ELF: Extensive, Lightweight and Flexible
Framework for Game Research

Yuandong Tian Qucheng Gong Wenling Shang Yuxin Wu Larry Zitnick

Facebook Al Research

Reinforcement Learning: Ideal and Reality

Action Q¢

=
~

[R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction]

Reinforcement Learning: Ideal and Reality

Q,
°

_____________ A t};i . :

; (e Design Choices:

i Rewara Action Q¢ CPU/ GPU?

| Simulation, Replays
i Concurrency

[R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction]

ELF: A simple for-loop

while True:

batched_states = GameContext.Wait()
replies = model(batched_states)
GameContext.Steps (replies)

ELF Characteristics

O | - 4

Flexible

Environment-Actor topology
Parametrized game environments.
Choice of different RL methods.

'Y
Extensive

Any games with C++ interfaces
can be incorporated.

Lightweight
Fast. Mini-RTS (40K FPS per core)
Minimal resource usage (1GPU+several CPUs)
Fast training (half a day for a RTS game)

Extensibility

ALE

ELF

Breakout

o3l = 1

/R

RTS Engine

Mini-RTS

4

apture
the Flag

Tower
Defense

N W B~ G

0

Lightweight

KEPS per CPU core for Pong (Atari)

131%’

64 threads

128 threads

256 threads

512 threads

1024 threads

m] core
M 2 cores

W 4 cores
“ 8 cores
®m 16 cores

B OpenAl Gym

N W B~ Gl

0

Lightweight

KEPS per CPU core for Pong (Atari)

64 threads

128 threads

256 threads

512 threads

1024 threads

®] core
M 2 cores

W 4 cores
“ 8 cores
®m 16 cores

B OpenAl Gym
W ELF

Flexibility R 4

b

l

Act —> Act — Act —

59‘ Act — Act — Act

while True:
batched = GameContext.Wait ()
replies = model(batched)
GameContext.Steps(replies) = = = m =

-----»

Evaluation

Flexibility > y

i .
g!
jﬁ Act — Act — Act — Act —| Act — Act —

while True:

if batch["type"] == "actor":

Ju Il INN NN BN DN S S . -

Training

Flexibility R 4

o
o
ey Act — Act — Act — Act —{ Act —| Act —
= B
e |
4w Act — Act Act —> Act — Act — Act —
‘__,\' g— I
I
while True: :
e o o I
if batch["type"] == "actor0": :
elif batch["type"] == "actorl":

Self-play

Flexibility

\}
i
k) Act > Act >/ Act —{ Act —/ Act — Act —
=B o
H_,U» Act —> Act —*| Act —*| Act — Act > Act
Q,
i Act —{ Act >/ Act > Act —{ Act —{ Act —
~ 8 o
Act —> Act —*| Act —*| Act — Act /> Act
S8
while True:
for i in range(n):
if batch["type"] == "actory/d" % i:

Multi-agent

Flexibility

22/40

while True:
batched = GameContext.Wait ()
replies = model(batched)
GameContext.Steps(replies) "==**

Monte-Carlo Tree Search

ELF design

J III :

History
buffer

Producer (Games in C++)

ELF design

History
Game 1 buffer
History
G 2

ame buffer

o

(]

o
G N History
: ame buffer

Producer (Games in C++)

ELF design

History
Game 1 buffer
Game 2 History Collector

buffer

o

o

o
G N History
: ame buffer

Producer (Games in C++)

ELF design

History : 3
Game 1 buffer : Batch with :
) : History info :
Game 2 History Collector g/ —>| Distributor
buffer : :
° Reply
o
[
G N History
:[2ame buffer

Producer (Games in C++) Consumers (Python) :

ELF design

History : 3
Game 1 buffer : Batch with
) : History info :
Game 2 History Collector g/ —>| Distributor
buffer : :
o
[
G N History
:[2ame buffer

Producer (Games in C++) Consumers (Python) :

ELF design

History : 3
Game 1 buffer : Batch with
) : History info :
Game 2 History Collector g/ —>| Distributor
buffer : :
° Reply
o
[
G N History
:[2ame buffer

Producer (Games in C++)

ELF design

History : 3
Game 1 buffer : Batch with :
) : History info :
Game 2 History Collector g/ —>| Distributor
buffer : :
° Reply

e N History
| >ame buffer

Producer (Games in C++)

Process |

2

Gorilla

Game Actor — Model «

Process o

Optimizer

N\

Optimizer

Game Experience ﬂpe‘.\e(\ce Model
(-(\e
'""'"":/
: Replay :
: P V: » Model
: Buffer :\
Model

Optimizer

e

[Nair et al, Massively Parallel Methods for Deep Reinforcement Learning, ICML 2015]

v

Synchronization

Asynchronized Advantageous Actor-Critic (A3C)

Game 1 Actor Model Optimizer

Process 1

Synchronization

Game 2 Actor Model Optimizer

Process 2
IIIIII.II
[]
o

Game N Actor Model Optimizer

Process N

[Mnih et al, Asynchronous Methods for Deep Reinforcement Learning, ICML 2016] ‘.o'l.

GA3C / BatchA2C

;IIIIIIIIIIIIIII:
-| Game 1
E = GameE :IIIIIIIIIIIIIIIIIII
. Process 11 ™o s :
Rep[y E Model E
Game 2 ﬁ ﬂ Actor
:....Process 2 : :
° - .
° . Optimizer .
o .
: : : Training Process :
: GameN L EEEEEEEEEEEEEEEEEENT
: : GPU
: Process N :

[Babaeizadeh et al, Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU, ICLR 2017]

ELF: A unified framework

|
Off-policy training One-to-One Many-to-One
Deep Q-learning Vanilla A3C BatchA2C, GA3C

ELF: A unified framework

|
Off-policy training One-to-One Many-to-One
D . : One-to-Many
eep Q-learning Vanilla A3C BatchA3C, GA3C
Self-Play,

Monte-Carlo Tree Search

Part [l. MinIRTS Training

MiniRTS: A miniature RTS engine

Your base

ALE 6,000
N o Open Al Universe 60
Malmo 120
— DeepMind Lab 287%*/866**
o e VizDoom 7,000
Fog of War TorchCraft 2,000
Sl \iniRTS 40,000

* Using CPU only ** Using CPUs and GPU

Base

Resource \\ ,’

Barracks

Worker @
Melee Tank H

Range Tank m

Build workers and collect resources.

Contains 1000 minerals.

Build melee attacker and range attacker.

Build barracks and gather resource.
Low speed in movement and low attack damage.

High HP, medium movement speed, short attack range, high attack damage.

Low HP, high movement speed, long attack range and medium attack damage.
[o 2)

Training Al

O Ll e ———————————————— 1
(x, y) of units =} o Policy
_ - ‘ Conv [~ BN | RelU 14
Affiliation .
HP portion X4§ Value

Resource /

Game internal data
(respecting fog of war)

Using Internal Game data and Actor-Critic Models.
Reward is only available once the game is over.

9 Discrete Strategic Actions

No. Action name ____|Descriptions _________________________

1
2

3

IDLE
BUILD WORKER

BUILD BARRACK

BUILD MELEE ATTACKER

BUILD RANGE ATTACKER

HIT AND RUN

ATTACK
ATTACK IN RANGE
ALL DEFEND

Do nothing
If the base is idle, build a worker

Move a worker (gathering or idle) to an empty place and build a
barrack.

If we have an idle barrack, build an melee attacker.
If we have an idle barrack, build a range attacker.

If we have range attackers, move towards opponent base and attack.
Take advantage of their long attack range and high movement speed to
hit and run if enemy counter-attack.

All melee and range attackers attack the opponent’s base.
All melee and range attackers attack enemies in sight.

All troops attack enemy troops near the base and resource.

Rule-based Als

ATI_SIMPLE AT HIT_AND_RUN
Build 5 tanks and attack Build 2 tanks and harass

MiniRTS trains with a single GPU and 6 CPUs in half a day.

Trained Al q

i |
9 4 L G
4. =

Al _SIMPLE

Win rate against rule-based Al

Frame skip (how often Al makes decisions)

Opponent Al_SIMPLE Al_HIT_AND_RUN
Frame skip

50 68.4(+4.3) 63.6(7.9)
20 61.4(+5.8) 55.4(+4.7)
10 52.8(+2.4) 51.1(%5.0)

*The frameskip of learned Al is always 50

Win rate against rule-based Al

Network Architecture

Conv

BN

{ RelLU

Win Rate |SIMPLE |SIMPLE HIT_AND_RUN |HIT_AND_RUN
(10K games) |(median) |(mean/std) |(median) (mean/std)

RelLU 52.8
Leaky RelLU 59.8
ReLU + BN 61.0

Leaky ReLU + BN 72.2

54.7(4.2)
61.0(2.6)
64.4(7.4)
68.4(+4.3)

60.4
60.2
55.6
65.5

57.0(+6.8)
60.3(+3.3)
57.5(+6.8)
63.6(7.9)

Effect of Multi-step Training

Best win rate in evaluation

0.75

0.55

0.15

Al SIMPLE
— — f
- — 4
— ~—T=8

0.35 —-—T=1?2

3 --T=16

--T=20
0 200 400 600 800

Samples used (in thousands)

Curriculum Training

Without With
curriculum training | curriculum training

Al_SIMPLE 66.0 (+2.4) 68.4 (+4.3)
Al_HIT AND_RUN 54.4 (+15.9) 63.6 (+7.9)

First k decisions made by AT_SIMPLE K

then made by trained Al

k ~ Uniform|0, K|
K x 5—#game_played

#gamé_played

Transfer Learning

Combined
m Al_SIMPLE Al_HIT _AND_RUN (50%SIMPLE+50% H&R)

SIMPLE 68.4 (+4.3) 26.6(+7.6) 47.5(5.1)
HIT AND RUN 34.6(+13.1) 63.6 (+7.9) 49.1(+10.5)
Combined 51.8(+10.6) 54.7(x11.2) 53.2(+8.5)

22/40

Monte Carlo Tree Search

2/10

9/10

1/1
. WinRate | AI_SIMPLE AI_HIT_AND_RUN

Random 24.2 (£3.9) 25.9 (£0.6)
MCTS* 73.2 (+x0.6) 62.7 (+2.0)
Trained Al 68.4(+4.3) 63.6(+7.9)

* repeat on 1000 games, each using 800 rollouts.

MCTS uses complete information and perfect dynamics

Ongoing Work

* One framework for different games.
e DarkForest remastered: https://github.com/facebookresearch/ELF/tree/master/go

* Richer game scenarios for MiniRTS.
* LUA scripting support
* Multiple bases (Expand? Rush? Defending?)
 More complicated units.

e Realistic action space
* One command per unit

* Model-based Reinforcement Learning
* Self-Play (Trained Al versus Trained Al)

Open Source

[facebookresearch [ELF ® Unwatch~ 89 % Unstar 1,201 ¥ Fork 158

<> Code Issues 4 Pull requests 1 Projects 0 Wiki Insights

An End-To-End, Lightweight and Flexible Platform for Game Research

gaming cpp python artificial-intelligence deep-learning neural-network platform reinforcement-learning

D 500 commits ¥ 11 branches © 0 releases 22 11 contributors

https://github.com/facebookresearch/ELF

g_funcs = { }
function g_funcs.attack(env, cmd)
local target = env:unit(cmd.target)

LUA Interface for MiniRTS etz emsew

if target:isdead() or not u:can_see(target) then
—— c_print("Task finished!")
return global.CMD_COMPLETE

end
. local att_r = uzatt_r()
¢ Easy tO Change ga me dynamICS local in_range = env:dist_sqr(target:p()) <= att_r % att_r
, if u:cd_expired(global.CD_ATTACK) and in_range then
* Don’t need to touch C++. __ print("Attacking .. ")
—— Then we need to attack.
 Comparable speed to C++ if att_r <= 1.0 then
. env:send_cmd_melee_attack(cmd.target, u:att())
e 1.5x slower than compiled code. e
env:send_cmd_emit_bullet(cmd.target, u:att())
end
env:cd_start(global.CD_ATTACK)
else
if not in_range then
—— print("Moving towards target .. ")
env:move_towards(target)
end
end
—— print("Done with Attacking .. ")

end

RLPytorch

* A RL platform in PyTorch
* A3Cin 30 lines.

A3C

def update(self, batch):
?22 Actor critic model 7’
R = deepcopy(batch["V"][T - 1])
batchsize = R.size(0)
R.resize_(batchsize, 1)

for t in range(T - 2, -1, -1):
Forward pass
curr = self.model_interface.forward("model", batch.hist(t))

Compute the reward.

R = R * self.args.discount + batch["r"][t]

If we see any terminal signal, do not backprop

for i, terminal in enumerate(batch["terminal"] [t]):
if terminal: R[t][i] = curr["V"].datal[il

We need to set it beforehand.
self.policy_gradient_weights = R - curr["V"].data

Compute policy gradient error:

errs = self._compute_policy_entropy_err(curr["pi"], batch["a"][t])
Compute critic error

value_err = self.value_loss(curr["V"], Variable(R))

overall_err = value_err + errs["policy_err"]
overall_err += errs["entropy_err"] * self.args.entropy_ratio .,’.‘.
overall_err.backward() e

Trained Al

f e |
B dasd /it
L\. o i
.y

1 o

P

Questions?

Tonight Poster: #96

Al SIMPLE

https://github.com/facebookresearch/ELF

