
s.t.

∑
x

q(x) = 1 (19)

≤ −T
∑
x

q(x) log
exp(−H(x)/T )

q(x)

=
∑
x

q(x)H(x) + Tq(x) log q(x)

= Eq[H]− TSq ≡ Fq

MFT tries to:
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1) approximate H with factorized q(x) =
∏

i qi(xi) so that its associated
H0(x) = −T log Zqq(x) = −T

∑
i log Ziqi(xi) is separable. (Zi =

∑
xi

qi(xi))

2) Yet, MFT wants to properly select q so that the upper bound reaches its
minimum.

Note that if q is factorized,

Fq =
∑
xi

qi(xi)
∑

j 6=i

qj(xj)H(x) + T
∑

i

∑
xi

qi(xi) log qi(xi) (20)

Using lagrange multiplier, we get the following equation:

δFq

δqi(xi)
=

∑

j 6=i

qj(xj)H(x) + T (log qi(xi) + 1) + λ = 0 (21)

Let
∑

j 6=i qj(xj)H(x) = Eq\qi
[H], we thus have the following joint equations:

q(xi) =
exp(−Eq\qi

[H]/T )∑
xi

exp(−Eq\qi
[H]/T )

(22)

Or more concisely:

log q(xi) = Eq\qi
[log p(x)] + const. (23)

These are called “mean field equations”.

3.3 Basic ideas on MFT

3.3.1 “variational methods”

One has to optimize the whole function rather than a series of variables →
variational methods.

3.3.2 “approximate inference”

Unlike EM, an arbitrary setting of q doesn’t necessary touch the bound. →
approximate inference.

3.3.3 What is minimized?

Minimize Fq → Minimize 1
T (Fq − F ). Then what is 1

T (Fq − F )?

1
T

(Fq − F ) =
∑
x

q(x)H(x)/T + q(x) log q(x) + log Z (24)

= −
∑
x

q(x) log p(x) + q(x) log q(x) (∵ − log p = log Z + H/T )

= −
∑
x

q(x) log
p(x)
q(x)

= KL(q||p)
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Actually, we are trying to find a factorized function as “close” to original func-
tion as possible!

3.4 Approximate Inference

Two great characteristics:

1) Making no difference between hidden variables and parameters.

2) After equations are solved, posteriors of parameters are automatically
found.

Suppose we have p(x) =
∑

z p(z,x). z are all the parameters/hidden vari-
ables. Then by our old trick of Jensen Inequality:

log p(x) = log
∑
z

q(z)
p(z,x)
q(z)

s.t.
∑
z

q(z) = 1 (25)

≥
∑
z

q(z) log
p(z,x)
q(z)

≡ L(q)

As usual, one maximizes the lower bound L(q) with respect to q(z) to get the
best approximation. Yet, let us have a look at what the other part is:

log p(x)− L(q) =
∑
z

q(z) [log p(x)− log p(z,x) + log q(z)] (26)

= −
∑
z

q(z) log
p(z|x)
q(z)

≡ KL
(

q(z)
∣∣∣∣
∣∣∣∣p(z|x)

)

So actually we are finding “closest” function to posteriors p(z|x), this is just
what we want in probabilistic inference. → To infer something, first
add them up.

Suppose q(z) =
∏

i qi(zi) with zi a disjoint partition of z, then we can find
its optimal: (in PRML, pp. 465)

log qi(zi) = Eq\qi
[log p(x, z)] + const. (27)

One can make a comparison between 27 and 23. They are much alike.

3.5 Local variational models

Function tricks: f(x) complicated→ f(x) = maxξ gξ(x), gξ is good, for example,
exponential family.

Then L(f) ≥ L(gξ) have tractable forms. Solve it, then take maximum
w.r.t. ξ to minimize the error (not necessary touch L(f) since in general ξ∗(x) ≡
arg maxξ gξ(x) 6= arg maxξ L(gξ))
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3.6 Expectation Propagation (EP)

3.6.1 Overview

Motivation:KL(q||p) → KL(p||q).
Expectation propagation: We have a probability function p to evaluate.

p(x) =
m∏

i=1

fi(x) (28)

And we have an approximation q(x; θ) =
∏m

i=1 f̃i(x; θ), with each f̃i has special
forms, i.e., belonging to exponential family. θ are the parameters.

Our goal is to optimize θ so that KL(p||q) is minimized.

3.6.2 The algorithm

Expectation Propagation (EP) adopts an iterative schemes to optimize f̃i (coordinate-
descending):

Initialize f̃i, i.e., initialize θ;
repeat

while i = 1 to m do
Let q\i(x; θ(k)) = q(x; θ(k))/f̃i(x; θ(k))
θ(k+1) ← arg minθ KL

(
fi(x)q\i(x;θ)

Zi

∣∣∣∣q(x; θ(k))
)

end while
until Convergence

How to minimize KL-divergence deserves consideration!
In general, KL(p||q) is not factorable if p is too complicated(no exact infer-

ence). → it works only in the following conditions.

1) p has a special analytic form, i.e., a product of mixture model. → we can
have each q component corresponding to one mixture model.

2) min KL(p||q) → Ep[u(x)] = Eq[u(x)] if q(x) = h(x)g(η) exp
{
ηT u(x)

}
belongs to exponential family.

3) min KL(p||q) → q∗i (xi) = p(xi) ≡
∫

p(x)
∏

xj /∈xi
dxj if

q can be factorized to be q(x) =
∏

i qi(xi)

2) is feasible if p can be partially factorized. → Belief Propagation is its
special case.
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3.6.3 BP as a special case of EP

Assuming the joint probability p(x) can be expressed as the following:

p(x) =
∏

i

fi(xi), (29)

with each fi is function of only a few variables xi. One can readily use graph-
ical model to express the function p. Of course, although p can be partially
factorized, we still cannot find global optimal solution for some quantities,
likemaxx p(x).

We set q to be an approximation of p as the following:

q(x) ∝
∏

i

∏

k

f̃ik(xk) (30)

For example: if p(x1, x2, x3) = fa(x1, x2)fb(x1, x3), we set f̃a(x1, x2) = f̃a1(x1)f̃a2(x2)
and fb(x1, x3) = f̃b1(x1)f̃b2(x3).

We can see that q is fully factorized.
If we use Algorithm 7 to find best q, we can see the iteration process is the

same as in BP. (See PRML pp. 515-516)

Appendix A: Some issues on training models with
partition function

Generally speaking, any undirected graphical models have a normalization “con-
stant” called partition function. It is a constant in inference stage, yet it does
change with parameters.

Fortunately, probability taking the exponential form enjoys partition func-
tion of good characteristics. Training of such models thus becomes practical.

Most such models are originated from Statistics Physics.

p(x; θ) =
1

Z(θ)
exp(−V (x; θ)) (31)

The following is an extreme important equation:

∂ log Z(θ)
∂θ

=
1

Z(θ)
∂Z(θ)

∂θ
(32)

= − 1
Z(θ)

∑
x

exp(−V (x; θ))
∂V (x; θ)

∂θ

= −Ep(x;θ)

[
∂V (x; θ)

∂θ

]

With Eqn.33, we can find that

∂ log p(x; θ)
∂θ

= Ep(x;θ)

[
∂V (x; θ)

∂θ

]
− ∂V (x; θ)

∂θ
(33)
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This is the basics for training such models. Particularly, if xi are drawn i.i.d.
with distribution Eqn. 31, the training rule will become

Ep(x;θ)

[
∂V (x; θ)

∂θ

]
= Esample

[
∂V (x; θ)

∂θ

]
(34)

In addition, if V (x; θ) is convex with respect to θ, then log p(x; θ) is concave,
because log

∑
x exp f(x; θ) is convex(concave) if f(x; θ) is convex(concave) w.r.t

θ for any x.

4 Sampling methods

4.1 Motivation

What is sampling? → Draw samples from a given probability distribu-
tion.

Why sampling? → 1)Simulation 2)Evaluation expectations involving
a prohibitive probability distribution. i.e., not factorizable.

E[f ] =
∫

f(x)p(x)dx → f̂ = 1
L

∑L
l=1 f(x(l))

4.2 Independent Sampling

4.2.1 How to sample?–Basic technique

Transformation between probability distributions:

p(y) =
∣∣∣∣
∂x
∂y

∣∣∣∣ p(x) (35)

For example: Exponential/Gaussian/Other distributions that F (x) can be
easily evaluated and inverted.

In one dimension: Y = F−1(X) if X is drawn from U[0, 1] and F (x) =∫ x

−∞ f(y)dy.
A typical example: Gaussian distribution (Box-Muller)

r =
√

z2
1 + z2

2

y1 = z1

√−2 log r

r

y2 = z2

√−2 log r

r
(36)

where z1 and z2 are uniformly distributed in the unit circle r ≤ 1.
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4.2.2 How to sample?–Advanced technique

Rejection sampling: We have p(x), easy to evaluate the function but hard to
draw sample from this distribution.

Using q to approximate p
If we can find a simple distribution q so that kq(x) ≥ p(x) always, then:

1) Sampling x from q;

2) Draw u ∼ U[0, kq(x)];

3) Accept sample x when u < p(x).

We want low rejection rate→ Its efficiency depends on how big k is.

4.2.3 Important Sampling

Characteristics: 1)Evaluate expectations 2)doesn’t draw samples from the core-
spondent distribution.

Using q to approximate p

E[f ] =
∫

f(x)p(x)dx

=
∫

f(x)
p(x)
q(x)

q(x)dx

=
1
L

L∑

l=1

p(x(l))
q(x(l))

f(x(l)) (37)

Better than the two stage schemes: 1)sampling p using complicated methods.
2)Approximate expectation using 1

L

∑L
l=1 f(x(l)).

4.3 Dependent Sampling

4.3.1 Motivation

How to sample? More advanced methods→ MCMC.
Big Idea: what we want is not independency, but prop-

erly scattered samples over the probability space.

4.3.2 Basic Knowledge on Markov Chain

Basic idea: a mapping between probability distributions. T (z′|z) : p(z) 7→ p(z′)
by definition of p(z′) =

∑
z T (z′|z)p(z).

Important property: ergodic/irreducible “The probability of traversing from
every state to every other state is strictly positive.”[1].

Stationary distribution π(z) (Theorem 11.10[1]): Every ergodic Markov Chain
has a unique stationary distribution π(z), so that

∑
z T (z′|z)π(z) = π(z′).
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Detailed balanced (reversible): T (z′|z)π(z) = π(z′)T (z′|z).
Main theorem: ergodic + reversible = convergence to sta-

tionary distribution regardless of initial condition.

4.3.3 Markov Chain Monte Carlo

We have a transition function(matrix): q(z|z(τ)). Using this function we sample
as following (Symmetric case, Metropolis Algorithm q(zA|zB) = q(zB |zA)):

1) Given sample z(τ), we sample next candidate one by q(z|z(τ));

2) The sample is accepted with probability

A(z∗, z(τ)) = min
(

1,
p̃(z∗)
p̃(z(τ))

)

3) If accepted, z(τ+1) = z∗, otherwise z(τ+1) = z(τ).

(More general case Metropolis-Hastings Algorithm)

Ak(z∗, z(τ)) = min
(

1,
p̃(z∗)qk(z(τ)|z∗)
p̃(z(τ))qk(z∗|z(τ))

)

Each time we use different qk to get sampling.

4.3.4 Gibbs Sampling

Gibbs sampling is a special kind of Metropolis-Hastings Algorithm by setting
qk(z∗|z) = p(z∗k|z\k) with z∗\k = z\k.

4.4 Hybrid Monte Carlo Algorithm

4.4.1 Motivation

Random walk phenomena: On average, the distance of traveling by MCMC is
the square root of iteration steps.

1) Step too small in each iteration→ low efficiency to traverse the probability
space.

2) Step too big in each iteration → high rejection rate.

Goal: move in large scale yet keep low rejection rate.
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4.4.2 Physics here!

Construct a dynamical system so that the “particle” moves in a systematic way.
→ The Hamilton dynamics.

First we define the momentum ri = dzi

dτ . Assuming the probability can be
expressed by p(z) = 1

Zp
exp(−E(z)), we define the Hamilton function (“total

energy”) in the phase space (z, r):

H(z, r) = E(z) + K(r) with K(r) =
1
2

∑

i

r2
i (38)

And Hamilton dynamics are defined as the following equations:

dzi

dτ
=

∂H

∂ri

dri

dτ
= −∂H

∂zi
(39)

Naturally, the associated joint probability p(x, r) is defined as 1
ZH

exp(−H(z, r)).
This dynamics has two important properties:

1) H is a constant of motion, i.e., dH
dτ = 0 along the trajectory.

2) “Volume” in the phase space is preserved, i.e., divV ≡ div
(

dz
dτ , dr

dτ

)
= 0.

To numerically integrate 39, we use Leapfrog method (in PRML pp. 551-
552). It is not the most accurate numerical integration method, yet it has the
following properties:

1) (Bad)The invariance of H along particle trajectory is not guaranteed.

2) (Good)It is time-reversible.

3) (Good)It preserves volume because it “either updates ri or zi by an
amount that is a function only of the other variable”(See PRML pp. 552).

Key contribution→It offers a systematic way to move from one sample
to another place faraway.

4.4.3 Hybrid Monte Carlo

The Hybrid Monte Carlo sampling includes the following steps:

1) Move from one sample (z, r) to (z∗, r∗) using Hamilton dynamics.

2) Accept (z∗, r∗) with probability min (1, exp{H(z∗, r∗)−H(z, r)}). H(z, r)
should equal to H(z∗, r∗) if the numerical integration is perfect.

3) Use Gibbs sampling to re-sample the momentum term r∗, keeping z∗ fixed.
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It can be proved that the property of “detailed balance” holds for Step 1)+2),
i.e., p(x, r) is a stationary probability for Markovian updating 1)+2) (See PRML
pp. 552-553); and Gibbs sampling in Step 3) also keeps p(x, r) unchanged. As
a result, it is guaranteed that the samples drawn from Hybrid Monte Carlo is
distributed with p(x, r). Discarding r, we thus get samples with distribution
p(x), the marginal distribution of p(x, r).

4.5 Application: Particle Filter

4.5.1 Motivation

Fig.2 is a typical graphical model. In many applications (like tracking or
any kind of sequential data modeling), one wants to estimate the posterior
p(xk|y1:k) ≡ p(xk|y1, . . . , yk).

Using Bayes Theorem, we can get the following general rule:

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 Prediction (40)

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k)
Update (41)

For xk discrete, the integral is replaced by summation. So the solution is
trivial. Then what happens if xk is continuous?

The problem: one cannot analytically find the posterior
because of intractable integrals → Sampling methods.

4.5.2 Kalman Filter

One famous example of the graphical model Fig. 2 is the Kalman Filter:

xk = Axk−1 + Buk−1 + wk−1 (42)
yk = Hxk + vk, (43)

with the assumption that wk and vk are both Gaussian-distributed.
Given y1, . . . , yk, Kalman filter aims to find x̂k, the (posterior) estimation of

hidden variable xk, so that E[||xk − x̂k||2] is minimized.
Note1: This can be done analytically because random variables are Gaussian.
Note2: Kalman Filter doesn’t estimate the distribution, but estimate the

“best” value.

4.5.3 Particle Filter

How to make intractable integral tractable? Sampling methods.
Basic idea of Particle Filter: represent the posterior distribu-

tion p(xk|y1:k) with “weighted particles” (w(l)
k , x

(l)
k ) so that for any f(xk), the

intractable integral becomes simple summation:

18



E[f ] ≡
∫

f(xk)p(xk|y1:k)dxk ≈
L∑

l=1

w
(l)
k f(x(l)

k ) (44)

The following problem is: given “weighted particles” (w(l)
k−1, x

(l)
k−1) at stage

k − 1, how to get (w(l)
k , x

(l)
k )?

Answer: sample p(xk|x(l)
k−1) and properly adjust the weight to give w

(l)
k for

each sample l:

x
(l)
k ∼ p(xk|x(l)

k−1) (45)

w
(l)
k ∝ w

(l)
k−1p(yk|x(l)

k ) s.t.
L∑

l=1

w
(l)
k = 1 (46)

if sampling p(xk|x(l)
k−1) is hard, we can adopt important sampling to yield

the following updating rule:

x
(l)
k ∼ qk(xk;x(l)

k−1) (47)

w
(l)
k ∝ w

(l)
k−1

p(yk|x(l)
k )p(xk|x(l)

k−1)

qk(xk;x(l)
k−1)

s.t.
L∑

l=1

w
(l)
k = 1 (48)

The above update rules are derived from Eqn.44.
Note: the resulting (w(l)

k , x
(l)
k ) could “concentrate” on few particles. (Few

particles have large weights, while the rest have negligible weights.) So re-
sampling is required.

See [2] for more detailed information. In PRML pp. 645, there is also a brief
introduction.

5 Basics about Gaussian Processes

5.1 Definition

GP is a random process {X(t), t ∈ R} so that for any finite sampling at time
t1, . . . , tN :

(X(t1), X(t2), . . . , X(tN )) ∼ N (µ(t1, . . . , tN ); Σ(t1, . . . , tN )) (49)

For practical reason, we often choose µ(t1, . . . , tN ) = 0 and {Σ(t1, . . . , tN )}ij =
K(ti, tj). K is a correlation function to model given their locations how related
two data points are.

K(·, ·) has to be positive-definite. It may contain some hyper-parameters.
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5.2 Train & Prediction given hyper-parameters

Use Bayesian approach → find posterior P (t|x,D) (D = {x′, t′} =
{x′(i), t′(i)}N

i=1 are training samples).

P (t|x,D) ∝ P (t, t′|x,x′) ∼ N (x,x′) (50)

which equals to finding a marginal distribution of a N + 1-dimensional Gaus-
sian Distribution, which is a 1-D Gaussian. Here is the result(Using Schur’s
complement(NOT Lemma)):

µ(x) = KT (x)K−1t′ (51)
σ2(x) = K(x, x)−KT (x)K−1K(x) Schur′s complement (52)

where Kij = K(x′i, x
′
j) only depends on x′ and K(x) = [K(x′1, x), . . . , K(x′N , x)].

For noisy case P (t′|x′) ∼ N (0,K + σ2I), the expression is similar:

µ(x) = KT (x)(K + σ2I)−1t′ (53)
σ2(x) = K(x, x)−KT (x)(K + σ2I)−1K(x) noise eliminated (54)

5.3 Hyper-parameters

1) Maximum Likelihood to find local extremes in parameter space. Takes
O(N3) for each iteration since K has to be reestimated.

2) Bayesian approach: µ(x) =
∫

θ
µθ(x|D)P (θ|D)dθ, where P (θ|D) ∝ P (D|θ)P (θ)

are parameter posteriors.

5.4 Some idea about Gaussian Processes

How does it do regression?

µ(x) = KT (x)K−1t′ = KT (x)w =
∑

i

wiK(x′i, x) (55)

where w = K−1t′ is coefficient. GP is like kernel regression.
In the noise-free case, µ(x) should pass through precisely all the training

samples → w can be determined without probabilistic framework.
The importance of GP is that it provides a probabilistic framework.

• σ2(x) is determined.

• One can have more general probabilistic framework incorporating GP as
a part. E.g., Mixture of Expert + GP = locally GP.
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6 Basics on Dirichlet Process

6.1 Definition

A Dirichlet Process is a “random distribution function” G. It has a scaling
parameter α and base distribution G0 with support A so that for any partition
A1, A2, . . . , Ak of A:

(G(A1), G(A2), . . . , G(Ak)) ∼ Dirichlet(αG0(A1), αG0(A2), . . . , αG0(Ak))
(56)

We denote G ∼ DP (α, G0).

6.2 Sampling from DP

The definition is quite indirect (different from GP), how to sample it?
A theorem tells us distribution function G is like the following:

G(x) =
∑

i

πiδ(x− xi) (57)

in which xi ∼ G0 independently, and πi = vi

∏
j<i(1−vj), where vi ∼ Beta(1, α).

6.3 Why DP?

If G ∼ DP (α, G), we expect to get exact the same thing from G > 1 times with
p > 0, since G is a countable infinite summation of deltas. → it is possible to
sample parameters of cluster.

Moreover, instead of 1) sample G from DP (α, G0), 2)sample {yi} from G to
get cluster parameters, one can directly sample yi based on previous samples
y1, . . . , yi−1 by the following:

P (yi|y1, . . . , yi−1) =
{

yi = yj with prob 1
i+α−1

yi ∼ G0 with prob α
i+α−1

(58)

This is because the joint distribution P (y1, . . . , yn) =
∫

G

∏
i P (yi|G)P (G|α, G0)dG

can be factorized to be Eqn. 58. See Fig. 8.

6.4 Infinite Mixture models

G is countable infinite summation of deltas → Infinite mixture models:

P (c1, . . . , cN , θ|x1, . . . , xN ) ∝ P (c1, . . . , cN )
∞∏

k=1

P (θk)
N∏

i=1

P (xi|ci, θci
) (59)

where P (c1, . . . , cN ) is the joint probability for Chinese Restaurant Process. It
is intractable to get local maxima of both c and θ, yet one can do it by steepest
descent or Gibbs Sampling:
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Figure 8: Dirichlet Process + independent sampling on G = Chinese Restaurant
Process

P (ci|c−i) =

{
#[c−i=k]
N+α−1 ci = k

α
N+α−1 ci = newLabel

(60)

7 Basics on Diffusion Process

7.1 Definition

A diffusion process is a random process {X(t)} so that the following Stochastic
Differential Equation (SDE) is held:

dXt = f(t,Xt)dt + Σ1/2dWt dWt ∼ N (0,dtI) (61)

where f(t,Xt) is the drift term and Wt is Wiener Process (random walk term).

7.2 Intuitive Ideas

It is quite sophisticated to give a formal mathematical definition, yet one can
have an intuitive idea about what a diffusion process is. Dividing the time
interval [t0, t1] into K parts and using Euler-Muryama discrete approximation,
we have

∆Xk = f(tk, Xk)∆t + Σ1/2∆Wk ∆Wk ∼ N (0,∆tI) (62)

where ∆Xk = Xk+1 − Xk. Then we will have K random variables and their
joint distribution will be the following:

P (X0, . . . , XK) = P (X0)
K−1∏

k=0

P (Xk+1|Xk) (63)
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where P (Xk+1|Xk) ∼ N (Xk + f(tk, Xk)∆t,Σ∆t).
f(tk, Xk) could have hyper-parameters so that they can be adjusted for

better fitting for data.
Diffusion Process → Continuous Markov Chain.

7.3 Why Diffusion Process?

Why not just using Discrete Markov Chain? The key problem is that we don’t
know the location of evidences in advance, which can be placed in any t ∈ [t0, t1].
Discrete Markov Chain is not suitable for this situation, but Continuous Markov
Chain is ok.

7.4 Posterior given data points

For marginal distribution P (Xt) to be Gaussian, we set f(t, x) = −Atx + bt

(Linear SDE). Suppose P (Xt) ∼ N (mt, St) is Gaussian, we can get the corre-
sponding ODE of mt and St as follows:

ṁt = −Atmt + bt (64)
Ṡt = −StA

T
t −AtSt + Σ (65)

This two equations can be derived using definition of Diffusion Process (dis-
cretization → take limit) or can be formally derived by the following:

dmt = E[Xt + dXt]− E[Xt] (66)
dSt = E[(X̄t + dX̄t)(X̄t + dX̄t)T ]− E[X̄tX̄

T
t ] (67)

where X̄t = Xt −mt.
By Eqn. 66 and Eqn. 67, one can find posterior marginal distribution

P (Xt|X0 = x0) by setting the initial condition m0 = x0 and S0 = 0. And the
posterior distribution of Xt is:

P (Xt|Xt1 = x1, Xt2 = x2) t1 ≤ t ≤ t2,no extra info in [t1, t2](68)
∝ P (Xt|Xt1 = x1)P (Xt2 = x2|Xt) (69)

where P (Xt|Xt1 = x1) and P (Xt2 = x2|Xt) = P (Xt|Xt2 = x2) (reversible) can
be obtained by Eqn. 66 and Eqn. 67.

7.5 Derivation of Eqn. 66 and Eqn. 67

How to find distribution of Xt given X0? We divided [0, t] into K parts, 0 =
t0 < t1 < . . . < tK = t, each with time span ∆t.

By discrete approximation (xi = xti):

X1|X0 ∼ N (x0 + f(t0, x0)∆t, ∆tΣ) (70)
X2|X1 ∼ N (x1 + f(t1, x1)∆t, ∆tΣ) (71)
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Since P (x2|x0) =
∫

x1
P (x2|x1)P (x1|x0)dx1 and we use linear condition that

f(t, x) = f(t)x, which gives Gaussian distribution1:

X2|X0 ∼ N ((1 + f(t0)∆t)(1 + f(t1)∆t)x0, ∗) (72)

By induction, we get:

Xt|X0 ∼ N
(

K−1∏

k=0

(
1 + f

(
tk

K

)
t

K

)
x0, ∗

)
(73)

Since:

mt = lim
K→∞

K−1∏

k=0

(
1 + f

(
tk

K

)
t

K

)
x0 = x0e

R t
0 f(τ)dτ (74)

We naturally have ṁt = ftmt with initial condition m0 = x0, as indicated in
Eqn.66.

7.6 An introduction on Diffusion Map

“Diffusion Map” is another concept used to interpret the mechanism behind
spectral clustering.

Suppose we have N points {x1, . . . , xN} and N×N affinity matrix is defined
as aij = exp(−||xi − xj ||2/2σ2). Treating N points as vertices, we get a full-
connected graph and associated transition matrix M :

M = L−1A L = diag


∑

j

a1j , . . . ,
∑

j

aNj


 (75)

Given that a particle is settled in vertex i at time 0, we can thus find the
probability distribution p(j|i,m) over the graph at discrete time m:

p(j|i,m) = eT
i Mm (76)

where ei contains 1 in i-th row and zero elsewhere.
Then we compare a weighted distance between p(j|i1,m) and p(j|i2,m) for

similarity measure of two point xi and xj :

Dist2(i1, i2) =
∑

j

(p(j|i1,m)− p(j|i2,m))2w(j) (77)

This distance can be converted to Euclidean distance if we apply “Diffusion
Map” for each point, and spectral clustering does exactly the same mapping.
To see why, note that Eqn. 77 can be reformulated in matrix form:

Dist2(i1, i2) = (ei1 − ei2)
T MmW (Mm)T (ei1 − ei2) (78)

1Using the formula:

(a− b)2

n
+

(kb− c)2

m
=

m + nk2

mn

„
b− ma + nkc

m + nk2

«2

+
(ka− c)2

m + nk2
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where W is a diagonal matrix.
For any matrix M , it can be decomposed into UDV T , where U is the column

stack of its right normalized eigenvectors, V its left normalized eigenvectors and
D its eigenvalues in the diagonal, with biorthogonal property that UT V =
V T U = I.

Note: It is not SVD! so U and V doesn’t have the property of UT U = V T V =
I. Yet it is related. Suppose Ms = L1/2ML−1/2 = L−1/2AL−1/2 = U ′ΣU ′T

(Ms symmetric), then U = L−1/2U ′, V = L1/2U ′ and D = Σ.
Then Mm = UDmV T and MmW (Mm)T = UDm(V T WV )DmUT . If we

set W = L−1 so that V T WV = U ′L1/2L−1L1/2U ′T = I, then Eqn. 77 can be
written as

Dist2(i1, i2) = (ei1 − ei2)
T UD2mUT (ei1 − ei2) = ||yi1 − yi2 ||2 (79)

in which yi = DmUT ei, the “Diffusion Map”.

PRML Errata

The following is the errors I found in PRML:

1) Eqn. (11.45) The leading term should be p(z)qk(z′|z)Ak(z′, z). The asso-
ciated derivations are thus changed accordingly.

2) In Eqn. (11.68), the factor min{1, exp(−H(R) + H(R′))} should be
min{1, exp(H(R)−H(R′))} and In Eqn. (11.69), the corresponding fac-
tor should be altered similarly. The principle is that both expressions are
exactly the same to demonstrate that the property of detailed balance
holds.

3) Eqn. (11.10)-(11.11) The expression of Box-Muller Transform is not right.
See Eqn. 36 for corrected version.
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