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Abstract
Nonrigid deformation modeling and estimation from images is a technically

challenging task due to its nonlinear, nonconvex and high-dimensional nature. Tra-
ditional optimization procedures often rely on good initializations and give locally
optimal solutions. On the other hand, learning-based methods that directly model
the relationship between deformed images and their parameters either cannot handle
complicated forms of mapping, or suffer from the Nyquist Limit and the curse of
dimensionality due to high degrees of freedom in the deformation space. In particu-
lar, to achieve a worst-case guarantee of ε error for a deformation with d degrees of
freedom, the sample complexity required is O(1/εd).

In this thesis, a generative model for deformation is established and analyzed
using a unified theoretical framework. Based on the framework, three algorithms,
Data-Driven Descent, Top-down and Bottom-up Hierarchical Models, are designed
and constructed to solve the generative model. Under Lipschitz conditions that rule
out unsolvable cases (e.g., deformation of a blank image), all algorithms achieve
globally optimal solutions to the specific generative model. The sample complexity
of these methods is substantially lower than that of learning-based approaches, which
are agnostic to deformation modeling.

To achieve global optimality guarantees with lower sample complexity, the struc-
ture embedded in the deformation model is exploited. In particular, Data-driven De-
scent relates two deformed images that are far away in the parameter space by com-
positional structures of deformation and reduce the sample complexity toO(Cd log 1/ε).
Top-down Hierarchical Model factorizes the local deformation into patches once the
global deformation has been estimated approximately and further reduce the sample
complexity toO(Cd

1 +C2 log 1/ε). Finally, the Bottom-up Hierarchical Model builds
representations that are invariant to local deformation. With the representations, the
global deformation can be estimated independently of local deformation, reducing
the sample complexity to O(

(
C
ε

)d0) (d0 � d). From the analysis, this thesis shows
the connections between approaches that are traditionally considered to be of very
different nature. New theoretical conjectures on approaches like Deep Learning, are
also provided.

In practice, broad applications of the proposed approaches have also been demon-
strated to estimate water distortion, air turbulence, cloth deformation and human
pose with state-of-the-art results. Some approaches even achieve near real-time per-
formance. Finally, application-dependent physics-based models are built with good
performance in document rectification and scene depth recovery in turbulent media.
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Chapter 1

Introduction

In our daily lives, we observe a large range of deforming surfaces or objects such as water,
clothing, human body and so on (Fig. 1.1). Modeling and estimating deformation from images
can help better understand and hence extract useful information of the scene with these objects.
For example, capturing cloth deformation in real time leads to markerless motion capture, and
estimating paper deformation helps facilitate digitization of a piece of receipt or a page of book
using smart-phone. A famous example is the recent success of Microsoft Kinect that stems from
breakthrough on human pose estimation using a depth camera.

Many vision problems deal with complex geometric variations of the same target (e.g., scene
or object). Deformation modeling can build the correspondence among different appearances
(different images) of the same object, and hence help solve many fundamental vision problems,
such as image alignment and image matching, and build compact models for object detection
and recognition.

Figure 1.1: Non-rigid image deformations in real-world scenarios caused by water fluctuation,
hot air turbulence, book/paper curving, cloth folding, face expression and human pose changes.
Modeling and estimating deformation help in extracting useful information from these scenarios.

1



1.1 Taxonomy of Deformation

Taxonomy of deformation. By definition, the word deformation covers a large range of geo-
metric variations and can be categorized according to different criteria. (1) Deformation could
be rigid or nonrigid. Rigid deformation preserves certain geometric quantities such as the dis-
tance between two locations and angle between two straight lines, and thus has fewer degrees of
freedom. Nonrigid deformation has more degrees of freedom and usually maps lines into curves.
(2) Deformation can either be mainly restricted to a local region, such as image deformation of
underwater scenes due to small water waves, or can include global motion in addition to local
formation, i.e., non-local deformation, e.g. a bird flying while flapping its wings.

Note that local distortion means that, each part of the object/scene moves around its original
location with small displacement. (3) Deformation also be continuous that extends smoothly on
a surface such as that due to moving a piece of cloth, or articulated that has discontinuity on
joint locations and object boundary, e.g., human appearance variations due to pose changes. (4)
Deformation could happen in a 3D volumetric region (e.g., hot air turbulence) or on a 2D surface
such as cloth deformation. (5) Considering the image formation process, deformation can be
created by dynamic medium between the camera and the scene, in which the medium property
inbetween can bend the light transport and create deformation (e.g., distortion by water surface
fluctuation or hot air turbulence), or by the variation of camera internal/external parameters (e.g.
perspective distortion caused by unusual camera pose, lens distortion caused by fish-eye lens and
so on).

Taxonomy of deformation modeling. A large volume of previous works have been devel-
oped to deal with different types of deformation,. (1) Researchers have proposed holistic ap-
proaches that take the entire image as an input, and output an estimation of deformation; Alter-
natively, part-based approaches estimate the location and local deformation of each part of the
object/scene, and then combine the evidences together to obtain a globally consistent estimate of
deformation. (2) Statistically, generative approaches establish a model on how the deformation
is generated and find the best model parameters using optimization or sampling. Discriminative

approaches, on the other hand, directly learn a mapping from the input deformed image to the
parameter space. (3) Finally, deformation modeling could be specific, i.e., use significant domain
knowledge to facilitate deformation estimation, or is a generic approach with mild assumptions
that is widely applicable to many scenarios.

2



1.2 Problem Definition and Technical Challenges

Despite the variety of deformations, they all have one common mathematical formulation. Know-
ing one template image I0 and a deformed image I , the goal of this thesis is to find a deformation

field W (x) that warps the deformed image I back to the template I0: that:

I(W (x)) = I0(x) (1.1)

Intuitively, for every pixel location x on the template I0, W (x) is the corresponding location
on the deformed image I . Since deformation could be nonrigid, W (x) is spatially smooth but
nonlinear.

Generative (Optimization) point of view. One traditional way to solve Eqn. 1.1 is to mini-
mize the following objective function:

J(W ) =
∑
x

||I(W (x))− I0(x)|| (1.2)

which is then regarded as a general optimization problem. Contrary to its simple form, it turns
out that finding a globally optimal solution is technically challenging due to the following two
reasons.

First of all, appearance created by deformation is image-dependent and is thus nonlinear
with respect to the deformation parameters. Even for a rigid deformation like 2D translation,
the pixel intensity will shift to its nearby pixel value, creating a nonlinearity. A simple local
linearization often results in locally optimal solutions or inaccurate prediction.

Coupled with nonlinearity, the difficulty in deformation modeling also stems from the issue
of high degrees of freedom, or its high dimensionality. For rigid deformation that has only a
few number of parameters and low-dimensional (e.g., affine transform with 6 parameters), non-
linearity can be solved by an exhaustive search in the parameter space, i.e., by looking at every
parameter and finding the best solution. However, deformation in its general form, in particular
nonrigid deformation, is intrinsically high-dimensional. For example, the dimensionality of a
deformation field W (x) locally parameterized by a set of image landmarks is roughly twice the
number of landmarks. In such a case, exhaustive search could take exponential time to finish,
and is usually ineffective and time-consuming. For smooth deformation, dimensional reduction
such as PCA or GPLVM [85] can be used. However, in practice, even the reduced dimensionality
is still high.

In general, it is very hard to overcome the two technical difficulties within the general opti-
mization framework. Existing methods, such as gradient descent, Newton’s method and so on,

3



(a) (b)

Figure 1.2: General optimization framework versus proposed algorithms in this thesis. (a)
General optimization sets a goal first, and then goes towards the goal using standard, domain-
independent procedure. (b) Proposed algorithms directly find a path towards the globally optimal
solution without setting the objective.

give numerical procedures that achieve a locally optimal solution and not a global one. To obtain
better solutions, good initializations using empirical heuristics are required. In fact, it is highly
implausible to find a generic numerical procedure that always returns a guaranteed solution to an
arbitrary optimization problem.

So let us take one step back. First, why bother developing generic approaches that solve
everything? An algorithm specific to Eqn. 1.1 can potentially work better for our task. Second,
why rely on an objective function? Indeed, as show in Fig. 1.2, the objective (Eqn. 1.2) only
gives us a goal to aim for but never tells us how to reach it. Conversely, if we already know how
to reach the goal, why bother setting up a criterion?

Therefore, this thesis instead looks for a specific set of algorithms (or procedures) that directly
return a solution to the generative model (Eqn. 1.1) for deformation. The proposed algorithms
are specific and may not be broad enough to handle every optimization problem, which is not
our goal in any case. The algorithm may not derive from any objective function. The punchline
is: the solution obtained by our algorithms has global optimality guarantees.

Discriminative (Predictive) point of view. The other popular way to solve Eqn. 1.1 is to
pose it as a prediction task. In this setting, training samples (I(i),W (i)) that contain N deformed
images with known deformation fields are generated from the generative model Eqn. 1.1. Then
a predictive model is built for the mapping I 7→ W using the training samples (I(i),W (i)). That

4



model is applied to a test image Itest and returns the most relevant deformation field as the answer.

With this approach, a good answer can always be found if a correct model happens to be
picked, together with a sufficient number of training samples. Now the challenging questions
become: which model should be used and how many samples are needed? Without knowing
the nature of the image-parameter mapping I 7→ W , the predictive model has to be treated as
a black-box with the following inevitable fundamental trade-off: simple models such as linear
regressors require few samples, with strong assumptions that could be terribly wrong for a highly
nonlinear problem like Eqn. 1.1; on the other hand, complicated, nonparametric models could
handle arbitrary data distribution but the required number of training samples grows exponen-
tially with respect to dimensionality. This phenomenon, known as the curse of dimensionality
(Fig. 1.3(a)), makes predictive models unusable for high-dimensional problems. The recent rapid
boost of computational resources may compensate for some exponential growth in practice, but
may not suffice to model all deformation.

The only solution is to find the correct model by analyzing the problem structure in details.
For example, as shown in Fig. 1.3(b), domain knowledge, e.g. the deformation model specified
by Eqn. 1.1, implies long-range constraints on the relationship between two faraway regions in
the space that are not connected by local smoothness, local factorization (low-rank) structures
and so on. In contrast, traditional machine learning approaches aim to find a universal solver
that works for arbitrary distributions. The knowledge related to the specific problem is regarded
as features, an empirical component without formal analysis. As a result, the proposed models
in this thesis may not be as straightforward as linear regression or decision forests, but have far
better theoretical worst-case guarantees for the specific problem to be solved.

Interestingly and surprisingly, it turns out that the two seemingly orthogonal perspectives, the
generative point of view and discriminative points of view, result in a unified framework, which
is the main contribution of this thesis. Under this framework, three algorithms are proposed
to deal with Eqn. 1.1 with theoretical guarantees. These algorithms follow from the detailed
analysis and are built in a principled manner. They assume reasonable Lipschitz conditions that
rule out very few unsolvable images, and in many aspects coincide with different heuristics that
have been tried to improve the performance of practical systems without knowing the underlying
principles.

1.3 Contributions of the Thesis

(a) A novel and principled theoretical framework. This thesis provides a framework that
can be used to analyze non-rigid deformation estimation algorithms, including their convergence

5



locally 
factorizable

similar 

(b)(a)

1 dimension:
10 points

2 dimension:
100 points

3 dimension:
1000 points

Figure 1.3: The curse of dimensionality and the proposed solution in this thesis. (a) The content
within the volume goes up exponentially with respect to the dimensionality (degrees of free-
dom, DoF). As a result, an arbitrary high-dimensional mapping may have exponentially many
parameters and an enormous number of training samples are needed to learn it with worst-case
guarantees. (b) Reducing the degrees of freedom with domain-specific constraints. These con-
straints may take different forms, e.g., Top: there are connections in two regions that are far away
in the space, and Bottom: Local region of the space may exhibit factorizable (low-rank) struc-
tures. Note in our model, these structures are not assumed a prior but follows naturally from the
generative model of deformation. With these constraints, the number of parameters used to de-
termine a high-dimensional mapping is substantially reduced. As a result, the sample complexity
is also reduced.
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Figure 1.4: Comparison of multiple methods in theoretical performance with the same sample
complexity. Local search approaches give a solution without guarantees. Proposed approaches
(solid lines) are better than Nearest Neighbor Prediction. d is the dimensionality (degrees of
freedom) of deformation and ε is the prediction error.

behaviors and their performance guarantees. This framework consists of three steps. First, Lips-
chitz conditions are assumed for complicated nonlinear and nonparametric relationship between
the difference in image appearances and difference in deformation parameters. Second, using
Lipschitz conditions, the performance of a single Nearest Neighbor predictor can be guaranteed.
Finally, algorithms are constructed by applying the predictors iteratively in a proper way.

The framework has several advantages. First, all algorithms from this framework, by con-
struction, will never fail given sufficient training samples (or sufficient time to run). Simple tasks
require fewer samples while difficult tasks may need more samples. The number of samples
needed is controlled by the constants of Lipschitz conditions that are image-dependent. Second,
using sample complexity as a metric, theoretical performances of proposed methods can be mea-
sured, independent of their empirical evaluations. Finally, this framework provides direct ways
to construct and analyze algorithmic procedures without objective functions.

(b) Three deformation estimation algorithms with global optimality guarantees and re-
duced sample complexity. Based on the theoretical framework, to solve Eqn. 1.1, this the-
sis proposes three algorithms, i.e., Data-driven Descent, Top-down and Bottom-up Hierarchical
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Method Sample Complexity
Local Search —

Nearest Neighbor Prediction O(1/εd)

Data-Driven Descent O(Cd log 1/ε)
Top-Down Hierarchical Prediction O(Cd

1 + C2 log 1/ε)
Bottom-Up Hierarchical Prediction O

[
(C/ε)d0

]
with d0 � d

Table 1.1: Comparison of theoretical performance of multiple methods in terms of sample com-
plexity.

Predictions. Under Lipschitz conditions that rule out a few trivial unsolvable cases (e.g., no
guarantee could be achieved for a deformed blank image), these methods all have worst-case
performance guarantees for deformation estimation, despite the fact that Eqn. 1.1 is nonlin-
ear, nonconvex and high-dimensional with dimensionality d. Furthermore, their performances
are differentiated in their required sample complexity to achieve such guarantees, as shown in
Tbl. 1.1.

In the first part of the thesis, Data-driven Descent discovers the fact that the two deformed
images may be far away from each other in terms of image distance metric, but are closely
connected by the compositional structure of deformation. As illustrated in Fig. 1.3(b), such
hidden “links” restrict the degrees of freedoms of a high-dimensional deformation space, and
reduces sample complexity to O(Cd log 1/ε). This breaks the Nyquist Limit O(1/εd) achieved
by general-purpose Nearest Neighbor prediction.

The second part of the thesis develops part-based approaches to further reduce the sample
complexity. Top-down Hierarchical Prediction utilizes the (conditional) factorization structure
of local deformation, once the global deformation has been estimated correctly. As a result, it
achieves a better sample complexity bound of O(Cd

1 + C2 log 1/ε) by predicting the global de-
formation first, and localizes the residual deformation onto local patches. Besides, the Lipschitz
conditions are also relaxed to handle noise and patch boundaries, yielding a smaller constant C1

compared to C.

However, the estimation of global deformation has to take care of the image appearance
changes caused by both global and local deformation, and still suffers from the curse of dimen-
sionality. To address this problem, Bottom-up Hierarchical Prediction builds representations that
are invariant to local deformation in a bottom-up manner. From these representations, the global
deformation can be estimated independently of the local one, reducing the dimensionality further
toO((C/ε)d0) with d0 � d. Once the global deformation is estimated, Top-Down Prediction can
follow with little computational cost. This finally breaks the curse of dimensionality. Further-
more, the Lipschitz conditions are only assumed on the smallest patches and will automatically
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hold for patches of the higher level whose representations are computed from below. In compar-
ison, Top-Down Hierarchical Prediction assumes the conditions for patches of all levels.

More generally, using the idea of Bottom-Up Hierarchical Prediction, representations of any
level can be built by gradually throwing away degrees of freedom that is unrelated to the decisions
of that level. As a result, the topmost representations have only a few but discriminative degrees
of freedom and can be predicted with substantially fewer number of samples. The analysis can
potentially give useful insights into the current deep architectures that have shown promise in
empirical studies but lack theoretical interpretations.

(c) New connections between existing methods. From the analysis of the three models,
connections are shown between approaches that are traditionally considered to be of very differ-
ent nature, e.g., the relationship between Lucas-Kanade and Deformable Parts Model, between
Generative and Discriminative Models, and between Message Passing and Deep Learning. It also
provides new insights into approaches that are not yet fully understood, e.g., Deep Learning.

(d) Broad applications. In addition to deep theoretical analysis, this thesis has also demon-
strated broad applications of proposed approaches. Data-Driven Descent has been applied to
deformation estimation of water distortion and air turbulence, and has shown accurate landmark
localizations. Top-Down Hierarchical Prediction shows not only good accuracy but also near
real-time performance (3-4fps), when dealing with water distortion and cloth deformation. Fi-
nally, Bottom-up Hierarchical Prediction has been applied to Human Pose Estimation, showing
state-of-the-art performance and natural-looking human pose samples.

(e) Application-specific modeling. Besides the framework, this thesis also builds physics-
based deformation models for document images captured by cellphone cameras, and remote
scene appearances under hot air turbulence. Using these models, OCR-friendly document images
can be recovered and scene depth can be estimated with good performance.
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Chapter 2

Related work

Nonrigid deformation has long been a research topic that attracts much attention. Depending on
different statistical characteristics, the methods of deformation estimation also vary. One typical
deformation is continuous, e.g., a video sequence of a scene under fluctuating water, an object
printed onto a bending rubber-sheet, or a piece of textured cloth moving with the wind. Usually
there is no background clutter and every captured pixel is a deformed version of the scene/object
under consideration. Thus, no detection is needed. Besides, there could be self-occlusion or not.

The other typical deformation is the one with articulated object, such as human body. Human
body could depict a variety of poses and show substantial self-occlusion. In addition, human may
occupy a small portion of the image, while the remaining region of the image is the background
clutter that may easily trigger false detection.

In the following, we will list the related works for both cases.

2.1 Estimation of continuous deformation

There has been a long and rich history of studying geometric transformations between two im-
ages, assuming both images contain the same object or the scene. To list them all is beyond the
scope of this paper. Here we only discuss the works that are most relevant to this thesis.

Traditionally, the image without deformation is called the template, or the reference image,
while the other image is the deformed image. Most of the approaches use holistic approach to
model the deformation, rather than partition the image into parts.

Generative Approaches. In this framework, one starts with the process of how the deformation
is generated, and search over the parameter space to find the (locally) best parameter that matches
with the observed deformed image. This is often formulated as a minimization problem, whose
minimizer are the desired set of parameters.
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In particular, for deformation estimation, starting from the classical optical flow algorithm
by Lucas and Kanade [54], these approaches minimize the function J(p̃) = ||Ip − Ip̃||2 with
respect to the parameter p̃. The intensity difference between the distorted template Ip̃ under the
current parameter estimate p̃ and the test image Ip, is iteratively minimized until it reaches a
local minimum.

Under the same minimization framework, many successive works achieve faster convergence
by using a constant Hessian matrix. As a trade-off, restrictions on the type of warping have to be
placed. For example, the forward compositional approach [88] requires the warping to be compo-
sitional. The inverse additive method [30] requires the warping to be separable or spatially linear.
Inverse compositional approaches [5, 57, 102] require the warping to be both compositional and
invertible. These conditions restrict the possible applications of these methods. Other methods,
including Active Appearance Models [16, 57], Direct Appearance Models [36] and Difference
Decomposition [29, 76] are applicable to a wide class of distortions and are fast. However, it is
not clear which function is minimized and there is no guarantee for convergence.

Free-form medical image registration [69] adopts a multilevel approach in which distortion
parameterized by a B-spline is optimized to align two images at each level. The resulting esti-
mated distortion is nonparametric and hence no predefined types of warping are required. But
the algorithm may still be trapped within local optima. Recently, to address this problem, a con-
vex approximation to the objective function has been learned [62, 106], but whether it remains
faithful under large distortions is unclear.

A Markov Random Field can also be used to model image deformation [82], but the under-
lying combinatorial problem is NP-hard and approximate inference techniques, such as linear
programming relaxation or Tree-reweighted Message Passing, have to be used to obtain a solu-
tion without guarantee.

Discriminative Approaches. This research direction starts from the idea of learning a direct
mapping from the distorted image to the template, based on a training set with known distortion
parameters. The simplest example is the nearest-neighbor approach, while more advanced ap-
proaches can also be used. However, although such kind of approaches do not suffer from local
minima, it has its own problems. If the parameters are high-dimensional, then either a certain
parameteric form of the regression has to be assumed, or the number of training samples needed
is exponential with respect to the dimensionality. One way to address this problem is to find
a low-dimensional representation (called “latent variables”) of the parameter space, e.g. using
PCA or GPLVM[85]. Then the prediction is made in the low-dimensional space. To alleviate di-
mensionality problem, recent works [15] uses a “successive regression” technique for non-rigid
image alignment. They first estimate the coarse parameters and use the coarse parameters to
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extract details features from the image, and do a regression again. However, their approaches are
heuristic and do not have a theoretical guarantee. As a proposed work, we aim to find a similar
algorithm with guarantees.

Combining discriminative and generative approaches. Since both generative and discrimi-
native approaches have their advantages and disadvantages, there have been many attempts to
combine both. One popular strategy [75, 89] is to first find a coarse estimation using the dis-
criminative approach. Then, using this estimation as the initialization, a generative method is
applied in the second stage for refinement. This requires that the first prediction be sufficiently
close to the global optimum. Randomly generated training samples are also used in the iterative
procedure, e.g. Hyperplane Approximation [43], which is similar in spirit to what we proposed
in Chapter 4. However, they use a spatially linear distortion model along with a linear estimator
(hyperplane) that does not guarantee global optimality. Also they do not relate the distribution of
random training samples to the convergence of the algorithm. In Rosales and Sclaroff [68], from
candidate predictions made by multiple predictors, a generative model is used to choose the best
one as the final output.

Feature-based Approaches. The third research direction uses highly distinctive local features
for sparse matching, e.g. SIFT [53]. Being rotation and scale invariant, such local features can be
used to match images with large viewpoint changes, under analytic transformations such as affine
or perspective, and with occlusions. Salzmann and Fua [74] also use such local features to find
the point correspondences in the case of non-rigid deformation, but trustworthy local matches
are sparse and spatial models have to be included to obtain denser correspondences [34, 116].

Pattern tracing. Finally, for some deformable object that has known periodic textures or pat-
terns, e.g. an image with pure text content, one can find the lattice and build the deformation in
this way. [52] uses auto-correlation of image to discover the location of patterns and analyzes the
symmetric group structure using crystallographic group theory. [32] discovers the periodic and
deformed patterns from a local region of the image in a greedy manner by iteratively proposing
new unit and assigning neighbors between the pattern units. [63] formulates pattern tracing as
a multi-target tracking problem in the spatial domain and greedily grow the discovered patterns
in two directions. In Chapter 9, we face a slightly different setting that along the text line the
patterns (characters) can be different, also across the text line the line spacing can be different
but still smooth-changing. We estimate the deformation by tracing the textlines (patterns) along
one direction, and then collecting the curve together to obtain the entire deformation field.

The representation of deformation can either be parametric (e.g. cubic spline [21] and thin-
plate spline [63]) or nonparametric (e.g. Chapter 9 and [111]). Parametric methods use a fixed
number of parameters to characterize the entire curve. They are more robust to noise and oc-
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clusion, yet for complicated deformation they may not capture fine structures. Nonparametric
methods adapt the number of its parameters to the complexity of the curve (e.g., parameterizing
the curve using control points with fixed spacing). They are more flexible, can handle arbitrary
deformation, but are more sensitive to noise.

2.2 Estimation of Articulated Objects

For articulated object (mainly human pose), depending on whether a clutter background is present,
previous works take different approaches.

Clean background. In this case, most of the previous works take the regression-based (dis-
criminative) approach. Some methods treat the image in a holistic manner. The feature are
silhouette [2], sparse SIFT-like features [119], Haar-like wavelet [9] and so on. The regressor
includes Relevant Vector Regression [2], Gaussian Processes [119], Boosting [9], Mixture of Ex-
perts [90], Random Forests [66]. Some can model ambiguity of pose predictions and deal with
one-to-many mapping [96]. Other approaches take the part-based approach and learn the part
detector only. One famous example is the Microsoft Kinect [86] that trains each part of human
body separately using Random Decision Forest. No spatial model is used.

Cluttered background. In this case, simple regression can not work well due to unexpected
image content from background. Also it is no longer a valid assumption that the image mostly
contains a single object. Thus the majority of work focus on the following two-stage framework.
train a part detector and use a spatial model to combine the local detection consistently. Since
part detectors are intrinsically ambiguous, It is critical to design the spatial model so as to capture
a versatile yet plausible set of poses.

The influential work of Felzenszwalb et al. [22] uses pictorial structures (PS) [24] to effi-
ciently capture the pairwise spatial relationships between nearby parts. The resulting structure
forms a tree allowing for efficient inference. A disadvantage of [22] is that it only allows for
small deformations from a fixed template. To solve this problem, [39] used a (global) mixture of
pictorial structures to capture greater variations in pose. However, since the number of plausible
human poses is exponential, the number of parameters that need to be estimated is prohibitive
without a large dataset or part sharing mechanism.

Recently, [113] treats each part rather than the entire body as a mixture of templates while
modeling their pairwise relationships. As a result, it offers a compact way to represent an expo-
nential number of poses with shared parameters. Unfortunately, their use of pairwise relation-
ships fails to capture the complex characteristics of pose space. Other works [8, 97, 107] model
the high-order relationship among parts with high-order cliques. However, either their inference
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is approximate, or a heuristic search is used with worse-case exponential time complexity.

As first proposed by David Marr [56], one way to introduce high-order relationships without
losing the benefit of efficient tree-based inference is to build a hierarchical structure with latent
nodes. Both [91] and Chapter 11 in this thesis follow this paradigm and use latent nodes with
part mixtures from [113]. The difference is that in the settings of [113], each mixture component
of a latent node also corresponds to one HoG template, modeling the image appearance covered
by the descendants of that node. We will see detailed comparison in Chapter 11.

2.3 3D Reconstruction from deformation

Given image deformation, one direct application is to find the 3D configuration of the scene/object
that causes it. This involves a 3D lifting from 2D projections, an ill-posed problem that needs
additional physical constraints.

In modeling cloth deformation, several methods have been proposed to reconstruct the 3D
shape of cloth. One constraint is the inextensibility of the clothing. That is, two points on the
cloth must be of the same length in the reconstruction. [73] shows a close-form solution of 3D
structure can be obtained with this constraint using eigen-decomposition. [70] relax the inex-
tensibility constraint to be inequality and results in a convex formulation for 3D reconstruction.
Both are optimization-based approaches that assume sparse correspondences between reference
image and current frame are known via SIFT. Recently, [80] jointly formulates the point cor-
respondence problem and 3D reconstruction by minimizing an energy function and [71] uses a
regressor to predict the locations of correspondence and refine the prediction by a local optimiza-
tion. In all works, they assume perspective camera.

In document reconstruction, many previous works assume a strong global shape model of the
document, e.g., part of a cylinder [13], piecewise cylinder [118] or a developable surface [50,
51, 117]. In Chapter 9, in contrast, we assume a local prior that is reasonable for document
reconstruction and enforce no global shape.

Other approaches, called shape-from-texture, start by estimating the local differential quan-
tities that the 3D shape projects onto the captured image, e.g. projected tangent angle [110],
texture distortion [55] and foreshortening [25], and then collect them to form a global 3D struc-
ture. Since they all minimize non-linear objective functions, the estimation is not guaranteed to
produce the global optimum [25]. In Chapter 9, we formulate shape-from-texture in the specific
context of text document images as a homogeneous least square problem, in which the globally
optimal solution can be obtained using SVD. Previous work [19] also uses SVD for 3D recon-
struction of a scene given a set of curves as intersection between the scene and a set of planes.
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From their setting, all points on the same curve must lie on the same plane.

2.4 Hierarchical Models

Hierarchical structures have been used extensively in vision. Typical scenarios include coarse-to-
fine optimization [69] for a better local solution, interest point detection [53], multi-resolutional
feature extraction [49], biologically plausible framework for object recognition [78] and so on.
Recently, it is also used in Deep Learning, showing state-of-art performance in image classifi-
cation [48]. However, as far as we know, none of the previous works provide theoretical perfor-
mance guarantees.

2.5 Deformation caused by medium

Deformation can also be caused by medium property between the camera and the scene. In such
a case, deformation usually takes the form of local distortion in which each pixel moves around
its true location over time.

Here we consider two different cases that cause distortion, both due to a change of refractive
index. One typical case is that there exists an interface between two media (e.g. water and air),
and light transport is altered through the interface, causing distortion. The other typical case is
that a stochastic process is ongoing over the volumetric medium itself, causing a fluctuating field
of refractive index.

Firstly, undistortion is possible if the exact shape of the interface can be measured or esti-
mated. In [42], the interface and the scene are illuminated by spectrally isolated red and green
channels, and captured by a color camera. The surface shape is thus measured by one channel
and used to undistort the other. In [59], a known scene (calibration pattern) is tracked to estimate
the surface. This thesis follows such an idea, but with a data-driven approach rather than relying
on potentially time-consuming calibration. In Chapter 4, I show shape estimation of an interface
between air and water from a video sequence or two images.

Secondly, if the goal is to undistort the scene but not reconstruction, averaging can be used.
Given a video sequence of a distorted scene, simple pixel-wise mean/median works well for
reducing small fluctuations[81]. A better approach is to select only “good” image patches from
the video frames and stitch them together (also known as the “lucky image”[27]). Several works
[17, 18, 20] find the center of the distribution of patches from the video as the undistorted patch,
either by embedding them on a manifold[20] or by clustering them[17, 18]. Wen et al [108]
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model the frames as random phase perturbations in the Fourier domain, and average them using
the bispectrum to undistort the image.

Thirdly, the scene information can also be extracted from the variance of the location of mov-
ing scene points embedded in the medium over time. One such example is the optical turbulence
due to random fluctuations of temperature gradients near warm surfaces. The turbulence will
cause the shimmering and distortion of the scene. Previous works in remote sensing and astro-
nomical imaging on turbulence largely treat turbulence as a negative effect and focus on how to
correct images through turbulence. For atmospheric turbulence, the distorted wavefronts arriving
from stars can be optically corrected using precisely controlled deforming mirror surfaces, be-
yond the angular resolution limit of telescopes [67]. For terrestrial imaging applications, recent
works have proposed to digitally post-process the captured images to correct for distortions and
to deblur images [28, 31, 35, 41, 122]. Optical-flow based methods have been used further to
register the image sequences to achieve modest super-resolution [84]. Compared to these works,
in Chapter 10, we show from Kolmogorov’s seminal works [44] that there exists a relationship
between the depth of a scene point and the variance of its location in the image plane over time,
and hence turbulence can be used to estimate the scene depth.
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Part I

Theory I: Data-driven Predictions of
Deformation
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Chapter 3

Mathematical Modeling of Deformation

3.1 Image Formation

Given a template image I0 and a vector of parameters p, a distorted image Ip is computed using
a generating function G:

Ip = G(I0,p) (3.1)

In particular, the template is at the origin of the parameter space, i.e., I0 = G(I0, 0) . We de-
note I as the manifold that consists of all possible distorted images that can be generated from
Eqn. (3.1):

I =
{
Ip = G(I0,p)

∣∣ ∀p ∈ Rd
}

(3.2)

The function G can be implemented using an image warp W (x; p) that maps a pixel x to the
positionW (x,p). The warpW (x; p) is controlled by a set of parameters p. TypicallyW (x, 0) =

x. The warp W (x,p) can be applied to the template in either forward or backward direction:

GF(I0,p) : Ip(W (x; p)) = I0(x) (3.3)

GB(I0,p) : Ip(x) = I0(W (x; p)) (3.4)

Intuitively, the forward generating function pushes every pixel x in the template to the location
W (x; p) in the distorted image, while the backward generating function pulls the pixel located
at W (x; p) of the template back to the location x of the distorted image. A particular family of
distortions may satisfy either Eqn. (3.3) or Eqn. (3.4), but not necessarily both. For invertible
warpings, both representations are equally valid. To make things simple, throughout the thesis,
we will use Eqn. 3.3 as the generative model.

For now, we will focus on occlusion-free warps in the 2D image space. For out-of-plane
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Images
I0 Template image.
I An arbitrary 2D Image.
x, x, y 2D pixel location, x = (x, y) is the vector form, while x and y are components.

Parameters
p All parameters as a vector.
p(j) j-th component of parameter p.
Ip A deformed image with ground truth deformation parameter p.
W (x; p) Deformation field parametrized by p
B(x) Deformation bases, each column is a basis function.
d Effective degrees of freedom
D Number of warp bases.
K Number of landmarks.
G Generative function that takes parameters and returns an deformed image.
I Deformation manifold. Collection of all deformed images under generative model G.
H Pull-back operation

Lipschitz Conditions
r Range of the parameters.
L1, L2 Lipschitz Constants.
∆I Difference between two images I1 and I2, ∆I = ||I1 − I2||
∆p Difference between two parameters p1 and p2, ∆p = ||p1 − p2||∞.

Samples and Algorithms
N Number of training samples.
T Number of iterations.
(p(i), I(i)) A training pair. A deformed image I(i) and its ground truth parameter p(i).
{p(i), I(i)}Ni=1 A collection of training samples.
ε Prediction error. Inverse of prediction accuracy.
β Inverse of sample density.
γ (One minus) convergence rate.
C Constant terms in big-O notations.

Miscellaneous
dxe Ceiling function, dxe is the smallest integer that is greater than or equals to x.
||p||∞ Infinite norm. ||p||∞ = maxi |p(i)|.

Table 3.1: Notations used in this thesis.
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rotation or deformation in the presence of occlusion, it is possible that Ip(W (x; p)) 6= I0(x)

even if p is the correct parameter, since some information in the template has been discarded due
to deformation.

3.2 Parameterization of Warping

The warpW (x; p) could be high-dimensional. In the extreme case, p could encode 2-dimensional
displacement for every pixel, yielding a 2mn dimensional vector for an m-by-n template. For
any 200-by-200 image, the length of p would be 80000 and is too large to handle.

Fortunately, the effective degrees of freedom is not so high since nearby pixel displacements
have to be correlated. Therefore, we assume the warpingW (x) is on a low dimensional subspace
and can be represented as follows:

W (x; p) = x +B(x)p (3.5)

where B(x) is a set of warp bases that can be obtained a priori using either analytic models
or measured data or complex physical simulations. In the context of forward warping, Eqn. 3.3
means for every pixel located at x in the template, W (x; p) is the corresponding 2D location in
the deformed image Ip.

The bases function BG(x) = [b1(x), . . . ,bD(x)] is a 2-by-D matrix, and the parameters
pG is a D-by-1 vector. Given x, each basis function bk(x) outputs a 2-dimensional column
vector [bxk(x),byk(x)]>, representing the displacement at location x. B(x) can capture spatially
nonlinear distortions and thus covers a broad range of distortions, including affine transform,
Thin-Plate Spline (TPS), lens distortion, water distortion and changes of facial expressions [57],
and cloth deformation [73].

If B(x) is orthogonal, which means for two bases bj(x) and bk(x):∫
bxj (x)bxk(x)dx +

∫
byj (x)byk(x)dx = 0 ∀j 6= k (3.6)

then each basis bk(x) contributes to exactly one degree of freedom, and therefore, the effective

degrees of freedom d of deformation field W (x; p) is the number D of bases. Since warping
is the only reason the deformed image changes its appearance, d (or D) is also the degrees of
freedom of deformed image Ip. If the bases in B(x) are overcomplete and is not orthogonal (or
even not independent), then the effective degrees of freedom d < D. In such a case, one can
reduce D by a Gram-Schmidt orthogonalization process. However, in some cases, it is more
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Name Dimensionality Analytical forms

Pure Translation 2 B(x) =

[
1 0
0 1

]
Affine bases 6 B(x) =

[
1 0 x x y y
0 1 y −y x −x

]
Len Distortion 4-6 bxk(x) = byk(x) = ||x− x0||k.

Thin-Plate Spline (TPS) 2#Landmark bx2k(x) = by2k+1(x) = ||x− lk|| log ||x− lk||
Radial bases function (RBF) 2#Landmark bx2k(x) = by2k+1(x) = exp(− ||x−lk||2

2σ2 )
Facial Deformation [57] #Bases Bases learnt from training data

Table 3.2: lk is the k-th landmark location

convenient to work on an overcomplete set of bases.

Invertible versus Non-invertible warping. Some warps following Eqn. 3.5 are invertible,
e.g., affine warps, while others are not invertible. Tbl. 3.2 shows a list of useful bases. As a
special case, the 8-dimensional perspective warps Wpersp(x; p):

Wpersp(x; p) = x +

[
p1x+ p2y + p3

p7x+ p8y + 1
,
p4x+ p5y + p6

p7x+ p8y + 1

]
x = (x, y) (3.7)

cannot be represented using Eqn. 3.5, but it is an invertible warp.

3.3 The Pull-back Operation

Given an arbitrary image I and a parameter q, one defines the pull-back image H(I,q)(x) as
follows:

H(I,q)(x) ≡ I(W (x; q)) (3.8)

Intuitively, instead of retrieving a pixel at x, we retrieve the pixel at W (x; q) from I and place it
at x on the pulled-back image. From the definition, obviously we have H(I, 0) = I .

In the special case that I is generated from a (usually unknown) parameter p, for compact-
ness, I also define the notation Ip;q ≡ H(Ip,q) as the pull-back operation. From definition, we
have

H(Ip,p) = I0 (3.9)

by Eqn. 3.3. More generally, we have the following pull-back inequality:

||H(Ip,q)(x)− Ip−q(x)|| ≤ cH ||p− q|| ∀x (3.10)
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Intuitively, the operation H approximately “cancels out” the deformation caused by parameter p

with a parameter q, yielding a possibly less distorted image Ip−q.

In the specific case of invertible warping, e.g., affine, perspective, we can simply define H as
the inverse warp:

H(I,q) ≡ G(I,q−1) (3.11)

where q−1 is the parameters of the inverse warp. In this case, cH ≡ 0.

3.4 Estimation of Deformation Parameters p

The main focus of this thesis, also the main task of deformation estimation, is to find the optimal
parameters p, if Ip, I0 and G (or warping function W ) are known.

Estimation of p from labeled correspondences. If correspondences are known, then under
the model 3.5, estimating p is simple. Given a set of N points {xi} on the template and their
correspondences {x′i}, finding the optimal parameters p is straightforward:

E ′(p) = min
p

∑
i

||x′i − (xi +B(xi)p)||2 (3.12)

which can be solved analytically:

p̂ = (BxTBx +ByTBy)−1[BxT δx +ByT δy] (3.13)

where δx = [x′1 − x1, x
′
2 − x2, . . . , x

′
N − xN ]T , δy = [y′1 − y1, y

′
2 − y2, . . . , y

′
N − yN ]T are both

N -by-1 vectors. Bx = [Bx(x1);Bx(x2); . . . ;Bx(xN)] andBy = [By(x1);By(x2); . . . ;By(xN)]

are both N -by-K matrices.

However, it is usually very hard to estimate p without knowing the correspondences.

3.5 Generative Approach

A typical generative view regarding to Eqn. 3.3 is to assume random (Gaussian) noise on top
of Ip and to find a prediction p̂ that minimizes the following nonconvex objective under the
principle of Maximum Likelihood:

p̂ = arg min
p̂
E(p̂) ≡ arg min

p̂
||Ip(W (x, p̂))− I0(x)||22 (3.14)

The seminar work, Lucas-Kanade[6], starts from the current estimation p̂ and locally lin-
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earizes Eqn. 3.14 under a small parameter increment:

E(p̂ + δp̂) = ||Ip(W (x, p̂ + δp̂))− I0(x)||22 (3.15)

≈ ||Ip(W (x, p̂)) +∇Ip(W (x; p̂))>B(x)δp̂− I0(x)||22 (3.16)

For mathematical simplicity, denote Ip;p̂ ≡ H(Ip, p̂) = Ip(W (·; p̂)). Solving for δp̂ in a
least square manner and we obtain:

δp̂ = −Q−1δf (3.17)

where
Q(p̂) =

∫
B>(x)∇Ip:p̂(x)∇I>p:p̂(x)B(x)dx (3.18)

and
δf(p̂) =

∫
∇I>p:p̂(x)B(x) [Ip:p̂(x)− I0(x)] dx (3.19)

The algorithm is listed in Alg. 1.

Algorithm 1 Lucas-Kanade Algorithm for Deformation Estimation
1: INPUT: Test image Itest. Initial guess p̂0.
2: for t = 1 : T do
3: Compute the pull-back image I t = H(Itest, p̂

t).
4: Compute the increment δp̂t = −Q−1

t δfm, where

Qt =

∫
B>(x)∇I t(x)(∇I t(x))>B(x)dx (3.20)

and
δft =

∫
(∇I t(x))>B(x)

[
I t(x)− I0(x)

]
dx (3.21)

5: Set p̂t+1 = p̂t + δp̂t

6: end for
7: return p̂M+1 as the final estimation p̂.

Unfortunately, unless the template image I0(x) is of some special forms, Eqn. 3.14 is a
nonconvex and nonlinear optimization problem and local search approach, e.g., Alg. 1 can only
give a local optimal solution.

Multiple tricks have been proposed to increase the convergence range of Alg. 1. This in-
cludes multiple initial guess, blurring the test image Itest for smoother gradient computation, and
building an image pyramid for a coarse-to-fine search. Empirically, these heuristics work great
but there is no guarantee that p̂ will achieve the ground truth p within the energy minimization
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framework Eqn. 3.14.

3.6 Discriminative Approach

On the other hand, from the discriminative view, Eqn. 3.3 represents a (possibly nonlinear) re-
lationship between p and Ip. Therefore, by learning such a relationship with labeled training
samples {p(i), Ip(i)}, one can give a prediction from an unseen test images Itest that is also gen-
erated from the same model. More importantly, from the discriminative point of view, it is
possible we can have a principled framework to analyze iterative procedures like Alg. 1 globally
that is yet not possible within the generative framework.

In this thesis, the three proposed algorithms are all rooted from this observation.

3.6.1 The Lipschitz Condition

Since we do not know the specific parametric form of mapping, to avoid any model bias, it is
better to assume a nonparametric model, such as a Nearest Neighbor predictor: for an image I ,
find Ip(i) in the training set that is closest to I , and return the parameter p(i) as the prediction.
Although other nonparametric predictive models, such as decision tree, boosting, support vector
regression, can also be used and may practically achieve better performance, in this thesis we
focus on theoretical analysis on nearest neighbor prediction due to its simplicity.

A basic assumption for such an approach to work, is to assume there is a positive correlation
between the image difference ∆I ≡ ||Ip1− Ip2|| in terms of a certain image metric (e.g., l2 norm)
and the parameter difference ∆p ≡ ||p1 − p2||∞ in terms of maximal parameter differences.
Intuitively, this means that if two images are close, so are their parameters and vice versa, which
can be represented by the following Lipschitz conditions:

L1∆I ≤ ∆p ≤ L2∆I ∀p1,p2 : ||p1||∞, ||p2||∞ ≤ r0 (3.22)

where, 0 < L1 < L2 < +∞ are two positive constants that are dependent on the template image
I0. r0 > 0 is the range for the condition to hold. The larger r0 is, the more strict the conditions
will be. Without loss of generality, L1 and L2 are assumed to be the tightest bounds.

Note that L1 = 0 is the case where two distinct images share the same parameters, and
L2 = +∞ is the multi-valued mapping case in which a single image is associated with multiple
parameters. In both cases, the Eqn. 3.22 does not hold. As we shall see, the sample complexity
goes to +∞.
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Throughout this thesis, the Lipschitz conditions defined by Eqn. 3.22, as well as all its exten-
sions, are assumptions. This means that they may hold for some images, but may not hold for
other images. An obvious failure case is that the template I0 is uniform and ∆I ≡ 0 whatever
∆p is. However, we emphasize that for most images, such conditions hold and the proposed
analysis works. The goal of the analysis, is to find the weakest conditions so that the worst-case
guarantees will hold.

3.7 Nearest Neighbor Prediction and The Nyquist Limit

Under the Lipschitz assumption (Eqn. 3.22), we now are able to show the first theoretical bound
for Nearest Neighbor predictors, as demonstrated in Thm. 3.7.1.

Theorem 3.7.1 (Sample Complexity for Nearest Neighbor predictor) If Eqn. 3.22 holds, then

with ⌈
L2

L1

r0

ε

⌉d
(3.23)

number of training samples, for an image Ip generated from Eqn. 3.3 with ||p||∞ ≤ r0, the

predictor is able to make a prediction p̂ that is ε-close to the true parameter p:

||p̂− p||∞ ≤ ε (3.24)

Proof By Theorem 13.1.2, we can uniformly sample the hypercube [−r0, r0]d in the parameter
space so that for any ||p||∞ ≤ r0, there exists (p(i), I(i)) so that

||p− p(i)||∞ = max
j
|p(j)− p(i)(j)| ≤ L1

L2

ε (3.25)

From the same theorem, the number of samples needed is exactly Eqn. 3.23. On the other hand,
a Nearest Neighbor prediction (pNN , INN) can only be closer to the test Ip in the image space.
Then by Lipschitz condition, we have:

||INN − Ip|| ≤ ||I(i) − Ip|| ≤
1

L1

||p(i) − p||∞ ≤
1

L2

ε (3.26)

Again use Lipschitz condition and notice pNN is the output prediction, we have:

||p̂− p||∞ = ||pNN − p||∞ ≤ L2||INN − Ip|| ≤ ε (3.27)
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Intuitively, Thm. 3.7.1 shows that the ratio L2/εL1 is the samples complexity per dimension
for guaranteed Nearest Neighbor prediction. For simple images that contain one salient object
with a clear background, L2/εL1 is small and a few samples suffice; while for difficult images
with cluttered background or repetitive patterns, L2/εL1 is large and a lot of samples are needed
to distinguish among locally similar-looking structures.

3.8 The Nyquist Limit

Although we define Eqn. 3.22 and present Thm. 3.7.1 in the context of image deformation, they
actually can be used to characterize any input/output mapping and Thm. 3.7.1 will still hold.

In fact, without exploiting any domain-specific knowledge,O((1/ε)d) is the best thing we can
do. A substantial reduction of training samples is impossible. The intuition is that the mapping
p 7→ Ip, although locally smooth as required by the Lipschitz condition, could be arbitrary over
the long range in the high-dimensional space. To cope with such flexibility, one needs to place
densely training samples at every location of the space, which naturally leads to the factor (1/ε)d.
Therefore, we call O((1/ε)d) the Nyquist Limit since it reflects the least amount of information
needed to completely encode the high-dimensional mapping. Note this limit does not rely on
specific nonparametric prediction algorithms. So for arbitrarily mapping p 7→ Ip, if Nearest
Neighbor does not work, neither does boosting or any other approaches.

As we shall see, the only way to break the Nyquist Limit is to get domain-knowledge in-
volved. The domain-knowledge gives extra information, in particular, the structural information
to the mapping function and substantially reduces the number of samples needed to achieve the
same guarantees.

Many previous works have indeed done so. However, their additional assumptions, such
as factorization, linearity, convexity, low-rank, sparsity, are more for mathematical (algebraic)
convenience rather than for the specific property of domain. As a result, their model may over-
simplify the problem and lose important and interesting aspects.
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Chapter 4

Data-Driven Descent: Breaking the
Nyquist Limit

In this chapter, a novel data-driven algorithm is developed to estimate the deformation in a glob-
ally optimal manner. The term “global optimality” means any prediction p̂ provided by the
algorithm is ε-close to the true parameter p: ||p̂ − p||∞ ≤ ε. At the same time, the number of
samples, if properly distributed, is substantially reduced from O(1/εd) to O(Cd log 1/ε). This
sample complexity grows logarithmically with respect to the accuracy 1/ε (Note C is indepen-
dent of ε.). More importantly, the dimension d is decoupled from the accuracy 1/ε, breaking the
Nyquist Limit.

The proposed algorithm adopts an iterative strategy that successively warps back the distorted
test image I towards the template I0 until convergence. The direction of warping back is guided
by training samples, thus we call this method Data-Driven Descent (DDD).

Data-Driven Descent can be applied to a broad class of 2D image distortions demonstrated in
Eqn. 3.5. This includes affine warps, and more complex spatially nonlinear distortion (e.g. water
and cloth deformation). In particular, it does not require the warping family to form a group,
hence has fewer restrictions than previous works [5, 30, 57, 102] that use a similar “warp-back”
strategy.

Good performance of Data-Driven Descent has been shown in both synthetic and real experi-
ments with complex deformations due to water fluctuation and cloth deformation, outperforming
several existing methods [69, 98].
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4.1 The Intuition

We start from a concrete scenario to explain the intuition behind the algorithm and how it excels
Nearest Neighbor prediction. Imagine a spaceship that wishes to return to the Earth. However,
for some reason the navigation system is faulty and does not know the coordinates of the Earth
relative to the current position. Fortunately, there are satellites around the Earth. Each satellite
broadcasts a signal containing its coordinates, which can be received by the spaceship.

A straightforward way to localize the spaceship is to find the strongest signal from the closest
satellite, and treat the received coordinates as its own. This is the well-known nearest-neighbor
approach. The accuracy of such approaches heavily depends on how close the nearest satellite is
to the spaceship, or, the local density of satellites.

However, a fundamentally different and more efficient way would be to drive the spaceship
to another part of the space by the amount of displacement that sends its nearest satellite back to

the Earth. If satellites are reasonably dense, then the spaceship should go closer to the earth. The
spaceship can now receive new information at the new location, find the nearest satellite again
and continue to move accordingly. With a proper distribution of satellites, the spaceship can land
on the Earth. The original location of the spaceship can be estimated as the summation of all the
consecutive readings of the coordinates.

Let us briefly analyze this approach. Obviously, this approach is beyond Nearest Neighbor
since it uses satellites that are far from each other, instead of just a nearby cluster. Hence, it
requires only a sparse distribution of satellites around the original location of the spaceship, but
a dense distribution near the Earth. That is, a coarse estimation suffices to bring the spaceship
to the portion of the space with more satellites, where the estimation can be further refined. As
a result, using fewer satellites can achieve the same accuracy as compared to Nearest Neighbor
approach.

4.1.1 The Algorithm

For images, the story is similar. The only difference is to replace the Earth with the template,
the satellites with the training images (samples) and the spaceship with the distorted test image.
As illustrated in Fig. 4.1, we start with the distorted test image I and distorted training pairs
{p(i), I(i)}. In each iteration k the algorithm finds the closest training image (p(k), I(k)) to the
distorted image Ik in terms of image metric and performs a pull-back operation H using p(k)

to obtain a new image Ik+1, that is less distorted compared to Ik and is closer to the template
image I0 in the parameter space. Then, the training sample nearest to Ik+1 is found, the parameter
estimation is updated and the procedure is iterated until the desired accuracy 1/ε is obtained, i.e.,

32



Template

Parameter space                 Find NN                Pull-back                                                                             Final

Training
Images

Template

*
Test Image

Closest Image

*
Test Image

*Template

*
**Template

Test Image

Closest Image

* 
Test Image

****
p~

Template

Iteration 1                                          Iteration 2                         Convergence
a)                                       b)                          c)                                       d)                                         e)

Pulled-back
test image

 Estimation

Figure 4.1: Algorithm for distortion estimation. (a) The template (origin) I0 and distorted train-
ing images with known parameters {p(i), I(i)}Ni=1 are shown in the parameter space. (b) Given a
distorted test image, its nearest training image (p(k), I(k)) is found. (c) The test image is “pulled-
back” using p(k) to yield a new test image, which is closer to the template than the original one.
(d) Step (b) and (c) are iterated, taking the test image closer and closer to the template. (e) The
final estimate p̃ is the summation of estimations in each iteration.

the estimation is ε-close to the template. Finally, the estimate of the distortion parameter p is
given by the cumulative estimation p̃K . This algorithm is listed below.

Algorithm 2 The algorithm for distortion estimation
1: INPUT The training pairs {p(k), I(k)}. The test image Itest.
2: for k = 0 : K do
3: 1. Find Ik’s nearest training image I(k) with known parameter p(k) i.e., I(k) =

arg mini ||Ik − I(i)||.
4: 2. Set cumulative estimation p̃k =

∑k
j=0 p(j).

5: 3. Set pulled-back test image Ik+1 = H(Itest, p̃
k). (See Eqn. 3.8 and Eqn. 3.11)

6: end for
7: OUTPUT p̃K is the final estimation.

To alleviate the possible error accumulation with successive resampling (interpolation), we
obtain Ik by pulling-back the original test image Itest using the cumulative estimation p̃k−1 ≡∑k−1

j=0 p(j) in each iteration.

In the following, we will give a proof of global convergence for Alg. 2 under mild conditions.
The idea of the proof is to show after each iteration the norm of residue always shrinks by a
constant factor, and thus converges to zero. In other words, it is a coarse-to-fine strategy in the
parameter space.

To keep the intuition clear, we start with the family of invertible warps. In this case, H
is just the inverse operator of the generating function G. This operator partially cancels out
the distortion in Ip by an amount of q, yielding a new distorted image Ip−q that remains on the
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distortion manifold I (Eqn. (3.2)). This substantially simplifies our analysis. Then we generalize
the conclusion to non-invertible warps that take the form of Eqn. (3.5).

4.2 Global Optimality Guarantees

In this section, we prove under the generative model specified in Eqn. 3.5 and under the assump-
tion of Lipschitz condition (Eqn. 3.22), Alg. 2 converges to the global optimum if the training
samples are properly distributed.

The warping family (Eqn. 3.5) includes invertible warps that form a group, such as affine and
projective transforms [5, 29, 102], and noninvertible warps that satisfy the pull-back inequality
(Eqn. 3.8). We also give an upper bound on the number of training samples as a sufficient
condition to instantiate this distribution.

4.2.1 The distribution of training samples

Let us consider the set of distorted images whose distortion parameters p are within the hyper-
cube Sr0 = {Ip, ||p||∞ ≤ r0}. The origin of this space corresponds to the undistorted template
image I0.

We want the training samples to distribute densely near the origin (template) and sparsely at
the periphery of the parameter space. Mathematically, given a distorted image I ∈ I generated
from the distortion model whose parameters satisfy ||p||∞ ≤ r, we assume that there always
exists a training image I(i) ∈ I so that:

||I − I(i)|| ≤ βr

L2

(4.1)

where β < 1. Eqn. (4.1) shows the density decays when moving away from the template to
the peripheral of the parameter space (increasing r). With this condition, the following theorem
shows Alg. 2 always yields a global optimum estimation for any test distorted images within Sr0 .

Theorem 4.2.1 (The global convergence of Alg. 2) If the Lipschitz condition (Eqn. 3.22) holds

with constant L1 and L2, the pull-back inequality (Eqn. 3.8) holds with constant cH , the training

samples density satisfy Eqn. 4.1 with inverse density β, and γ ≡ 2cHL2 + β < 1, then for any

test image Itest with ground truth parameter p, Alg. 2 computes an estimation p̃K =
∑K

k=0 p(k)

so that for ||p||∞ ≤ r0:

||p̃K − p||∞ ≤ γK+1r0 (4.2)

where 1− γ is the rate of convergence. In particular, p̃K → p if K → +∞.
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Figure 4.2: Illustration of Theorem 4.2.1.

Proof The intuition of the proof is similar to the spaceship metaphor. With the density condition
(Eqn. (4.1)) and the right-hand side of the Lipschitz condition (Eqn. (3.22)), it is guaranteed that
in iteration k, the Nearest Neighbor prediction error is always γ times smaller to the norm of
parameter residue. As a result, the norm of such difference goes down exponentially with k and
the algorithm converges to the true distortion parameters.

In iteration k, The estimation residual is pk ≡ p − p̃k−1 = p −∑k−1
j=0 p(j), and particularly

p0 = p.

From the premise, we have ||p0||∞ ≤ r0. In the following, we prove by induction that the
norm of the residue ||pk||∞ ≤ rk ≡ γkr0 for any k, and the convergence follows.

Assume those conditions hold for k, in the following we prove they also hold for k + 1. By
the pull-back inequality (Eqn. (3.8)), we have for Ik = H(Itest, p̃

k−1):

||Ik − Ipk || ≤ cH ||pk||∞ (4.3)

From the dense condition Eqn. (4.1), there exists a training sample I(i) ∈ I that is close to
Ipk ∈ I:

||Ipk − I(i)|| ≤ β||pk||∞
L2

(4.4)

Using triangle inequality in the image space, the training sample I(i) is also closer to the
rectified image Ik:

||Ik − I(i)|| ≤
(
cH +

β

L2

)
||pk||∞ (4.5)

Thus, the Nearest Neighbor pair (p(k), I(k)) of Ik must be even closer:

||Ik − I(k)|| ≤ ||Ik − I(i)|| ≤
(
cH +

β

L2

)
||pk||∞ (4.6)
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Figure 4.3: The number of samples needed to fill a given hypercube ||p||∞ ≤ r is independent
of r since the allowed prediction uncertainty (shown in gray solid circle) is proportional to r.
As a result, only a small neighborhood of the origin O (the template) requires dense sampling.
This is the key to decouple the accuracy from the dimension of the parameter space, which is not
attainable for the nearest-neighbor and regression-based approaches.

Combining Eqn. 4.3 and Eqn. 4.6, we obtain an upperbound of the distance of two images
Ipk and I(k), both lying on the manifold I:

||Ipk − I(k)|| ≤ ||Ipk − Ik||+ ||Ik − I(k)|| ≤
(

2cH +
β

L2

)
||pk||∞ (4.7)

Thus their parameter is also close according to Eqn. (3.22):

||pk − p(k)||∞ ≤ (2cHL2 + β)||pk||∞ = γ||pk||∞ (4.8)

which means the difference of current residue pk and its estimation p(k) is bounded by γ||pk||∞.
Note such difference pk−p(k) is precisely the residue pk+1 in the next iteration. By the induction
hypothesis, we have:

||pk+1||∞ ≤ γ||pk||∞ ≤ γ2||pk−1||∞ ≤ . . . ≤ γk+1r0 → 0 (4.9)

We verify that γ < 1 on synthetic data in Section 4.5.2. In contrast, as shown in Thm. 3.7.1, in
the Nearest Neighbor case, the training images have to be distributed uniformly in the parameter
space to achieve optimal performance for any test sample distributions.
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4.3 The Number of Training Samples Needed

An interesting question is how many samples are needed to satisfy the density condition (Eqn. 4.1).
We now show the number N of required training images grows only logarithmically with respect
to the prediction accuracy 1/ε.

To start, we now present a sufficient condition for Eqn. (4.1) to hold:

Lemma 4.3.1 For a given radius r, if the hypercube ||p||∞ ≤ r can be covered by a set of smaller

hypercubes with side 2(L1/L2)βr, then Eqn. (4.1) holds.

Proof If we could achieve this covering, then for any I ∈ I and its parameter p with ||p||∞ ≤ r,
there exists at least one hypercube centered at p(i) so that

||p− p(i)||∞ ≤
L1

L2

βr (4.10)

using the left-hand side of Eqn. (3.22), we have:

||I − I(i)|| ≤ β

L2

r (4.11)

which matches the condition of Eqn. (4.1).

Now let us consider how many small hypercubes (or essentially, the training samples) are re-
quired for hypercube-covering in Lemma 4.3.1. Use Thm. 13.1.2, it turns out that the following
number of samples suffices to satisfy the condition of Lemma 4.3.1:⌈

r1

r2

⌉d
=

⌈
L2

βL1

⌉d
(4.12)

Crucially, this is independent of r (See Fig. 4.3). Thus, if Alg. 2 terminates in K iterations,
KdL2/βL1ed samples would suffice.

On the other hand, using Eqn. (4.2), we can compute K = dlog(r0/ε)/ log(1/γ)e for a given
accuracy 1/ε. As a result, the total numberN(ε, β, cH , L1, L2) of training images that is sufficient
to make Alg. 2 converge to the true parameters (global optimum) is the following:

N(ε, β, cH , L1, L2) =

⌈
L2

βL1

⌉d ⌈
log r0/ε

log 1/γ

⌉
(4.13)

A large β implies fewer training samples in each iteration but requires more iterations to achieve
the same accuracy, and vice versa. The optimal β∗, which is independent of ε, can be obtained
by minimizing Eqn. (4.13).
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Note for any L1 and L2 that satisfy Eqn. (3.22), following the same reasoning, we conclude
the number of training samples is bounded above by Eqn. (4.13). The tightest bound is given by
largest L1 and smallest L2 satisfying Eqn. (3.22).

As a result, Eqn. (4.13) grows logarithmically with respect to the accuracy 1/ε. In contrast,
as shown in Thm. 3.7.1, Nearest Neighbor requires dL2/εL1ed samples for the same accuracy.
In Fig. 4.5(b), we show the significant differences in performance between the two methods on
synthetic data. Intuitively, the existence of a generating function G substantially restricts the
degree of freedom of its inverse mapping. Thanks to this, we can establish the inverse mapping
at a good accuracy using significantly fewer samples.

4.4 Possible Extensions to Algorithm 2

Using features. Instead of the raw image I , one can also use features φ(I) for Nearest Neighbor
search. In this situation, L1 and L2 are defined between the feature space and the parameter
space:

L1||φ(I)− φ(I ′)|| ≤ ||p− p′|| ≤ L2||φ(I)− φ(I ′)|| (4.14)

With this definition, Theorem 4.2.1 still holds. A good image feature corresponds to a smaller
ratio of L2/L1. This means that the feature metric is more correlated to the parameter metric. If
they are perfectly correlated (L1 = L2), then fewest training samples are required.

Using generative approaches as the second stage. When the parameter estimation is very close
to the true value, one could use a generative approach to save samples without being trapped into
local optima. In such a case, Algorithm 2 can be regarded as a discriminative approach that gives
a good initialization.

KNN nearest-neighbors. In practice, due to the constant factor (L2/βL1)d, the N given by
Eqn. (4.13) can still be a large number. In this situation, using KNN nearest-neighbors with
weighted voting (i.e., kernel regression) can further reduce the required samples, as shown in
Fig. 4.5(e).

Fast nearest-neighbors. ForN training samples andK iterations, the time complexity of a naı̈ve
implementation of Algorithm 2 is O(NK). Currently it takes 5 seconds for a rectification of 300

by 300 image with N = 1000 training samples and K = 20 iterations using our unoptimized
Matlab codes on a Pentium Core 2 machine with a single core. However, many methods used
in retrieving approximate nearest-neighbors, such as locality sensitive hashing (LSH), can be
applied to reduce the complexity substantially.

Incorporating temporal knowledge. Although Algorithm 2 does not assume temporal rela-
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Figure 4.4: Some template images used in synthetic experiments. (See Section 4.5)

tionship between two distorted images, when dealing with distorted video sequence, temporal
continuity can be easily incorporated as follows: after the parameter p̃t of the current frame It is
estimated, we add a new synthetic training pair (p̃t, Ip̃t) to the training set and proceed with the
next frame It+1. If p̃t is an accurate estimation, then It+1 is similar to Ip̃t by temporal continuity
and will be pulled-back directly near the origin (template) in just one step. If p̃t is not accurate,
adding a perfectly labeled training pair will not hurt the performance of the algorithm and does
not cause drifting that often occurs in frame-to-frame tracking approaches.

Active training samples. It is possible to include new training images using the generating func-
tion G after the test image is known. The temporal continuity described above is an example.
More generally, the parameters p̃ estimated by any regression-based method (e.g., Relevant Vec-
tor Regression [2] or Gaussian Processes [119]), associated with the synthetic image Ip̃ can be
used as a training pair. Multiple regressors may also be used. Then, our algorithm simply selects
the one closest to the test in the image metric. Note this is similar in spirit to [68] in which
multiple regressors are used for candidate predictions which are then verified by a generative
approach.

4.5 Analysis of the algorithm using simulations

4.5.1 Data synthesis

In order to verify the properties of our algorithm, we perform synthetic experiments where the
true distortion parameters are known. We simulated distortions on 100 randomly selected images,
some of which are shown in Fig. 4.4. The warps are of the form given by Eqn. (3.5), where B(x)

are composed of d = 20 orthonormal bases computed by applying PCA on randomly generated
smooth deformation fields by Gaussian Processes. For each of the 100 template images, we
synthesize N = 1000 distorted images for the training set and 10 for the test set. Note that
a total of 1000 test samples are involved in the simulation and should be sufficient to justify
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Figure 4.5: The effects of four different factors on the performance of the algorithm in terms of
relative squared error ||ptrue − p̃||2/||ptrue||2. (a) Average convergence behavior computed over
all test images. (b) The more training images, the better the performance. Note our method
performs much better than nearest-neighbor given the same number of samples. (c) Estimation
is more accurate if the training samples are more concentrated near the origin (template). (d)
Performance drops when the test image is significantly more distorted than all the training images
(The black dotted line shows the average magnitude of distortions ||p(i)|| in the training images).
(e) Using KNN-nearest-neighbor with weighted voting reduces the number of training samples
further.

our approach. Algorithm 2 is applied to each test image to obtain the relative (squared) error
e = ||ptrue − p̃||2/||ptrue||2.

In the following, we discuss how to generate the warping bases and training samples.

Generation of PCA bases. The Gaussian Processes used to generate deformation field has zero
mean and covariance function k(x1,x2) = exp (−||x1 − x2||2/2σ2). x1 and x2 are locations of
pixels and σ is a hyper-parameter that keeps the deformation smooth.

From the generated deformation field, we apply PCA and pick the first 20 eigenvectors as the
deformation bases. The standard deviations of the 1-st and 20-th principle components are s1 =

11.63 and s20 = 7.95 respectively. This shows that the energy is evenly distributed among 20

dimensions, and there is no degenerated dimension. We use the standard deviation in generation
of training samples.

Generation of training samples. We follow Eqn. (4.1) in generating training images. Eqn. (4.1)
says once the training images are distributed, the distance between a randomly picked image at
radius r in the parameter space and its nearby training image should be proportional to r. Thus
the density m(r) of training samples, as a function of r, is proportional to 1/rd, where d is the
dimension of the parameter space.

m(r) only characterizes the distribution along the radial axis. The assumption (Eqn. (4.1)) is
in a spherically symmetric form and thus we set the angular distribution of training samples to be
spherically symmetric. Thus, the radial density ml(r) (the density function after marginalizing
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out all the angular components) is:

ml(r) ∝ m(r)
dVold(r)

dr
∝ 1

r
(4.15)

where Vold(r) is the volume of d-dimensional sphere ||p|| ≤ r. As a sanity check, if Algorithm 2
returns the parameter with accuracy 1/ε, then along the radial axis, the training samples must be
distributed along the interval [ε, r0]. By integrating ml(r) on this interval, we obtain:∫ r0

ε

ml(r)dr ∝ log r0 − log ε = log r0/ε (4.16)

which is of the same order as Eqn. (4.13). Finally, Fig. 4.6 shows the distribution ml(r).

From Eqn. (4.15) we thus obtain an algorithm for sampling training distributions. There are
two practical issues. Firstly, in order to show how the shape of training distribution affects the
performance, instead of directly sampling from the distribution ml(r) (Fig. 4.6), we first sample
r from a uniform distribution and exponentiate r by the shape parameter δ. For δ > 1, this will
also yield a distribution peaked around the origin, and in particular when δ → +∞ it will give
exactly the 1/r fall-off. Secondly, instead of using a uniform r0 for all PCA coefficients, using
the standard deviation of each PCA basis will increase the sampling efficiency.

Algorithm 3 Sampling training images
1: INPUT The required accuracy ε, the standard derivations S = diag(s1, s2, . . . , sd) of each

PCA directions, the shape parameter δ and the number N of training samples.
2: for n = 1 : N do
3: Draw sample r from a uniform distribution on [0, 1] and exponentiate r by the shape

parameter δ > 1. A large δ yields peaked distribution around the origin.
4: Uniformly sampling the angular coordinates by drawing v from multivariate normal dis-

tribution v ∼ N (0, I) and normalize v so that ||v|| = 1.
5: The n-th training sample p(n) = rSv.
6: end for

Note that sampling using Algorithm 3 will yield the distribution that matches the outwards

decaying shape as indicated by Eqn. (4.1). However, a fairly large number of training samples
have to be drawn to achieve the density requirement of Eqn. (4.1), i.e. β < 1. The actual
number of training samples depends on the complexity of manifold I, the ratio of L2/L1 and
how effective the nearest-neighbor matching is. In this experiment, we use N = 1000 if not
explicitly mentioned and the algorithm works well.
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Figure 4.6: The radial density distribution ml(r) of training samples. Sampling from ml(r)
(Algorithm 3) will yield the distribution that has the same shape as Eqn. (4.1) (yet β could be
larger than 1). On the other hand, β, or the density of the distribution, is determined by the
number of samples drawn.

Fig. 4.5(a) shows the successful convergence of our algorithm averaged over all the test im-
ages. Fig. 4.7 shows example images warped with different magnitudes of distortion and the
computed rectified images. Particularly, notice the significant improvement in the most distorted
example. Fig. 4.8 illustrates an image distorted by a 60 degree rotation. Even if a coarse-to-fine
strategy is used, gradient-descent methods like Lucas-Kanade can get stuck in a local minimum
due to the seemingly large displacement in the rotation angle. However, our algorithm converges
successfully to the correct parameters in just 3 to 4 iterations.

4.5.2 Factors that affect the algorithm

There are four major factors that affect the performance of the algorithm, including (a) the num-
ber N of training samples, (b) the number KNN of nearest-neighbors involved in prediction, (c)
the shape parameter δ of the distribution of training images, and (d) the magnitude of distortion
||ptrue|| of the test images.

We set the default values of the four factors to be N = 1000, KNN = 10, δ = 2 and
||ptrue|| = 30. Fig. 4.5(b)-(e) shows performance variations when perturbing one factor and keep-
ing the others constant. Fig. 4.5(b) shows better performance is obtained with more training
images. Although nearest-neighbor behaves similarly, its performance is much poorer for the
same number of samples. Fig. 4.5(c) shows that a high accuracy is obtained if training samples
are concentrated around the origin (larger δ) given the test image is within their range, as sup-
ported by the theoretical analysis. Conversely, the performance drops gradually if a test image
is far away from the training set (Fig. 4.5(d)). Finally, Fig. 4.5(e) shows that given the same set
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Distorted/Rectified, |p| = 20                     Distorted/Rectified, |p| = 30 

 Distorted/Rectified, |p| = 40                    Distorted/Rectified, |p| = 50

| |

| || |

| |

Figure 4.7: Sample images distorted to various degrees and the recovered rectified images. The
template is shown in Fig. 4.4

of training samples, performance is better for KNN nearest-neighbor with large KNN. In other
words, for the same performance, the parameter prediction using multiple neighbors requires
fewer samples.

Verifying γ < 1 in Theorem 4.2.1. Fig. 4.9(a) shows how the distribution of relative prediction
errors on the test images changes over iterations. The relative prediction error is defined as γk ≡
||pktrue − p̃k||/||pktrue||, which corresponds to γ in our theoretical analysis in Theorem 4.2.1. For
99.2% of the simulated distortions, the number of samples (1000) we used are sufficient and γk <
1, indicating the algorithm’s convergence. For the remaining 0.8%, the simulated distortions
were too large and without sufficient training samples, hence γk ≥ 1 . The distributions of γk
show that the rate of convergence slows down with increasing iterations. This is because more
samples would be required around the origin to achieve a higher accuracy.

Performance under severe image resampling artifacts. Recall that resampling artifacts are
not considered in our theoretical analysis. For large distortions where resampling artifacts can
be overwhelming, our algorithm may not have the desired behavior. Interestingly, for many such
cases, the observed difference between the rectified image and the template has the same shape
as the actual distance between the true parameters and the estimated parameters (see Fig. 4.9(b)).
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 Template                   Distorted             Iteration 1(NN)             Iteration 2  

Iteration 3                   Iteration 4               Convergence          Gradient-Based

Figure 4.8: Successful convergence of our algorithm for affine transformed image, given there
is at least one training sample reaching that area. In contrast, gradient-descent methods (like
Lucas-Kanade [6]) get stuck in local minima even with a coarse-to-fine strategy.

Hence, we conjecture that the solution that produces minimum error in the image metric among
many iterations will be a reasonable one, which is used as the stopping criterion in the real
experiments.

4.5.3 Performance in the presence of noise and occlusion

We also check the usability of our method in the presence of noise and occlusion. In this ex-
periment, we use the same 100 images as in Section 4.5.1. For each image, 1000 samples are
generated as training and 10 samples as testing. Each test image is contaminated with salt &
pepper noise or rectangle-shaped occlusion before our algorithm is applied. To generate the salt
& pepper noise, we randomly choose a portion ρP of pixels in the test image and set their values
randomly (uniformly distributed in [0, 1]). In the case of rectangle-shaped occlusion, we choose
a random position of a rectangle whose area is a portion ρR of the entire image, and fill in this
rectangle with random noise that is uniformly distributed in [0, 1]. We use two pixel-wise image
metrics, l1 and l2-norm on grayscale images, for nearest-neighbor.

Table 4.1 and Table 4.2 show our method is relatively robust to noise and occlusion in both
cases. When the noise level is 10%-30%, our method still gives a reasonable estimation of
distortion, with slightly increased squared prediction errors in the parameter space. Especially,
l1 metric performs better than l2 metric in the rectangle-shaped occlusion case for occlusion
rate up to 40%. Our method contrasts with many gradient-based approaches, in which a robust
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Figure 4.9: (a) The empirical distribution of relative prediction error γk on test images in different
iterations of the algorithm. 99.2% of the γk is small than 1, justifying γ < 1 in Theorem 4.2.1;
others are due to insufficient samples. (b) The U-turn behavior in large distortion (||ptrue|| = 50),
when the resampling artifacts are severe.

Mild distortion (||p|| = 20)
ρP No occ 10% 20% 30% 40% 50%

l2-norm 0.0646 0.0644 0.0668 0.0729 0.0863 0.1196
l1-norm 0.0383 0.0419 0.0476 0.0599 0.0973 0.2440

Moderate distortion (||p|| = 30)
ρP No occ 10% 20% 30% 40% 50%

l2-norm 0.0587 0.0607 0.0651 0.0751 0.0939 0.1427
l1-norm 0.0363 0.0411 0.0481 0.0649 0.1195 0.2987

Large distortion (||p|| = 40)
ρP No occ 10% 20% 30% 40% 50%

l2-norm 0.0595 0.0630 0.0703 0.0853 0.1164 0.1981
l1-norm 0.0469 0.0508 0.0630 0.1009 0.2002 0.4207

Table 4.1: Relative squared errors of the estimated distortion of test images with salt & pepper
noise. Note ρP is the percentage of contaminated pixels in the test image.
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Mild distortion (||p|| = 20)
ρR No occ 10% 20% 30% 40% 50%

l2-norm 0.0646 0.0686 0.0796 0.1202 0.2488 0.5146
l1-norm 0.0383 0.0417 0.0486 0.0544 0.0858 0.6513

Moderate distortion (||p|| = 30)
ρR No occ 10% 20% 30% 40% 50%

l2-norm 0.0587 0.0656 0.0825 0.1369 0.2292 0.4659
l1-norm 0.0363 0.0431 0.0510 0.0772 0.1253 0.3055

Large distortion (||p|| = 40)
ρR No occ 10% 20% 30% 40% 50%

l2-norm 0.0595 0.0729 0.1021 0.1624 0.3028 0.5437
l1-norm 0.0469 0.0563 0.0821 0.1606 0.2937 1.2850

Table 4.2: Relative squared errors of the estimated distortion with rectangle occluded test images.
Note ρR is the percentage of occluded pixels in the test image.

(a) Performance under occlusions
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Figure 4.10: Distorted test images with noise/occlusion and their rectifications. (a) Distorted
images with rectangle-shaped occlusion. (b) Distorted images with salt & pepper noise. Despite
a large portion of the distorted image is contaminated, our algorithm still obtains a reasonable
estimation of the distortion parameter and rectifies the image correctly. In all the results, we use
the setting ρ = 30% and ||p|| = 30. Note the algorithm is run on grayscale images and color is
used here merely for illustration. (Best viewed in color)
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Figure 4.11: Image formation in the presence of water distortion. The scene pixel at x + Wt(x)
is perceived at location x in the distorted image.

distance measure or a reweighting scheme has to be involved, and the initial parameters have to
be carefully chosen.

4.6 Application I: Imaging through Water

The shapes of many deformable and time-varying interfaces between two media with different
refraction indices, such as water surface, are very hard to measure directly. By perceiving the
distortion of underwater scene, human vision can sense the fluctuation of the water surface qual-
itatively. In the following, we show that using Algorithm 2, we can estimate quantitatively the
shape of the water surface, given both the appearance of the underwater scene when the water
surface is still and a distorted image due to water fluctuation. This approach also works for a
distorted video sequence by applying the same algorithm per frame. As a result, the shape of the
water surface can be estimated over time.

4.6.1 Distortion Bases

Since the water distortion is caused by the bending normals of the water surface, its distortion
bases can be obtained by physical simulation of water. According to Snell’s law (Fig. 4.11),
under first-order approximation, we can relate the distortion Wt(x) to the height h(x, t) of the
water surface at each time t:

Wt(x) = η∇h(x, t) (4.17)
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Figure 4.12: Two samples of 2-D Gaussian processes used as the initial conditions of the wave
simulator (Eqn. (4.19)).

where η is a constant related to water height h0 when the water surface is still, and relative
refraction index between air and water. When the maximum surface fluctuation

max
x,t
|h(x, t)− h0| (4.18)

is small compared to h0, the water surface is governed by the following wave equation:

∂2h(x, t)

∂t2
= c2∇2h(x, t) (4.19)

where c =
√
gh0 is the velocity of wave (g is the gravity).

To simulate the wave equation, we use forward Euler method with a periodic boundary con-
dition. This strategy is easy to implement and stable for small time step ∆t:

h(x, t+ ∆t) = 2h(x, t)− h(x, t−∆t) + c2∇2h(x, t)(∆t)2 (4.20)

where ∇2h(x, t) is the Laplacian operator on the water height image at time t. The initial con-
ditions h(x, 0) and h(x,∆t) are chosen to be a spatially correlated Gaussian Processes in a 2-D
grid, as illustrated in Fig. 4.12. More specifically, h(x, 0) and h(x,∆t) are sampled from a
multivariate Gaussian distribution N(h01,Σ) with each entry of the covariance Σx,x′ inversely
proportional to the spatial distance between x and x′:

Σx,x′ = exp

(
−||x− x′||2

2σ2
synthesis

)
(4.21)

Note both the mean and variance of the Gaussian distribution are independent of the absolute co-
ordinates of spatial locations. Thus the resulting initial condition is spatially stationary. σsynthesis

is set by visually comparing the appearance of a known underwater planar scene at the bottom of
the water tank with that from simulations. Importantly, σsynthesis is independent of the underlying
scene. In the simulation, we set c = 0.8 pixel/frame and σsynthesis = 10 pixels.
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X component Y component

Figure 4.13: The water bases B(x) = [b1(x),b2(x), . . . ,b20(x)]. For both x and y components,
the bases are sorted by their eigenvalues in a descending order, from left to right and from top to
bottom.

The simulator gives the time-evolving shape of the water surface. Since the initial condition
is spatially stationary, and the wave equation is a time-invariant partial differential equation, we
conclude that the evolving water surface is both temporally and spatially stationary. Thus, it
suffices to capture the statistical properties on local patches. Based on this insight, we randomly
sample space-time coordinates (x, t) and extract spatial patches (57×40) from Wt centered at x.
Then PCA is applied to these sampled patches to obtain the first 20 orthogonal principle modes
B(x) = [b1(x),b2(x), . . . ,b20(x)] of water distortion, which we call water bases as shown in
Fig. 4.13. The standard deviations of the 1-st and 20-th principle components are 610.08 and
42.82 respectively. By construction, the bases are translation invariant.

4.6.2 Experimental Setup

The water experiment consists of video camera observing vertically downward a 0.5m deep
semi-transparent water tank with a planar scene at the bottom. The tank is illuminated from
the side to avoid any surface reflections that are not modeled. The water surface is manually
disturbed using a plastic ruler. The planar scene includes fonts of various sizes and natural
textured underwater scene. The average dimension of distorted video sequences is around 350×
250 with 500 frames. The variations of the dimension are due to a manual preprocessing step to
trim the image boundaries corresponding to the water tank.

We use the image taken under flat water surface as the template. Since the water distortion
is local, we partition the image into overlapping patches and apply Algorithm 2 with the water
bases (Fig. 4.13) on each patch to obtain a local deformation field. The image distance is com-
puted using l1 metric in grayscale after normalizing the pixel intensity into [0, 1]. 10000 training
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Distorted images    Feature Matching  B-spline registration  Water Tracking      Our approach           Template 

Figure 4.14: Rectification of water distortion on text images of different font sizes (from the top
row to the bottom row: MiddleFonts, SmallFonts and TinyFonts). Our approach outperforms
HOG (Histogram of Gradient) feature matching, B-spline nonrigid registration [69] and yields
slightly better results with water tracking [98]. However, water tracking relies on the entire video
frames, while ours only needs two images.

samples are synthesized from the template using the water bases, densely distributed around
the original but sparsely elsewhere, as described in Section 4.5.1. For each distorted patch in
the video sequence, 15 iterations are performed to obtain the parameter estimation on the water
bases. Then these local deformation fields are stitched together, resulting in a global deformation
field. At the overlapping regions between patches, we average the local deformation fields given
by neighboring patches to obtain a smooth transition.

4.6.3 Results

Rectification of distorted images. We compared our algorithm to several previous representa-
tive techniques: free-form non-rigid image registration using B-splines [69], our previous work
of water tracking [98] and a baseline approach in which we compute and match HOG (Histogram
of Gradient) descriptors and interpolate the sparse correspondence using thin-plate interpolation
to create a dense deformation field. We also compare with the classic Lucas-Kanade method with
the same set of water bases plus a coarse-to-fine strategy, as shown quantitatively in Section 4.6.4.

Fig. 4.14 shows the rectified images for a scene with text, and Fig. 4.19, 4.20 shows the
results for a scene with colored textures. All the datasets, including three scenes with text (tiny-
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Figure 4.15: Tracking a video sequence using estimated deformation fields. Although the under-
lying fish images are non-rigidly distorted, our method can still track it without drifting, using
only grayscale images (We show color images for better illustration). Note the contour of the
object in the first frame is manually labeled. See our website for the complete video sequence.

Font, middleFont and smallFont) and scenes with textures, can be downloaded in our website.
Since only sparse correspondences between two images are used, feature matching gives an in-
accurate interpolated deformation field and fails to align details well. Nonrigid B-spline image
registration [69] works better but fails occasionally on some image regions due to local minima.
Our previous method, water tracking [98] produces better results than feature matching and B-
spline registration. Yet it requires a short video sequence (61 frames) to rectify a single frame. In
contrast, our method yields the best rectification results given only the template and one distorted
image at a time.

Video tracking. Using the estimated distortion, one can find the corresponding points of an
object’s contour at each video frame, which gives the tracking result as shown in Fig. 4.15. We
can see that although the shape of the fish undergoes large nonrigid distortions, our method still
succeeded in tracking its contour reliably (note the first contour is manually labeled).

Water surface reconstruction. According to Eqn. (4.17), the deformation fields are proportional
to the gradient of the water height at any time. Hence, one can recover the height of the water
surface at each time using Frankot-Chellappa integration [26] on dense deformation fields of x
and y directions. Some sample reconstructions are shown in Fig. 4.16.

Please check more video results on our website.

4.6.4 Quantitative Evaluation

In addition to visual comparisons, we also do quantitative comparisons to further verify our
approach.
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Figure 4.16: Reconstructed water surfaces (dataset: SmallFonts) by spatially integrating the
water distortion (Best viewed in color).

Reprojection error on images

Without groundtruth deformation fields, a convenient evaluation is to check whether the rectified
frames coincide well with the template, which is the image reprojection error. We compare our
method with B-spline registration [69] and Lucas-Kanade registration using the same water bases
(Fig. 4.13) and a coarse-to-fine strategy to avoid possible local minima. To measure the distance
between a rectified image I and the template I0, we compute the root-mean-square reprojection
error RMSintensity as follows:

RMSintensity =

√
1

n

∑
x

(I(x)− T (x))2 (4.22)

where n is the number of pixels in each image. Note the image intensity is normalized into [0, 1]

before different algorithms are formally applied. For a video sequence, we compute RMS for
each frame and take the mean value over time. Table 4.3 shows the result. We can see even with
the same bases, Lucas-Kanade still gets trapped into the local minima and fails to give a low
reprojection error. B-spline works better yet our method performs the best.
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Dataset Distorted video Lucas-Kanade B-spline [69] Our method
TinyFonts 0.0720 0.0618 0.0553 0.0444
SmallFonts 0.1029 0.0624 0.0512 0.0461

MiddleFonts 0.1551 0.1092 0.0640 0.0597
Fish 0.0995 0.0831 0.0584 0.0527

Table 4.3: Comparison of the image reprojection error on different methods. All the errors are
computed using RMS (See Eqn. (4.22)) and the mean RMS over the entire video sequence (500
frames) is shown in the table. Note the pixel intensity is normalized into [0, 1] before different
algorithms are applied. Thus the maximal possible reprojection error is 1 (black versus white
images).

Template Frame #10 Frame #20

Figure 4.17: Samples of landmark-labeled frames in dataset MiddleFonts. Note the video frames
and the template are 253 by 293. The first 30 frames are manually labeled, each with 232 land-
marks.

Reprojection error on landmarks

The image reprojection error is not a perfect performance measure; a distortion estimation al-
gorithm may result in lower errors by arbitrarily rearranging the pixels without considering the
spatial smoothness constraints. To further verify our method, we manually label m = 232 land-
marks on the first 30 frames of one of the underwater dataset, MiddleFonts (See Fig. 4.17 for
sample labels), and compute root-mean-square error RMSspatial between the landmark positions
{xt

i} transformed from the template to the distorted frame using the estimated deformation field,
and the landmark positions {xd

i } that are labeled on the distorted frame:

RMSspatial =

√√√√ 1

m

m∑
i=1

||xt
i − xd

i ||22 (4.23)
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Distorted video Lucas-Kanade Feature matching B-spline [69] Our method
mean RMS 6.3404 5.2040 3.9282 3.8212 2.5142

Table 4.4: Comparison of the landmarks reprojection error on different methods. All the errors
are computed using Eqn. (4.23) and in the table the mean error over the 30 labeled video frames
of the Middle-Font dataset is shown. See Section 4.6.4 for detailed descriptions of each listed
method.

Similarly, we compute mean RMS over 30 labeled distorted frames. Table 4.4 shows the results.
We can see our method gives the smallest errors (measured in pixel), while other generative
approaches, such as Lucas-Kanade (with the same set of bases) and B-spline, gives at least
60% higher errors. Since the landmark correspondence is sparse, we also test the performance of
feature matching using HOG descriptor. To minimize the matching ambiguity and using the prior
knowledge that the landmark positions are fluctuated around their positions in the template, we
match each HOG descriptor located at x in the template with all the densely extracted descriptors
located in the vicinity of 11 pixels in the distorted frame, and pick the best one as the matching
result. This approach yields better results than Lucas-Kanade and comparable to B-spline, yet is
still not as good as our approach. Finally, Fig. 4.18 gives a more detailed analysis of the error
distribution of different methods.

4.7 Application II: Cloth Deformation

Another interesting application of Algorithm 2 is to estimate nonrigid cloth deformation. Given
a video sequence with deforming cloth, the goal is to estimate a dense and time-varying deforma-
tion field between different frames, which can be used for video tracking and 3D reconstruction.

4.7.1 Global motion and local deformation

In general, since cloth deformation behaves more globally than water distortion, we use the
following two-stage approach. In the first stage, we downsample the original video (720× 480)
by a factor of 2, apply local affine bases of size 200×200 and estimate its 6 parameters using our
method. This gives a coarsely undistorted video sequence. In the second stage, we apply local
random bases (100 × 100) with 40 dimensions to the undistorted sequence, and obtain the final
distortion estimation by distortion composition. We build our own dataset acquired by manually
perturbing a piece of silk cloth with repetitive heart patterns.

In addition, we apply our method on the dataset offered by the authors of [95] to obtain the
dense deformation field, which is used to reconstruct the 3D shape of the cloth. For their datasets,
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we use a slightly different approach. We begin by first using local trackers (mentioned below) to
track reliable interest points over time and manually pick the correct trackers to obtain a coarse

dense deformation field with thin-plate interpolation. Then local random bases are again applied
on the coarsely rectified video sequences for refined estimation.

The local tracker. The local tracker we used is also based on Algorithm 2. Given an interest
point in the template (usually is the first frame of the deforming cloth sequence), a local patch
around it is cropped and 200 samples are generated using affine warps. During tracking, we
initialize the position of the tracker as its position in the previous frame and extract the patch
around it, on which Algorithm 2 applies to obtain the local deformation field that gives the
position of the tracker in the current frame. With an illumination-invariant metric, this local
tracker is robust to the shading effects in the cloth video sequence. As a result, many of the
tracking trajectories are reliable and useful throughout the video sequence. By manually picking
the good ones, a coarse yet representative deformation field can be built.

4.7.2 Results

Fig. 4.22 shows some sample frames of a rectified video sequence produced by our method on a
piece of cloth with repetitive heart patterns. B-spline registration [69], as a generative approach,
goes into local minima in multiple frames, while our approach does not. Please watch the entire
video sequence on our website for a more thorough comparison. Fig. 4.21 shows the estimated
deformation fields. The affine components are shown as the linear part of the deformation fields,
while the nonrigid components are shown as the nonlinear part, as clearly illustrated in this figure.

Fig. 4.23 shows the established correspondence on the data-set from [95]. Our method cap-
tures the wavy structure on the cloth in the first dataset and the bending structure in the second
dataset throughout the video sequence. The 3D reconstruction of the dataset can be found in [95].

4.8 Applications III: Air Turbulence

Using deformation estimation, we can recover the scene under turbulence from a set of image
sequence. With short exposure, every image of the sequence is a noisy and distorted version of
the scene. A long exposure reduces the two artifacts but introduces blurring. Therefore, how to
obtain an image of the scene without all the artifacts is not a trivial problem. Following a similar
setting, [114] combines a noisy and a blurry image of the same scene to obtain a better one. In
our case, each frame of the video sequence is not only noisy but also misaligned.

As shown in Fig. 4.24 and Fig. 4.25, the sample frame from the sequence (the first column)
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is noisy and distorted; while the mean image of the frames (the second column) is blurry. Note
that the mean image could be regarded as an image captured with very long exposure. To ob-
tain a better image of the scene, we first densely register the image sequence to the first frame
with Data-Driven Descent to obtain frame-to-frame warps. Then we rectify each image of the
sequence and take their mean. Due to some alignment error and blur occurred in low exposure
frames, the resulting rectified mean is still blurry (but less than the original mean), and thus we
deblur it with Richardson-Lucy (RL) method. The final result is shown in the last columns.
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Figure 4.18: Histograms of landmark displacement errors using different methods over 30 la-
beled frames, each with 232 landmarks. The displacements in the distorted images (blue solid
line) follow a flat and Gaussian-like distribution. All the methods aim to push the distribution
towards the origin. The Lucas-Kanade method (magenta line with triangle) produces a error dis-
tribution with a heavy tail, indicating that it often converges to local optima and many landmarks
fail to align well. Local dense feature matching (green line with circle) works better, but the
local ambiguity of HOG features leads to inaccuracy in the alignment, as indicated by the sharp
peak of the distribution located at a region of positive errors. B-spline registration [69] (dashed
red line) works even better using a more powerful optimization technique (BFGS) but still not
as good as our method (black line with cross) whose error distribution is more concentrated near
the origin and with a thinner tail.
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./final_result_water2_vertical1-eps-converted-to.pdf

Figure 4.19: Rectification of water distortion on 3 different colored texture images. Our method
yields the best rectification. Detailed comparison is shown in Fig. 4.20 (Best viewed in color).
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./final_result_water2_vertical2-eps-converted-to.pdf

Figure 4.20: Detailed comparison between our approach and previous works [69]. (Best viewed
in color)
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X-component Y-component

Figure 4.21: Estimated deformation fields for the cloth sequence with repetitive heart patterns.
The first row shows the x-component while the second row shows the y-component. The linear
part in distortion fields is the affine component, while the nonlinear part is the nonrigid compo-
nent. (Best viewed in color)

Video sequence of deforming cloth

Rectified frames using our approach

Rectified frames using B-spline registration

Figure 4.22: Rectification of cloth deformation using different methods. The first row shows the
original video frames, the second row shows the rectified video frames by our approach, and the
last row shows the rectification by B-spline registration [69]. As a generative approach, B-spline
registration converges to local minima; while our approach gives good distortion estimation and
rectifies the deformation correctly.
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Figure 4.23: Estimated 2D mesh on the video sequence of deforming cloth using our approach.
The dataset in the first and the last row come from [95], while the dataset in the middle row
comes from [72]. (Best viewed in color)
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./rect2-eps-converted-to.pdf

Figure 4.24: Scene Rectification. (a) Sample frame from a video. The image is sharp but noisy.
(b) Mean image of the video. The image is noise-free but blurry. (c) Rectification using Data-
Driven Descent.
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./rect1-eps-converted-to.pdf

Figure 4.25: Scene Rectification. (a) Sample frame from a video. The image is sharp but noisy.
(b) Mean image of the video. The image is noise-free but blurry. (c) Rectification using Data-
Driven Descent.
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Part II

Theory II: From Image to Hierarchy
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Chapter 5

Patch-based Representations and The
Construction of Hierarchy

In the previous chapters, the proposed Data-driven Descent has successfully reduced the sample
complexity from O(1/εd) to O(Cd log 1/ε) while maintaining the global optimality guarantees.
To further reduce the sample complexity, in the experiments, the entire image of size m-by-n
is partitioned into small image regions whose dimension is much smaller than the entire image.
Such regions are often called patches.

Patches and patch-based representations are not new, and have been extensively used in com-
puter vision due to many advantages over holistic approaches. For example, in image inpainting,
missing regions can be filled in using identical patches elsewhere in the same image. In feature-
based image matching, patches are used to extract features such as SIFT [53] for finding sparse
correspondences between two or more images. In object recognition, patches are the building
blocks for textons [87] and bags of words [77] due to its high repetitive nature and (limited)
discriminative power.

From the point of view of this thesis, one major advantage of patch-based representation is
its low dimensionality. Under the smoothness constraint of deformation field, the dimensionality
(degrees of freedom) of an image region R is at most proportional to its area. Since the sample
complexity grows exponentially with respect to the dimensionality, using a patch rather than the
entire image could reduce the sample needed substantially. Indeed, in Chapter 4, Data-driven
Descent is applied independently to the patches of water-distorted video frames.

This sounds very attractive. Then why not go to the other extreme, i.e., to use patches of
size 1-by-1, for prediction of deformation? This answer is NO due to the aperture problem

accompanied with patch-based representation. Suppose we have a template image I0 and a region
R0 (Fig. 5.1). If a small deformation field moves the image content within R0 slightly to form
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Figure 5.1: Aperture Problem. (a) A patchR0 on the template image I0 with three landmarks. (b)
When deformation is small, the feature extracted from R0 can be used to predict local landmark
displacements. (c) When deformation is large, the feature extracted from R0 is no longer related
to the local deformation.

a deformed image I , then by extracting information from R0 in I (namely the rectangle patch
I(R0)), one can still predict the small deformation quite accurately. However, if the deformation
is large and moves the template content I0(R0) to another region in I , then a prediction using
I(R0) as the input is not expected to perform well.

In summary, a patch-based representation is double-bladed:

• Positive: Deformation on a patch has lower dimensionality and fewer degrees of freedom,
which substantially reduces the sample complexity.

• Negative: Large deformation cannot be predicted from small patches due to aperture prob-
lem.

A question naturally arises: how to avoid aperture problems while enjoying fewer degrees of
freedom from patch-based representation?

The answer proposed in this thesis is to use a hierarchical structure. The second part of
the thesis will show how to construct a hierarchy that predicts large and complex deformations
using local patches of different sizes in a principled manner. As pointed out by many previous
works, there exist two ways to operate on such a hierarchy, namely top-down and bottom-up.
Accordingly, two approaches, Top-Down and Bottom-Up Hierarchical Predictions, are proposed
in a principled way with global optimality guarantees and even lower sample complexity.

5.1 Local Reparameterization of Warping

Let us first rephrase the problem, and introduce basic notations for part-based representation.
Given a template I0, a deformed image Ip is generated from a deformation field W (x; p). The
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Subscripts Usage
i (Training) sample index.
j Patch index or an index into a parent vertex in hierarchical models.
k Landmark index, or index into a child vertex in hierarchical models.

Hierarchy
T Number of layers
t Layer number
[t] All parts in layer t
ch(j) Children set of part j.
ah(j) Anchor index of part j.
hj Held state for part j. hj = (uj, zj), where uj is the 2D location and zj the type variable.
gj Discarded state for part j.
zk ∼ zj Type variable zk of child k is compatible with type variable zj of parent j.
hk ∼ (hj, gj) The child state hk is compatible with the parent state (hj, gj).

Patch/Part j
Rj0 Rectangle/Region of patch j on template image I0.
Rj Rectangle/Region on deformed image. Rj = Rj(p) is a function of parameter p.
Sj Subset of dominant landmarks in patch j
rj Characteristic range of part j
εj Inverse of sample density related to patch j in bottom-up hierarchy.
p(Sj) Subset of dominant parameters in patch j
Ip(Rj(q)) Local pull-back operation.

Lipschitz Conditions
αj (Inverse of) density of training samples.
γj (One minus) Convergence rate.
Aj,Γj Lipschitz constants.

Table 5.1: Additional Notations used in Patch-based Modeling.
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Figure 5.2: Illustration of I(R) and subset S of landmarks.

deformed image Ip satisfies the following equation:

Ip(W (x; p)) = I0 (5.1)

In the first part of the thesis, we assume W (x; p) as a linear combination of a set of global

bases BG(x) with global parameters pG (See Sec. 3.2):

W (x; p) = x +BG(x)pG (5.2)

In this chapter, instead of using global parameters pG, we use a local deformation model. From
the template I0, the deformed image Ip is generated by moving around K uniformly distributed
landmarks {lk}Kk=1 on the template, and interpolate other pixel displacements accordingly.

In this setting, we can write Eqn. 5.2 in the following local form:

W (x; p) = x + (BL(x)pL)> (5.3)

where the bases BL(x) = [b1(x), b2(x), . . . , bK(x)] is a K-dimensional row vector of weighting
factors on location x from K landmarks and pL is a K-by-2 matrix storing all the displacements
of landmarks. For a specific k, pL(k) is a 2-dimensional row vector, which is the displacement
of k-th landmark.

5.1.1 Property of bases B(x).

Mathematically, {bk(x)}Kk=1 are local in the sense that bk(x) is high when x is close to k-th
landmark lk, but decays quickly otherwise. At any location x, its weights from all K landmarks
add to 1: ∑

k

bk(x) = 1 ∀x (5.4)

70



(a) Template (b) Distorted Image 

 

(c) Displacement 
for landmark 

1
  

2

3   4
  

(d) Displacement  
at pixel  

li

li

IpT
x

xp(i)

4∑

i=1

bi(x)p(i)

p(i)

Figure 5.3: Local parameterization of deformation. (a)-(b) The deformation field is controlled
by a set of landmarks on the template image. By moving these landmarks, a deformed image
is created. (c) Local parameterization. Each parameter p(k) encodes the 2D displacement of
the landmark k. (d) Displacement on any pixel x is interpolated using displacements of nearby
landmarks.

and the weight bk(·) at k-th landmark location lk is 1 while others are zero:

bk(lk) = 1, bj(lk) = 0 ∀j 6= k (5.5)

Practically, BL(x) can be any interpolation function, e.g., Radial Basis Function, Thin-plate
Spline [10], B-spline [69], local linear interpolation, etc. Note for some of those choices, Eqn. 5.4
may not hold and a normalization procedure is needed.

We assume that B(x) = [b1(x), b2(x), . . . , bK(x)] is smoothly changing:

Assumption 5.1.1 There exists cB so that:

||(B(x)−B(y))p||∞ ≤ cB||x− y||∞||p||∞ (5.6)

Intuitively, Eqn. 5.6 measures how smooth the bases change over space.

Lemma 5.1.2 (Unity bound) For any x and any p, we have ||B(x)p||∞ ≤ ||p||∞.

Proof

||B(x)p||∞ = max{
∑
i

bi(x)px(i),
∑
i

bi(x)py(i)} (5.7)

≤ max{max
i

px(i)
∑
i

bi(x),max
i

py(i)
∑
i

bi(x)} = ||p||∞ (5.8)

using the fact that
∑

i bi(x) = 1 for any x.
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5.1.2 Relationship between global and local parameterization

Local overparameterization can be reformulated to a global one:

W (x; p) = x + (BL(x)︸ ︷︷ ︸
1-by-K

pL︸︷︷︸
K-by-2

)> (5.9)

= x +

[
b1(x) . . . bK(x) 0 0 0

0 0 0 b1(x) . . . bK(x)

]
︸ ︷︷ ︸

BG(x), 2-by-2K



px(1)

. . .

px(K)

py(1)

. . .

py(K)


︸ ︷︷ ︸
pG, 2K-by-1

(5.10)

From this, it is clear that a local parameterization with K landmarks corresponds to D = 2K

bases in the global parameterization case. However, because bases and displacements from
nearby landmarks are highly correlated, {bk(x)}Kk=1 are not orthogonal and the effective degrees
of freedom d � D. For this overcomplete set of bases, one can reduce D by a Gram-Schmidt
orthogonalization process. However, as we shall see in Sec. 6, working with an overcomplete set
of bases could be more convenient and substantially reduce the training samples needed.

5.2 Patch-based Representation

5.2.1 Patches on Template I0

We first discuss the representation for patches on template I0. For each patch j, denote Rj0 as
a region on I0. The subscript 0 means the location of the region is fixed when the deformation
parameters p change. That is why Rj0 is called “on I0”. The shape of the region can be a square,
a rectangle or a circle. In all cases, denote rj as the radius of Rj0. For example, for squared
region Rj0:

Rj0(xj, rj) = {x : ||x− xj||∞ ≤ rj} (5.11)

and for circular region:
Rj0(xj, rj) = {x : ||x− xj||2 ≤ rj} (5.12)

However, a region may not be defined exclusively by its center xj and its radius rj . Alternatively,
Rj0 can be defined by its four corners, etc.
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Given an arbitrary image I , I(Rj0) is the patch extracted from an image I , and can be re-
garded as a infinite-dimensional vector:

I(Rj0) = {I(x) : x ∈ Rj0} (5.13)

When Rj0 is sampled in a discrete manner (e.g., sample 10x10 grid on a 30x30 region), I(Rj0)

is also a finite-dimensional vector. The most common case is sampling per pixel, i.e., for a
30-by-30 region, I(Rj0) is a 900-dimensional vector.

5.2.2 Dominant Landmarks and Local Degrees of Freedom

On a region Rj0, Sj is defined as dominant subset of landmarks whose displacements p(Sj)

dominantly influence the patch content I(Rj0). Here p(Sj) is a |Sj| by 2 matrix obtained by
choosing Sj rows from the (local) parameters p in Eqn. 5.3. The subscript “L” is omitted for
clarity.

Of course, due to the aperture problem, if the displacements are large enough, then the effect
of p(Sj) on I(Rj0) will diminish and the displacements from other landmarks will take over.
Therefore, such a dominance is only valid within the radius rj so that ||pSj||∞ ≤ rj . In Sec. 6.1,
the term “dominance” will be rigorously defined by a relaxed version of Lipschitz condition. In
practice, often the landmarks that is within and close to Rj0 are selected as members in Sj:

Sj = {k : dist(lk, Rj0) ≤ margin} (5.14)

See Fig. 5.2 for illustration.

By definition, the degree of freedom in the patch I(Rj0) is determined by the subset of
landmarks Sj . Since p(Sj) is a |Sj|-by-2 matrix, there are dj ≡ 2|Sj| apparent degrees of
freedom.

If the landmarks are uniformly distributed on the 2D image, which could be trivially made
true by placing the landmarks on a regular grid, then the number of landmarks is proportional to
the area ofRj0, which is proportional to r2

j since images are two-dimensional. Thus, we conclude
that dj ≡ 2|Sj| = βr2

j for some positive constant β. β is related to the overall smoothness of the
deformation field.

On the other hand, for large patch that contains many landmarks, 2|Sj| could be huge. How-
ever, the overall effective degree of freedom is d. Therefore, if d < 2|Sj|, then p(Sj) contains
dependent displacements and the effective degree of freedom in Rj0 is d.

Let me give a concrete example. If an image undergoes an affine transform that has 6 degrees
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of freedom, then even if the number of landmarks K = 100, the overall degrees of freedom
is always 6. Moreover, for any region Rj0 that covers |Sj| landmarks with |S| ≥ 3, the local
deformation on the region Rj0 is still an affine transform, and its degrees of freedom never
exceed 6.

Combining these two observations, we thus arrive at the following assumption:

Assumption 5.2.1 (Degrees of Freedom for Patches) For j-th patch, its local degrees of free-

dom dj = min(d, 2|Sj|) = min(d, βr2
j ).

5.3 Local Pull-back Operation

5.3.1 Patches on Deformed Image

Following Sec. 5.2, similarly, we can define region Rj on a deformed image. Here the subscript
0 is omitted since the region Rj = Rj(p) moves with the deformation parameters p. Mathemat-
ically, Rj is the image of Rj0 under deformation field W (x; p):

Rj = W (Rj0; p) = {y : y = W (x; p), x ∈ Rj0} (5.15)

Under finite resolution,Rj contains a list of pixel locations and bothRj andRj0 contain the same
number of pixels.

For local deformations controlled by K landmarks, Rj is not necessarily dependent on all the
landmarks but only the dominant subset Sj , i.e., Rj = Rj(p(Sj)). For example, if a rectangle
region Rj0 contains 4 dominant landmarks on its four corners, then the location of shape of
its deformed rectangle Rj is (almost) determined by the location of the four corners, with a few
wiggles on the edges (See Fig. 5.4). Moreover, when landmarks become denser, such a dominant
relationship becomes stronger.

For the bottom-up hierarchical model (Sec. 7), we use a low-dimensional projection of p(Sj)

rather than p(Sj) itself to compute the location and shape of the deformed region Rj . The
reason is that if Sj covers a large region, then p(Sj) is high-dimensional and may go beyond
computational complexity available.

5.3.2 Local Pull-back Operation

For arbitrary image I and a moving region Rj = Rj(q), we define I(Rj) as the local pull-back:

I(Rj(q)) ≡ I(W (Rj0; q)) (5.16)
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Figure 5.4: Deformed region Rj as a function of p.

In particular, for deformed image Iq and the moving region Rj = Rj(q), we have

Iq(Rj(q)) = Iq(W (Rj0; q)) = I0(Rj0) (5.17)

which gives back the template content. This coincides with the (global) pull-back property in
Eqn. 3.9. This similarity is the underlying motivation for calling Eqn. 5.16 “local pull-back
operation”.

From Eqn.5.16, there is a relationship between the (global) pull-back operation H(I,q) and
the local pull-back operation I(Rj(q)):

H(I,q)(Rj0) = I(W (Rj0; p)) = I(Rj(q)) (5.18)

Therefore, to compute I(Rj(q)) for all patches, we do not need to apply Eqn. 5.16 one patch after
another. Rather, we can compute the global pull-back imageH(I,q) once and extract regionRj0

for j-th patch on the pull-back image.

5.3.3 Pull-back Inequality

Similar to the pull-back inequality for the entire image (Eqn. 3.10):

||H(Ip,q)− Ip−q|| ≤ cH ||p− q||∞, (5.19)

we have the following local pull-back inequality:

Theorem 5.3.1 For j-th patch with region Rj and radius rj , if ||p − q||∞ ≤ rj and ||q||∞ ≤ cq,

then

||Ip(Rj(q))− Ip−q(Rj0)|| ≤ ηjrj (5.20)
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where ηj = cBcqcGAreaj . Note cG = maxx |∇Ip(x)|1.

Proof For any y ∈ Rj0, by definitions of Eqn. 5.16 and Eqn. 3.3, we have:

Ip(Rj(q))(y) = Ip(W (y; q)) (5.21)

Ip−q(y) = I0(W−1(y; p− q)) = Ip(W (W−1(y; p− q),p)) (5.22)

Now we need to check the pixel distance between u = W (y; q) and v = W (W−1(y; p−q),p).
Note both are pixel locations on distorted image Ip. If we can bound ||u − v||∞, then from Ip’s
appearance, we can obtain the bound for |Ip(Rj(q))(y)− Ip−q(y)|.

Denote z = W−1(y; p− q) which is a pixel on the template. By definition we have:

y = z +B(z)(p− q) (5.23)

then we have ||y − z||∞ = ||B(z)(p − q)||∞ ≤ ||p − q||∞ ≤ rj by Lemma 5.1.2. On the other
hand, we have:

u− v = W (y,q)−W (z,p) (5.24)

= y +B(y)q− z−B(z)p (5.25)

= B(z)(p− q)−B(z)p +B(y)q (5.26)

= (B(y)−B(z))q (5.27)

Thus, from Eqn. 5.6 we have:

||u− v||∞ ≤ cB||y − z||∞||q||∞ ≤ (cB||q||∞)rj (5.28)

Thus:

|Ip(Rj(q))(y)− Ip−q(y)| = |Ip(W (y; q))− Ip(W (W−1(y; p− q),p))| (5.29)

= |Ip(u)− Ip(v)| (5.30)

≤ |∇Ip(ξ)|1||u− v||∞ (5.31)

≤ cB|∇Ip(ξ)|1||q||∞rj (5.32)

where ξ ∈ Line-Seg(u,v). Collecting Eqn. 5.32 over the entire region Rj gives the bound.

Practically, ηj is very small and can be neglected.

76



I0�
R1�

R2� R3�

R6�

R13�

V1	

V2	 V3	 V4	 V5	

V6	 V7	 V8	 V9	 V10	 V11	 V12	 V13	 V14	

Layer 1!

Layer 2!

Layer 3!

Figure 5.5: An example of the hierarchical structure.

5.4 From Patches to Hierarchy

From all the patches, now we are ready to build a hierarchical structure for deformation es-
timation. Following different principles, i.e., top-down or bottom-up, the criteria to build the
hierarchy are also different. I leave the principles and details to Chapter 6 and Chapter 7. Here I
will introduce common basic notations for the hierarchy.

The entire hierarchy can be regarded as a graph. The j-th patch corresponds to vertex Vj .
Two vertices Vj and Vk is a parent-child pair with Vj being a parent and Vk being a child, if the
two dominant subsets satisfy Sj ⊇ Sk. In such a case, there is an edge between the two vertices.
For any node Vj , denote ch(Vj) as its children, and pa(Vj) as its parents. In abbreviation, we also
use ch(j) or chj to represent ch(Vj).

All vertices in the hierarchy are arranged in a layer-by-layer fashion. For each vertex Vj ,
there is an associate layer number t = t(Vj). The notation [t] is the set of all the nodes that
belong to layer t. For a parent-child pair, the parent Vj is always one layer higher than the child
Vk, i.e., t(Vj) = t(Vk)− 1. The root node whose dominant subset Sj = {1, 2, . . . , K} covers all
landmarks has t = 1, while the leaf node whose |Sj| = 1 has t = T . The total number of layers
are T .

Regions (vertices) in the same layer share the same size of dominant subsets and the same
scale. This leads to two consequences: first, two distinct nodes Vj1 and Vj2 in the same layer
with Sj1 6= Sj2 cannot be connected (no edges in the same layer). We denote the common size
of S as |S|t. Second, the scale of regions is fixed within layer, and is a function of layer number
t(j), denoted as rt. rt > rt+1 since region in the higher layer has a larger scale compared to
the regions in the lower layer. Note that in this section, we do not specify the shrinking factor
rt+1/rt. It depends on the specific design criterion of the algorithm and will be elaborated later.

Fig. 5.5 shows an example of hierarchy. V1 is the root node with t(1) = 1 and V6-V14 are the
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leaf nodes with t(V6) = t(V7) = . . . = t(V14) = 3. ch(V1) = {2, 3, 4, 5}, ch(V2) = {6, 7, 8, 9}
and pa(V10) = {2, 3, 4, 5}. Note one node may have more than one parents. So in general, the
hierarchy is not a tree.
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Chapter 6

Top-Down Hierarchical Prediction:
Factorizing Deformation onto Patches

As shown in Sec. 4, the Data-driven Descent algorithm reduces the sample complexity from
O(1/εd) to O(Cd log 1/ε), while maintaining the same global optimality guarantee: ||p̂−p||∞ ≤
ε. Intuitively, this approach builds links of two deformed images with the compositional structure
of deformation, despite they are far away from each other in terms of image metric. Therefore,
a test image can leverage the training samples which are far away in appearance but connected
by deformation composition, for its prediction. It shows good empirical results for local defor-
mation, but fails to capture general deformation that contains both global and local components
(e.g., cloth moving and deforming). Indeed, in Sec. 4.7, manual initialization has to be introduced
to remove the global components of cloth deformation.

In this chapter, Top-Down Hierarchical Predictions are proposed for deformation that con-
tains both global and local components. Still it comes with global optimality guarantee.

The main intuition is as follows. First, the Lipschitz conditions between the image content
and the deformation parameters (Eqn. 3.22) are relaxed to deal with noise and patch bound-
aries. With the relaxed conditions assumed on all patches of different locations and scales, every
patch can be regarded as predictors with guaranteed worst-case precisions of different granular-
ity. Patches with large scales can deal with large deformation but the precision is low, while
patches with small scales only deal with small deformation but with high precision.

Because of their complementary properties, patches of different scales can be concatenated.
Patches of large scale can deal with large deformation first, output a coarse estimation and reduce
the estimation error to a level, which smaller patches can kick in and further improve the esti-
mation. Thanks to local parameterization structure of the deformation field W by K landmarks
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(See Eqn. 5.3):
W (x; p) = x + (BL(x)pL)>, (6.1)

deformation that happens within a local image patch (i.e., the dominant subset mentioned in
Sec. 5.2.2) can be predicted by the content of that patch. Therefore, deformation on small patches
at different locations are conditionally independent of each other once the global deformation has
been estimated, with a few samples their performance can be guaranteed. These patch predictors
are thus cascaded together in a top-down hierarchical manner, able to handle large and high-
dimensional deformation with both local and global components.

As a result, compared to Data-Driven Descent, Top-Down Hierarchical Prediction brings
down sample complexity to O(Cd

1 + C2 log 1/ε) where d is the degrees of freedom in Eqn. 6.1.
This sample complexity varies very slowly with respect to the accuracy. In particular, the number
of samples required in each iteration stays constant for the first few layers of hierarchy, and then
decays double exponentially. Furthermore, the sample complexity guarantee is based on relxed
Lipschitz conditions that can be verified with an efficient algorithm. This reduces the constant C
in Eqn. 4.13 to a much smaller constant C1.

Practically, Top-Down Hierarchical Prediction also demonstrates good quantitative and qual-
itative results on real video sequences containing different types of deformation, including cloth-
ing and water surface deformations as well as medical images of internal organs. This approach
outperforms optimization-based approaches such as Lucas-Kanade [6] and Free-form registra-
tion [69] (both with coarse-to-fine implementations), regression-based approaches such as Near-
est Neighbor and Explicit Shape Regression [14], feature-based approaches such as SIFT [53],
tracking-based approaches such as KLT [83], and finally previous proposed Data-Driven De-
scent. Currently the unoptimized Matlab implementation is fast, achieving 3-4 fps on real im-
ages.

6.1 Relationship between Local Parameters and Local Image
Appearance

6.1.1 Motivation

One shortcoming of the Lipschitz condition proposed in Sec. 3.6.1:

L1∆I ≤ ∆p ≤ L2∆I ∀p1,p2 : ||p1||∞, ||p2||∞ ≤ r0 (6.2)

is that it must hold for arbitrarily small ∆I and ∆p. Thus it fails in the following two situations:
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• Noisy images. Adding noise to a distorted image Ip changes its appearance but not its
parameters. As a result, ∆p ≈ 0 but ∆I is finite. This makes L1 → 0.

• Repetitive Patterns. If an image resembles itself after some transformation, then ∆p is
finite but ∆I ≈ 0. This makes L2 → +∞.

In both cases, the analysis in Sec. 4.2 gives a trivial (infinite) bound on sample complexity and
global optimality cannot be guaranteed.

6.1.2 Relaxed Lipschitz Conditions

With patch-based representation introduced in Sec. 5.2, the global Lipschitz condition (Eqn. 6.2)
is replaced with a patch-wise relaxed Lipschitz condition between the image content Ip(Rj0) and
the dominant parameters p(Sj) of that patch. Recall that Rj0 is the region of template for j-th
patch and Sj is the dominant subset of landmarks in j-th patch.

Assumption 6.1.1 (Relaxed Lipschitz Condition for Patch j) For patch j with scale rj and

pull-back error ηj , there exists 4-tuples (αj, γj, Aj,Γj) with 0 < αj ≤ γj < 1 and Aj + ηj < Γj

so that for any p1 and p2 with ||p1||∞ ≤ rj , ||p2||∞ ≤ rj , we have:

∆p ≤ αjrj =⇒ ∆I ≤ Ajrj (6.3)

∆p ≥ γjrj =⇒ ∆I ≥ Γjrj (6.4)

for ∆p ≡ ||p1(Sj)− p2(Sj)||∞ and ∆I ≡ ||Ip1(Rj0)− Ip2(Rj0)||.

Note that if (αj, γj) satisfies Eqn. 6.3 and Eqn. 6.4, then γj could be larger without violating
the conditions (note Aj and Γj could be different). Thus, given αj we choose the minimal
γj = γ(αj) that meets the condition (Fig. 6.1(b)).

Different from the Lipschitz conditions (Eqn. 6.2), one important aspect of Eqn. 6.3 and
Eqn. 6.4 is that ∆I and ∆p are only correlated up to the scale of rj . This allows the conditions
to account for the aperture problem, i.e., when the displacements are large, the parameters on
the dominant subset Sj are no longer correlated with the patch content I(Rj0). The range rj can
be regarded as the acceptance range for the patch. As a result, the local over-parameterization
enables us to consider only a subset Sj of deformations.

The relaxed conditions also account for the noisy correlation case, in which two slightly
different parameters share the same image appearance, or the same parameters gives slightly dif-
ferent image appearance. In both situations, the pair (αj, γj) is still well-behaved but L2/L1 →
+∞.
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Figure 6.1: Relaxed Lipschitz Condition (Eqn. 6.3 and Eqn. 6.4). (a) There are four constants
(α, γ, A,Γ) capturing the correlations between ∆I and ∆p when ∆p is very small (≤ αjrj)
or very large (≥ γjrj). (b) Minimal γj without violating the condition. (c) For a monotonic
relationship between ∆I and ∆p, αj = γj ∈ [0, 1].

6.1.3 Empirically Estimation of Lipschitz Constants

The constants in the relaxed Lipschitz conditions (Eqn. 6.3 and Eqn. 6.4) can be empirically esti-
mated from a set of image differences {∆Im} and corresponding parameter differences {∆pm},
both can be computed from training samples (p(i), I(i)). Since γ,A,Γ is actually a function of α,
what we estimate is a set of plausible 4-tuples, and most importantly, the curve γ = γ(α). Note
that we omit subscript j here for clarity.

For M pairs of image/parameters differences {(∆pm,∆Im)}, a brute-force search computes
all plausible 4-tuples by enumerating all possible (α, γ) and find feasible ones. This takesO(M3)

operations. Here I propose Alg. 4 which only costs O(M logM).

Algorithm 4 Find Local Lipschitz Constants
1: INPUT Parameter distances {∆pm} with ∆pm ≤ ∆pm+1.
2: INPUT Image distances {∆Im}.
3: INPUT Scale r and noise η.
4: ∆I+

m = max1≤l≤m ∆Il, for i = 1 . . .M .
5: ∆I−m = mini≤l≤M ∆Il, for i = 1 . . .M .
6: for m = 1 to M do
7: Find minimal l∗ = l∗(m) so that ∆I−l∗ > ∆I+

m + 2η.
8: if m ≤ l∗ then
9: Store the 4-tuples (α, γ, A,Γ) = (∆pm,∆pl∗ ,∆I

+
m,∆I

−
l∗ )/r.

10: end if
11: end for

To analyze Alg. 4, we make the following definitions:
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Definition 6.1.2 (Allowable set of A and Γ) Given α, define the allowable set Ã(α) as:

Ã(α) = {A : ∀m ∆pm ≤ α =⇒ ∆Im ≤ A} (6.5)

Naturally we have Ã(α′) ⊂ Ã(α) for α′ > α. Similarly, given γ, define the allowable set Γ̃(γ)

as:

Γ̃(γ) = {Γ : ∀m ∆pm ≥ γ =⇒ ∆Im ≥ Γ} (6.6)

and Γ̃(γ′) ⊂ Γ̃(γ) for γ′ < γ.

Lemma 6.1.3 (Properties of ∆I+ and ∆I−) The two arrays constructed in Alg. 4 satisfy:

∆I+
m = min Ã(∆pm) (6.7)

∆I−m = max Γ̃(∆pm) (6.8)

Moreover, ∆I+
m is ascending while ∆I−m is descending with respect to 1 ≤ m ≤M .

Proof (a): First we show ∆I+
m ∈ Ã(∆pm). Since the list {∆pm} was ordered, for any ∆pl ≤

∆pm, , we have l ≤ m. By definition of ∆I+
m, we have ∆Il ≤ ∆I+

m. Thus ∆I+
m ∈ Ã(∆pm).

(b): Then we show for anyA ∈ Ã(∆pm), ∆I+
m ≤ A. For any 1 ≤ l ≤ m, since ∆pl ≤ ∆pm,

by the definition of A, we have ∆Il ≤ A, and thus ∆I+
m = max1≤l≤m ∆Il ≤ A.

Therefore, ∆I+
m = min Ã(∆pm). Similarly we can prove ∆I−m = max Γ̃(∆pm).

Theorem 6.1.4 For each α = ∆pm, Algorithm 4 without the check α ≤ γ always gives the

globally optimal solution to the following linear programming:

min γ (6.9)

s.t. ∆Im ≤ A ∀∆pm ≤ α (or A ∈ Ã(α)) (6.10)

∆Im ≥ Γ ∀∆pm ≥ γ (or Γ ∈ Γ̃(γ)) (6.11)

A+ 2η < Γ (6.12)

which has at least one feasible solution (A→ +∞, γ → −∞,Γ→ −∞) for any α.

Proof Since there are M data points, we can discretize the values of α and γ into M possible
values without changing the property of solution.

(a) First we prove every solution given by Alg. 4 (without the final check) is a feasible
solution to the optimization (Eqn. 6.9). Indeed, for any α = ∆pm, according to Lemma 6.1.3,
A = ∆I+

m ∈ Ã(α), γ = ∆pl∗ , and Γ = ∆I−l∗ ∈ Γ̃(γ) and thus Eqn. 6.10 and Eqn. 6.11 are
satisfied. From the construction of Alg. 4, A + 2η < Γ. Thus, the Algorithm 4 gives a feasible
solution to Eqn. 6.9.
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(b) Then we prove Alg. 4 (without the final check) gives the optimal solution. If there exists
l′ < l∗ so that γ′ = ∆pl′ < ∆pl∗ = γ is part of a better solution (α, γ′, A′,Γ′), then Γ̃(γ′) ⊂
Γ̃(γ). This means

A′ + 2η < Γ′ ≤ ∆I−l′ = max Γ̃(γ′) ≤ max Γ̃(γ) = ∆I−l∗ (6.13)

On the other hand, A = ∆I+
m = min Ã(α) ≤ A′ ∈ Ã(α). Then, there are two cases:

• ∆I+
m + 2η < ∆I−l′ < ∆I−l∗ . This is not possible since the algorithm already find the

minimal l∗.
• ∆I+

m + 2η < ∆I−l′ = ∆I−l∗ . Then according to the algorithm, l′ = l∗.

which is a contradiction.

From Theorem 6.1.4, it is thus easy to check that the complete Algorithm 4 (with the check
α ≤ γ) gives the optimal pair (α, γ) that satisfies the Relaxed Lipschitz Conditions (Eqn. 6.3 and
Eqn. 6.4).

6.2 Guaranteed Prediction using Nearest Neighbor

Now let us study how the relaxed Lipschitz conditions help Nearest Neighbor prediction. We
wish to know how well j-th patch can predict the deformation p(Sj) within its acceptance range
rj (i.e., ||p||∞ ≤ rj). For large deformation out of the acceptance range, from relaxed Lipschitz
conditions, nothing can be guaranteed and Nearest Neighbor prediction may not work.

Without any training samples, we can trivially set the prediction p̂(Sj) = 0 and get a worst-
case guaranteed prediction error of rj . Now the problem is: if we want to obtain a slightly better
prediction, how many training samples do we need?

Theorem 6.2.1 gives the answer. It shows that if the relaxed Lipschitz condition (Eqn. 6.3
and Eqn. 6.4) holds, then a Nearest Neighbor prediction using 1/αj samples per dimension will
always reduce the error by a factor of γj < 1:

Theorem 6.2.1 (Guaranteed Nearest Neighbor for Patch j) Suppose we have an image I so

that it is close to a deformed image on the region Rj0:

||I(Rj0)− Ip(Rj0)|| ≤ ηjrj (6.14)

for some p with ||p||∞ ≤ rj , then with

Nj = min

(
cSS

⌈
1

αj

⌉d
,

⌈
1

αj

⌉2|Sj |
)

(6.15)
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number of samples properly distributed in the hypercube [−r, r]2|Sj |, we can compute a prediction

p̂(Sj) so that

||p̂(Sj)− p(Sj)|| ≤ γjrj (6.16)

using Nearest Neighbor in the region Rj with image metric.

Proof Since ||p||∞ ≤ rj , by definition we have ||p(Sj)||∞ ≤ rj and similarly ||q(Sj)||∞ ≤ rj .
Then by applying Thm. 13.1.2 and Thm. 13.2.2 with α = αj , if the number of samples needed
follows 6.15, then there exists a data sample q so that its slicing q(Sj) satisfies:

||p(Sj)− q(Sj)||∞ ≤ αjrj (6.17)

For k /∈ Sj , the value of q(k) is not important as long ||q||∞ ≤ rj . This is because by assump-
tion, the relaxed Lipschitz conditions still holds no matter how q(Sj) is extended to the entire
landmark set.

Space  of  	
training  samples	

Ip(Rj0)!

I(Rj0)!

Inn(Rj0)!

Iq(Rj0)!
≤  Aj  rj	

≤  (Aj  +  ηj)rj	≤  ηjrj	

Space  of  	
training  samples	

Ip(Rj0)!

I(Rj0)!

Inn(Rj0)!

Iq(Rj0)!
≤  (Aj  +  2ηj)rj	

Figure 6.2: Illustration for proof of Guaranteed Nearest Neighbor.

Fig. 6.2 shows the relationship for different quantities involved in the proof. Consider the
patch Ip(Rj0), using Eqn. 6.3 and we have:

||Ip(Rj0)− Iq(Rj0)|| ≤ Ajrj (6.18)

Thus we have for the input image I:

||I(Rj0)− Iq(Rj0)|| ≤ ||I(Rj0)− Ip(Rj0)||+ ||Ip(Rj0)− Iq(Rj0)|| ≤ (Aj + ηj)rj (6.19)

On the other hand, since Inn(Rj0) is the Nearest Neighbor image to I , its distance to I can only
be smaller:

||I(Rj0)− Inn(Rj0)|| ≤ ||I(Rj0)− Iq(Rj0)|| ≤ (Aj + ηj)rj (6.20)
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Figure 6.3: Work flow of our hierarchical algorithm for deformation estimation. On Layer 1,
a global prediction is made and the estimation is updated. On Layer 2, local deformation is
estimated and aggregated. The procedure repeats until the last layer.

Thus we have:

||Ip(Rj0)− Inn(Rj0)|| ≤ ||Ip(Rj0)− I(Rj0)||+ ||I(Rj0)− Inn(Rj0)|| ≤ (Aj + 2ηj)rj (6.21)

Now we want to prove ||p(Sj)− qnn(Sj)|| ≤ γjrj . If not, then from Eqn. 6.21 we have:

||Ip(Rj0)− Inn(Rj0)|| ≥ Γjrj > (Aj + 2ηj)rj (6.22)

which from Eqn. 6.4 is a contradiction. Thus we have

||p(Sj)− qnn(Sj)||∞ ≤ γjrj (6.23)

Thus, just setting the prediction p̂(Sj) = qnn(Sj) suffices.

From Theorem 6.2.1, now both αj and γj have their physical meanings: αj is the inverse of
sample complexity per dimension, while γj is the inverse of prediction accuracy. Ideally we want
αj to be large for lower sample complexity, and γj to be small for higher accuracy. However, the
constraint αj ≤ γj means there is a trade-off. In Sec. 6.4, we show that like L2/L1 in Eqn. 3.22,
this trade-off reflects the difficulty level of images for deformation prediction.

6.3 Construction of Hierarchical Structure

According to Theorem 6.2.1, different image patches show different characteristics in their pre-
diction guarantees: patches with large rj can deal with large deformation due to its larger accep-
tance range, but have low prediction precision, while patches with small rj only deals with small
deformation but enjoys high prediction precision. Therefore, in order to estimate large defor-
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mation with high precision, a natural way is to build a coarse-to-fine hierarchy of predictions as
follows: the coarse layer (large patches) reduces the prediction residue by a certain extent so that
it is within the acceptance range of the fine layer (small patches), where the prediction is refined.

From this argument, we construct the hierarchical structure according to Sec. 5.4. Recall for
j-th patch, t = t(j) is the index of its layer. By construction, scale of patches within the same
layer t is fixed and denoted as rt. In this top-down hierarchical predictions, the shrinking factor
rt+1/rt is set to be

γ̄ = max
j
γj < 1 (6.24)

i.e., rt+1 = γ̄rt.

Algorithm 5 Hierarchical Deformation Estimation.
1: INPUT Training samples for j-th patch: Trj ≡ {p(i), I(i)}.
2: INPUT Test image Itest with unknown parameters p.
3: Set an initial estimation p̂0 = 0.
4: for t = 1 to T do
5: Set the current image I t = H(Itest, p̂

t−1).
6: for j ∈ [t] do
7: Find the Nearest Neighbor i∗ for patch I(Rj0):

i∗ = arg min
i∈Trj

||I t(Rj0)− I(i)(Rj0)||

8: Set the estimation p̃j(Sj) = p(i∗)(Sj).
9: end for

10: For each landmark k, take average predictions from all the overlapping patches S[k] =
{j : k ∈ Sj, j ∈ [t]}:

p̃(k) = meanj∈S[k]p̃j(k)

11: Update: p̂t = p̂t−1 + p̃.
12: end for
13: Return final predictions p̂ for all landmarks.

Fig. 6.3 and Alg. 5 illustrate the algorithm that estimates the unknown parameter p given the
test image Itest. For the first iteration, the test image Itest is directly compared with the training
samples generated from the entire image with scale r1 to obtain the Nearest Neighbor prediction
p̂1. Then for the second iteration, we have a slightly less distorted image I2 = H(Itest, p̂

1) =

Itest(W (x, p̂1)), from which we estimate p − p̂1. Since ||p − p̂1||∞ is smaller than ||p||∞, its
predictions can be localized to smaller patches. Then this procedure is iterated until the lowest
level is reached.
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Similar to Data-driven Descent, this algorithm will converge to the globally optimal solution,
as shown in Theorem 6.3.1. This is achieved by reducing the residue by a factor of γ̄ in each iter-
ation. It turns out that the number of samples needed for layer t goes down double-exponentially

with respect to t. This is because if we follow the hierarchy from large patches to small patches,
the degrees of freedom dj of patches stays the same until dj ≈ d, and then goes down expo-
nentially (by γ̄2) since the number of landmarks within each patch goes down exponentially (See
Assumption. 5.2.1). As a result, the required number of samples isO(Cd

1 +C2 log 1/ε), as shown
in Theorem 6.3.2.

Theorem 6.3.1 (The Global Convergence Theorem) If ||p||∞ ≤ r1, then the prediction p̂t sat-

isfies:

||p̂t − p||∞ ≤ γ̄tr1 (6.25)

As a result, the final prediction p̂T satisfies:

||p̂T − p||∞ ≤ γ̄T r1 → 0 (6.26)

for sufficiently deep structure T → +∞.

Proof First from the proof of Thm. 6.2.1, we can see the prediction p̃j given by j-th patch
satisfies ||p̃j||∞ ≤ rt for j ∈ [t], since the prediction is picked from a hypercube [−rt, rt]2|Sj |.
Then, for the overall prediction p̂t of any t, we have:

||p̂t||∞ = ||
t−1∑
l=1

p̃l||∞ ≤
t−1∑
l=1

||p̃l||∞ ≤
t−1∑
l=1

rl ≤
+∞∑
l=1

rl ≤
r1

1− γ̄ (6.27)

Then we prove the main result by induction. Suppose after layer t is processed, the residue
δpt ≡ p− p̂t satisfies:

||δpt||∞ ≤ rt+1 (6.28)

This is trivially true for t = 0 by the premise ||p||∞ ≤ r1 and initialization of the algorithm
p̂0 = 0. Now suppose Eqn. 6.28 is correct for t− 1, then:

• 1. By local pull-back inequality (Eqn. 5.3.1) and the bound of current estimation p̂t

(Eqn. 6.27), we have:

||I t(Rj0)− Iδpt−1(Rj0)|| = ||H(Itest, p̂
t−1)(Rj0)− Iδpt−1|| (6.29)

= ||Itest(Rj(p̂
t−1))− Iδpt−1|| ≤ ηjrt (6.30)

• 2. Since Eqn. 6.30 together with the inductive hypothesis ||δpt−1||∞ ≤ rt satisfies the
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premise of Thm. 6.2.1, a prediction p̃j(Sj) from j-th patch yields:

||p̃j(Sj)− δpt−1(Sj)||∞ ≤ γjrt (6.31)

• 3. Eqn. 6.31 means for every landmark k:

||p̃j(k)− δpt−1(k)||∞ ≤ γjrt ∀k ∈ Sj (6.32)

Then for every landmark k, the averaged prediction p̃(k) over overlapping patch set S[k] =

{j : j ∈ [t], k ∈ Sj} can also be bounded:

||p̃(k)− δpt−1(k)|| =

∥∥∥∥∥∥ 1

#S[k]

∑
j∈S[k]

p̂j(k)− δpt−1(k)

∥∥∥∥∥∥ (6.33)

≤ 1

#S[k]

∑
j∈S[k]

||p̂j(k)− δpt−1(k)||∞ (6.34)

≤ 1

#S[k]

∑
j∈S[k]

γjrt ≤ γ̄rt (6.35)

• 4. Finally, the residue δpt after adding prediction p̃ of layer t satisfy:

||δpt|| = ||δpt−1 − p̃|| ≤ γ̄rt = rt+1 = γ̄tr1 (6.36)

Theorem 6.3.2 (The Number of Samples Needed) The total number N of samples needed is

bounded by:

N ≤ C3C
d
1 + C2 log1/γ̄ 1/ε (6.37)

where C1 = 1/minj αj , C2 = 21/(1−γ̄2) and C3 = 2 + cSS(d1
2

log1/γ̄ 2K/de+ 1).

Proof We divide our analysis into two cases: d = 2K and d < 2K, where K is the number of
landmarks. d > 2K is not possible.

Case 1: d = 2K

First let us consider the case that the intrinsic dimensionality of deformation field d is just 2K.
Then the root dimensionality d1 = 2K (twice the number of landmarks). By Assumption 5.2.1,
the dimensionality dt for layer t is:

dt = βr2
t =

d1

r2
1

r2
t = γ̄2t−2d1 (6.38)

Any patch j ∈ [t] has the same degrees of freedom since by Assumption 5.2.1, dj only depends
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on rj , which is constant over layer t.

For any patch j ∈ [t], we use at most Nj training samples:

Nj ≤
(

1

αj

)dt
(6.39)

to ensure the contracting factor is indeed at least γj ≤ γ̄. Note for patch j, we only need the
content within the region Rj0 as the training samples. Therefore, training samples of different
patches in this layer can be stitched together, yielding samples that cover the entire image. For
this reason, the number Nt of training samples required for the layer t is:

Nt ≤ arg max
j∈[t]

Nj ≤ Cdt
1 = C γ̄2t−2d1

1 (6.40)

for C1 = 1/minj αj . Denote nt = C γ̄2t−2d1

1 . Then we have:

N ≤
T∑
t=1

Nt ≤
T∑
t=1

nt (6.41)

To bound this, just cut the summation into half. Given l > 1, set T0 so that

nT0

nT0+1

= n1−γ̄2

T0
≥ l,

nT0+1

nT0+2

= n1−γ̄2

T0+1 ≤ l (6.42)

Thus we have
T∑
t=1

nt =

T0∑
t=1

nt +
T∑

t=T0+1

nt (6.43)

The first summation is bounded by a geometric series. Thus we have

T0∑
t=1

nt ≤ Cd1
1

T0∑
t=1

(
1

l

)t−1

≤ Cd1
1

1− 1/l
=

l

l − 1
Cd1

1 (6.44)

On the other hand, each item of the second summation is less than l1/(1−γ̄2). Thus we have:

T∑
t=T0+1

nt ≤ l1/(1−γ̄
2)T (6.45)

Combining the two, we then have:

N ≤ l

l − 1
Cd1

1 + l
1

1−γ̄2 T (6.46)
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for T = dlog1/γ̄ 1/εe. Note this bound holds for any l, e.g. 2. In this case, we have

N ≤ 2Cd1
1 + C2T (6.47)

for C2 = 2
1

1−γ̄2 .

Case 2: d < 2K

In this case, setting d1 = 2K, finding T1 so that dT1 ≥ d but dT1+1 < d in Eqn. 6.38, yielding:

T1 =

⌈
1

2
log1/γ̄ 2K/d

⌉
+ 1 (6.48)

Then, by Assumption 5.2.1, from layer 1 to layer T1, their dimensionality is at most d. For any
layer between 1 and T1, Nt is bounded by a constant number:

Nt ≤ cSSC
d
1 (6.49)

The analysis of the layers from T1 to T follow case 1, except that we have d as the starting
dimension rather than 2K. Thus, from Eqn. 6.47, the total number of samples needed is:

N ≤ (T1cSS + 2)Cd
1 + C2T (6.50)

6.4 Empirical Upper Bounds For Images

Using the relaxed Lipschitz condition (Eqn. 6.3 and Eqn. 6.4), we are able to predict which
patch are hard and which are easy for deformation estimation, by analyzing the monotonous
curve γ = γ(α). For this, we set the contraction factor γ = 0.95 and compute the largest
α0.95 = γ−1(0.95), whose inverse gives the lowest sample complexity per dimension.

To empirically estimate the curve γ = γ(α), we randomly generate 1000 pairs of (p, Ip)

and compute M = 499500 pairs of image differences {∆Im} and corresponding parameter
differences {∆pm} from a template image with 2D translation and in-plane rotation up to ±π/8
(d = 3 dimensions). Then Alg. 4 is used to efficiently estimate the curve in O(M logM).

Fig. 6.4 shows sample complexity per dimension (1/α0.95) for exemplar images. Note that
images with a salient object and uniform background only need a few samples per dimension,
while images with repetitive patterns require more samples.

According to Theorem 6.2.1, for easy images, 1/α0.95 ≈ 5, and for deformation that contains
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[N1=3, N2=24] [N1=4, N2=16] [N1=5,N2=24] [N1=5, N2=19] [N1=5, N2=28] [N1=6, N2=24] [N1=6, N2=24]

[N1=16, N2=30] [N1=15, N2=24] [N1=14, N2=41] [N1=14, N2=40] [N1=13, N2=41] [N1=13, N2=45] [N1=12, N2=40]

(a) Easy Images for deformation estimation.      N1 =  #sample per dim             in our method              N2 = #sample per dim                   given by [Tian and Narasimhan, IJCV 2012]

(b) Hard Images for deformation estimation.  

�1/α� �L2/γL1�

Figure 6.4: Exemplar images and the theoretical bounds for the number of samples needed per
dimension. For each bracket, the first number is our bound (given by 1/α0.95), while the second
number from Data-Driven Descent (given by L2/γL1 with γ = 0.95). Top Row: Images with
a salient object and clean background require only a few samples per dimension. Bottom Row:
Images with repetitive patterns require more samples per dimension. In both cases, our bound is
smaller than that given by Data-Driven Descent.

only translation and rotation, k = 4 and c = 2 +
√

2 (See Sec. 13.2) and the number of samples
needed is (5 · (2 +

√
2)4 = 84926, while for hard images, 1/α0.95 ≈ 12 and the number of

samples needed is (12 · (2 +
√

2))4 = 2817654. Although this number may be more than
practically necessary, it gives a sense of difficulty levels of images. In contrast, the number of
samples needed (L2/γL1) per dimension suggested in Data-driven Descent gives a much looser
bound.

6.5 Experiments on Synthetic Data

We now show our algorithm works well for synthetic data. For all the experiments, our approach
adopts a hierarchical structure using a grid of 256 landmarks with γ̄ = 0.7 and T = 8 layers.
We use Thin-Plate Spline [10] as the bases function with proper normalization. While our theory
gives an upper bound on the sample complexity, practically we found 350 training samples over
all layers suffice for good performance.

6.5.1 Convergence Behavior

We artificially distorted 100 images with a 20-dimensional global warping field specified in
Eqn. 3.5. For each image, its 10 distorted versions are generated with random parameters, which
are estimated using Data-driven Descent and using Top-Down Hierarchical Prediction.
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Figure 6.5: Performance of the proposed algorithm. Left: Performance comparison with Data-
Driven Descent. Accuracy of Top-Down Prediction improves much faster than Data-Driven
Descent with the same number of samples. To obtain the same level of accuracy, Top-Down
Hierarchy needs 400 samples, while Data-Driven Descent requires 10000 samples or more. Our
approach also has lower variance in performance. Right: Convergence behavior of our approach
with different number of training samples.

Fig. 6.5 shows the performance comparison. Our algorithm obtains much better performance
and lower variance compared to TN with the same number of training samples. Note that the
strong drop in error shows that our method achieves very high accuracy by adding very few
samples once it starts to work. This coincides with the theoretical analysis, which says the
number of training samples needed per layer decays doubly exponentially with more layers.

6.5.2 Deformation Estimation on Repetitive Patterns

We further test our approach on synthetic data containing distorted repetitive patterns, and com-
pare it with previous methods. From an undistorted template (240-by-240), we generate a dataset
of 200 distorted images, each with labeled 49 points. The deformation field is created by random
Gaussian noise without temporal continuity.

The overall degree of freedom for this dataset is very high (50 dimensions are needed to
achieve < 1 pixel reconstruction error). It is in general impossible to have sufficient number of
samples for global optimality conditions to be satisfied. However, practically our method still
works well.

We compare our approach to the following previous methods: Lucas-Kanade (LK) [6], Data-
driven Descent (TN), Free-form registration (FF) [69], Explicit Shape Regression (ESR) [14]
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LK TN ESR FF SR Ours
RMS 14.79 6.44 8.98 7.29 98.94 5.63

sec/frame 11 77 0.012 35 1.25 0.10

Table 6.1: Performance comparison of different approaches, including Lucas-Kanade (LK) [6],
Data-driven Descent (TN) (Chapter 4), Free-form registration (FF) [69], Explicit Shape Regres-
sion [14] and SIFT matching with outlier removal using RANSAC (SR) [53]. Ours is the best
performer and second best in time cost per frame.

#Training 1 10 20 50 100 300
ESR 8.98 8.86 7.88 5.90 4.24 2.75
Ours 5.63 5.61 5.35 5.11 4.78 4.32

Table 6.2: Performance between our approach and ESR [14] with more training samples. ESR
requires more training samples to work well.

and SIFT matching with outlier removal using RANSAC (SR) [53]. LK and TN use a local
parametric deformation model. LK uses local affine bases of size 100-by-100, and TN uses
a 20-dimensional smooth bases of size 57-by-40 (See Sec. 4.6.1). LK, FF and TN compute
dense deformations and Top-Down Hierarchy outputs 256 predicted landmarks, from which 49

landmark locations are interpolated. The KLT tracker [83] requires temporal information and
will be compared in the real video sequence.

For one image, the RMS error is computed between the estimated landmark locations p̂ and

ground truth locations p as RMS =
√

1
K

∑K
i=1 ||p(i)− p̂(i)||2. For multiple images, averaged

RMS is reported.

Table 6.1 compares the performance. Due to repetitive patterns, previous approaches fail
to estimate the landmarks correctly. SIFT matching fails completely. The prediction of ESR
is restricted to be on the linear shape subspace spanned by the training samples. Thus, it is
insufficient to use the template to capture the subspace of a complex deformation field. LK and
FF are stuck in local maxima despite their coarse-to-fine implementations. Our approach obtains
the best performance. Fig. 6.6 shows the progression of our algorithm. In terms of speed, our
approach is second only to ESR, which uses a fast boosting framework.

Influence of multiple layers. It is interesting to see how the performance changes if we
switch off the first L layers of predictors. As shown in Table 6.3, the first two layers have less
contribution on the performance than the rest of the layers. On the other hand, the lower 6 layers
indeed help the performance. Fig. 6.7 demonstrates how prediction from coarse layers (large
patch) help the lower layer (small patch) find correct correspondences in repetitive patterns,
justifying the hierarchy.
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10.934074 9.694556 6.870912 4.065068 2.555294

10.830096 8.749503 6.417697 4.283149 2.577389

12.664164 9.052568 7.401009 5.070467 3.802439

8.968721 12.248940 5.515930 3.479620 2.133142

Test Image Initialization Iteration 1 Iteration 3 Iteration 5 Final Result

9.700289 8.678155 7.584708 4.101575 2.587239

11.256226 10.846395 7.610691 5.212512 3.858836

9.895126 9.452231 6.426392 4.245674 3.021973

Figure 6.6: Demonstration of the iterative procedure of our algorithm. Starting from initial-
ization, the algorithm applies predictors of different layers to estimate the landmark locations.
Numbers on top show RMS errors.
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10.934074 2.555294 2.541940 8.269434 8.991640 10.235116

10.830096 2.577389 2.914108 8.719922 9.245572 10.089482

12.664164 3.802439 7.211531 9.829800 11.809833 12.291305

8.968721 2.133142 2.024983 4.857615 6.928122 8.172354

9.700289 2.587239 3.420518 7.040868 8.798978 9.206888

8.418094 2.065650 2.121358 4.756471 6.454676 7.737799

11.256226 3.858836 5.117804 8.623931 9.622261 10.743973

10.509438 3.392445 3.120066 8.966320 9.366427 10.004485

Test Image With all layers Use layer 3-7 Use layer 5-7 Use layer 6-7 Use layer 7

Figure 6.7: Performance changes if the first L layers are switched off. When more layers are
switched off, the algorithm is unable to identify global deformation and performs essentially
the same as local template matching at each landmark. Layer 3-4 is critical for getting a good
estimation of the landmarks on the synthetic data.
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L 0 1 2 3 4 5 6
RMS 5.63 5.20 5.14 5.83 6.72 7.95 8.74

Table 6.3: Performance on synthetic data if the first L layer of predictors are switched off, show-
ing the bottom layers play a critical role for performance.

6.6 Real Experiments

We also apply our framework to real world scenarios such as water distortion, cloth deformation
and registration of medical images. In Fig. 6.8, contour tracking is achieved by interpolating
contour points from frame correspondences, while the contour of the first frame is manually
labeled. In Fig. 6.9, tracked mesh is shown.

The three water distortion sequences (Row 1-2 in Fig. 6.8, Row 1 in Fig. 6.9) and one cloth
sequence (Row 3 in Fig. 6.8) are in Chapter 4). Two cloth sequences (Row 2-3 in Fig. 6.9) are
from [95] and [58]. The medical sequence of cardiac magnetic resonance images (4th row in
Fig. 6.8) is from [121]. We captured the cloth sequence in the 5th row of Fig. 6.8.

For the sequences on the 4th row of Fig. 6.8 and the 1st row of Fig. 6.9, we use temporal
information by adding training samples generated from perturbing the final estimation of the
previous frame. This slows down the processing to 0.3-0.5fps, yet is still faster than previous
approaches. For other sequences, our algorithm runs at around 3-4 fps.

Note that our method successfully estimates the deformations. In comparison, SIFT+RANSAC
only obtains a sparse set of distinctive matches, not enough for estimating a nonrigid deforma-
tion (even if we are using Thin-Plate Spline). TN can capture detailed local deformations but not
global shifts of the cloth without modeling the relationship between local patches. KLT trackers
lose the target quickly and localize contour inaccurately.

We also quantitatively measure the landmark localization error using the densely labeled
dataset provided in [100], which contains 30 labeled frames, each with 232 landmarks. In terms
of RMS, LK gives 5.20, FF gives 3.93, TN gives 2.51 while our approach gives 3.29. Our
framework is only second to TN, which is much slower.

We have tested our algorithm on existing datasets of deformable objects proposed by [72, 73].
Although no groundtruth is available, our performance is close to their published results (e.g.
4.10 mean pixel distance difference in cushion video [72] and 4.43 in bed-sheet video [73]). All
video sequences are 404-by-504.
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Sample Frame Our approach TN KLT SIFT+RANSACTemplate

Figure 6.8: Example contour localization results given by our approach, TN [100], KLT [83], and
SIFT matching with RANSAC [53]. Each row is a video sequence, two from underwater imag-
ing, two from cloth deformation and the final one is from medical imaging. For each dataset, one
sample frame is shown. The contours are drawn manually for the template image (1st column),
and are transferred to every video frame after the correspondence was found. Our approach is
stable and better than other approaches. (This figure is best viewed in color)
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Sample Frame Our approach TN KLT FF SIFT+RANSAC

Figure 6.9: Example dense correspondence results given by our approach, TN, KLT, FF and
SIFT matching with RANSAC. Each row is a video, two from cloth deformation and one from
underwater imaging. The mesh is a regular grid on the template.
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Chapter 7

Bottom-Up Hierarchical Prediction:
Breaking the Curse of Dimensionality

The Top-down Hierarchical Prediction proposed in Chapter 6 improves the sample complexity
from O(Cd log 1/ε) to O(Cd

1 +C2 log 1/ε), further decoupling the dimensionality d of deforma-
tion with the accuracy 1/ε.

However, the curse of dimensionality (Cd
1 ) still remains. The major reason is that in the

Data-driven Descent and the topmost layer of Top-down Hierarchical Prediction, a predictor is
required to take care of all the degrees of freedom (DoF), although the precision in each DoF can
be very rough. As a result, to obtain any guaranteed predictions with Nearest Neighbor on the
top-most layer, the exponential factor of Cd

1 is inevitable.

To avoid the exponential factor Cd
1 , a natural solution is to discard some degrees of freedom

on each layer when following the upstream of hierarchy. This is done by building invariant

representations that are insensitive to discarded degrees of freedom in a bottom-up manner. Then
the top-most layer only sees a few degrees of freedom and the computation is tractable.

Then the problem becomes how much DoFs should be discarded in each layer. Obviously,
discarding too many degrees of freedom is also a bad idea since the top levels would have insuffi-
cient information to decide on. The basic workflow for both Data-driven Descent and Top-down
Hierarchy is that the estimations given by the first few iterations (or the top levels), are guaran-
teed to be rough but correct, which can be used for further refinement. However, if the top levels
are fed with insufficient information, then such a guarantee cannot be made.

Therefore, we have to choose to discard some particular degrees of freedom, in this thesis
local deformation, so that the top layers are still able to make an unambiguous decision, in this
thesis to estimate the global deformation, while the computational burden is manageable. The
minimal requirement is: any decision made in the top level, when propagated downwards, should
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solve any unsettled ambiguities in the lower layers. This determines which degrees of freedom
should be discarded in each layer of the hierarchy, and which shall be kept and handed to the
higher layer.

Interestingly, it turns out that such an intuition can again be measured quantitatively by (a
variant of) relaxed Lipschitz conditions (Eqn. 6.3 and Eqn. 6.4). Since the representations are
computed in a bottom-up manner, it can be proven that if all the children satisfy the conditions,
so does their parents with different Lipschitz constants. By induction, the Lipschitz conditions
can be propagated upwards until the top-most level. Therefore, they only need to be assumed
true in the lowest level. Compared to the Top-Down case in which all patches are assumed to
satisfy the conditions, Bottom-Up Model assumes far less, not to mention the stricter one used
in Data-driven Descent Eqn. 3.22.

This chapter follows the thoughts and proposes Bottom-up Hierarchical Prediction for defor-
mation estimation. This algorithm is a two-pass procedure. First, from bottom to top, the image
evidence is transferred upwards to build invariant representations. Once the decision is made in
the top-most level, it is propagated back to the lower level to help resolve any local ambiguities.
As a result, the sample complexity is reduced to O((C/ε)d0) for d0 � d, essentially breaking the
curse of dimensionality.

7.1 Intuition

As usual, let us start with a story to explain the intuition. Imagine Robert was a Baron ruling
a land. When the land is only a few square kilometers living with only a handful number of
residents, our diligent Robert can handle all the daily affairs happening on the land by himself
(Fig. 7.1(a)). All residents are happy since their ruler knows them well, and Robert is happy
since he knows all details of the land, including how crops grow in each season, the amount
of livestock each resident has and even the color of houses. Knowing details enables Robert to
fulfill his duty, i.e., to make decision on specific laws, and report annual gross incomes of the
land to the king.

Time flies and Robert is now promoted to be Duke. He now governs a larger land with more
residents. The daily affairs now become much more overwhelming to him, even he sleeps only 4
hours a day, as shown in Fig. 7.1(b). One day he finally realizes that he cannot manage it in full
details. Thus, Robert asks some close friends, Edward, Terry and Peter to help him. All friends
now have a Baron title and rules one part of the land, and reports to Robert (See Fig. 7.1(c)).

Then problem arises. As a novice, Edward does not know what to report. Robert thus tells
him: “Easy, just report the annual gross income so that I can add up your numbers.” As for the de-
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(a)

(b)

(c)

Robert

Terry

Edward

Robert

Robert

Peter

Figure 7.1: The story of Robert ruling a land. (a) When the land is small, Robert, as a baron,
can take care of all the details of his land. (b) Robert now becomes a duke ruling a larger land.
The increased details overwhelm Robert even he works 20 hours a day. (c) Robert asked his
three friends, each taking care of part of his land. The friends report to him only the important
information and take care of the details by themselves.
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tails such as the color of the houses, his friends may not report it. Sometimes Terry cannot make
a decision due to lack of overview information, then Robert asks them to report any evidences to
him, let him decide the general principles, and send the principles back to help decision.

In this story, our diligent Robert used to be a Nearest Neighbor predictor that takes care
of every details for a prediction. But the overwhelming details of managing a land, i.e., the
increasing (exponential) complexity, is beyond his ability. Therefore, he uses a hierarchical
structure. Each friend discards details (e.g., the color of the houses), and only report supportive
information (e.g., annual income) that makes Robert’s decision unambiguous. Finally, Robert
gives them the general principles that help them decide affairs in their land, which is the top-down
propagation procedure.

7.2 Hierarchical Decomposition of Deformations

7.2.1 Principle of Lossy Decomposition

We follow Sec. 5.4 to build the hierarchical structure. In the Top-down Hierarchical Predictions,
the degrees of freedom of each vertex Vj is represented by the local parameters p(Sj), where Sj
is the subset of dominant landmarks. Since p(Sj) is a |Sj|-by-2 matrix, the possible number of
states of p(Sj), is small for small patches, but could be unmanageable for large ones.

To solve this problem, we need to reduce the number of states for p(Sj). Denote hj as the held

state and gj as the discarded state for vertex Vj . The state spaceHj contains all possible choices
of hj , while Gj contains all possible choices of gj . Conceptually, p(Sj) can be decomposed into
the following three components:

p(Sj) = hj︸︷︷︸
DoF held for upstream

⊗ gj︸︷︷︸
DoF discarded

⊗
⊗

k∈ch(j)

p(Sk)︸ ︷︷ ︸
DoF in children

(7.1)

Intuitively, hj is the coarse state of patch j that may be useful in the top-level prediction.
For example, where is the center location of the patch, how much it rotates and how it scales
compared to its counterpart in the template I0. hj only contains a few degrees of freedom. gj
is the state that is also coarse but is unrelated with the top-level decision and can be discarded.
Finally,

⊗
k∈ch(j) p(Sk) is the finer state that is encoded in the lower layers.

Mathematically, using our favorite deformation model (Eqn. 5.2):

W (x; p) = x +B(x)p (7.2)
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that may contain both global and local deformation, Eqn. 7.1 can be made more specific. As
shown in Fig. 7.2, the total degrees of freedom, or dimensionality in Eqn. 7.2, or the rank of
B(x) is around min(D, 2K), while D is the number of bases and K is the number of landmarks.
Note the bases may not be orthogonal and the intrinsic dimensionality d (which is precisely the
rank of B(x)) may be smaller than D. However, unless in very specific cases, min(D, 2K) can
be a good estimate of d.

min(D, 2K) is in general very large, and a simple nearest neighbor on this space is in-
tractable. However, if we only consider a local region Rj0 and its dominant landmarks Sj , the
rank of submatrix B(Rj0) within Rj0 is min(D, 2|Sj|) and is low. As a result, the deformation
within Rj0 can be handled (Fig. 7.2(a)). Note the deformation within Rj0 could be contributed
by both the global and local deformation. However, within this small region, their contribution
collapses.

For a parent j, its total DoF, aggregated from all of its children k ∈ ch(j), is definitely
larger (Fig. 7.2(b-c)). Without throwing any DoFs, the root vertex will again has DoF of size
min(D, 2K) and is not manageable. Therefore, the total DoF is decomposed into two compo-
nents, hj and gj . hj is the retained components that will help for high-level decision, in particular,
for determining the global components of deformation, while gj is the discarded components re-
lated to only local deformation (Fig. 7.2(d)). Note since the contributions from global and local
deformation are largely indistinguishable within the small region, most of the information gath-
ered from Rj0 may be related to high-level decision and the discarded components gj may be
“small”. However, when we follow the hierarchy to the top level, when supports of patches be-
come larger and larger, the more and more detailed information will be discarded. As a result,
for every patch of the entire hierarchy, its information to be processed is manageable.

7.2.2 Hierarchical Deformable Mixture Model (HDMM): A Concrete Ex-
ample

From the analysis of the previous section, there has to be a relationship in terms of states (h, g)

between a parent vertex Vj and its child Vk for k ∈ ch(j). Some intuitions might help in building
such a relationship between (hj, gj) and (hk, gk). For example, both the parent part and the child
parts are located nearby (i.e., uj and uk is close to each other), both are under 30 degree rotation
(i.e., The mixture type variables zj and zk are closely related), etc.

As a concrete example, we represent the somehow abstract held state hj as (uj, zj), where uj

is the 2D location of patch j and zj ∈ Zj is the type ID of the patch. The type variable zj accounts
for any variations that are not 2D translation, such as rotation, scaling, location deformation and
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#landmark

#basis

Global

Local

(a) DoF of Child k (b) DoF of Children

(c) DoF of Parent j (d) DoF of Parent j after reduction

hj

gj

hk

hk1

hk2

hk3

hk4

B(x)

Figure 7.2: Decomposition of bases B(x) into a bottom-up hierarchical model. Left: The bases
B(x) that encodes both global and local deformations. Each column of B(x) is a basis while
each row represents a pixel/landmark. Right: (a) a child vertex k that only covers a small subset
of landmarks and its DoF (illustrated by a green shaded area) is limited. (b) combining the
children together, their DoFs also accumulate. (c) The total DoF of a parent vertex j is the total
DoFs of all its children. (d) The parent vertex only keep important DoFs (hj) and discard details
gj .
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other appearance changes (e.g., open/close palm, upright/horizontal arm in human part model-
ing, occluded/unoccluded regions in cloth modeling). Statistically, zj models the appearance
variation of patch j as a appearance mixture.

Mathematically, we define the compatibility relation, denoted as (hj, gj) ∼ hk as follows:

Definition 7.2.1 We define (hj, gj) ∼ hk if and only if the following condition holds:

uk = uj + δujk(zj) + gjk (7.3)

zk ∈ ψ+
jk(zj) (7.4)

In Eqn. 7.3, there are two terms that need explanation. Firstly, δujk(·) is the relative shift

from parent j to child k indexed by parent type zj . Intuitively, for different type zj of j-th part,
the spatial arrangements of its children could be different. The discarded state gj is a |ch(j)|-by-2
matrix, with each row corresponding to a local displacement of a child. Intuitively, this is the
“error” between the predicted location from parent

ujk(zj) ≡ uj + δujk(zj)

to the actual location of child uk. Furthermore, we require such error to be bounded:

||gj||∞ = max
k∈ch(j)

||gjk||∞ ≤
ḡj
2

(7.5)

Second, Eqn. 7.4 is the compatibility term between parent type zj and child type zk. For
example, in human pose modeling, for part j being the entire arm and k being the lower arm,
if zj = upright, then zk cannot be horizontal. Therefore, given zj , there is a set ψ+

jk(zj) that
contains allowable zks. Note that from Eqn. 7.4, there could be multiple zks. Moreover, without
knowing gj (since it is discarded), we could not even recover the precise location uk of each
child k. This is a desirable property for downstream operation since from children to parent,
information loss is a must. As a dual operation to ψ+

jk(zj), we define ψ−j (zch(j)) that returns
compatible zj with all {zk}k∈ch(j):

ψ−j (zch(j)) =
⋂

k∈ch(j)

(ψ+
jk)
−1(zk) (7.6)

where (ψ+
jk)
−1(zk) returns allowable zjs for a given zk. For brevity, we use zk ∼ zj to show zk is

compatible with zj .

Conversely, if we know all the children’s held states hch(j) ≡ {hk}k∈ch(j), the state of their
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parent can be uniquely determined. Such a relationship is defined as follows:

[uj, zj] = arg min
uj ,zj∈ψ−j (zch(j))

||ujk(zj)− uk||2 (7.7)

gjk = uk − ujk(zj) (7.8)

7.2.3 Properties of HDMM

Distinctiveness of Types. Two types zj and z′j have to be distinct:

||δuj(zj)− δuj(z′j)|| = 0 =⇒ zj = z′j (7.9)

otherwise we can just remove duplicate types.

Metric for type variables. As discrete variables, type variables in general are not equipped
with distances. However, intuitively, a type that represents “30 degrees of rotation” is closer to a
type that represents “31 degrees of rotation”, compared to a type with 60 degrees of rotation. To
represent such a distance metric, for two types zj and z′j , we measure their distance with the help
of relative shifts δujk:

||δuj(zj)− δuj(z′j)|| ≡ max
k∈ch(j)

||δujk(zj)− δujk(z′j)||∞ (7.10)

We can prove Eqn. 7.10 is indeed a metric for type zj since it is nonnegative and symmetric, and
from Eqn. 7.9 it is zero if and only if zj = z′j . Finally, since

||δujk(zj)− δujk(z′′j )||∞ ≤ ||δujk(zj)− δujk(z′j)||∞ + ||δujk(z′j)− δujk(z′′j )||∞ (7.11)

for any k ∈ ch(j), we have

||δujk(zj)− δujk(z′′j )||∞ ≤ max
k∈ch(j)

||δujk(zj)− δujk(z′j)||∞ + max
k∈ch(j)

||δujk(z′j)− δujk(z′′j )||∞
(7.12)

and thus

||δuj(zj)− δuj(z′′j )|| = max
k∈ch(j)

||δujk(zj)− δujk(z′′j )||∞ (7.13)

≤ max
k∈ch(j)

||δujk(zj)− δujk(z′j)||∞ (7.14)

+ max
k∈ch(j)

||δujk(z′j)− δujk(z′′j )||∞ (7.15)

= ||δuj(zj)− δuj(z′j)||+ ||δuj(z′j)− δuj(z′′j )|| (7.16)
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Besides, for parent-child pair (j, k), we define the following monotonous increasing function
δū+

jk(·) and δū−jk(·):

δū−jk(λ) = max ||δuj(zj)− δuj(z′j)|| (7.17)

s.t. ||δuk(zk)− δuk(z′k)|| ≤ λ, zk ∈ ψ+
jk(zj), z

′
k ∈ ψ+

jk(z
′
j)

δū+
jk(λ) = max ||δuk(zk)− δuk(z′k)|| (7.18)

s.t. ||δuj(zj)− δuj(z′j)|| ≤ λ, zk ∈ ψ+
jk(zj), z

′
k ∈ ψ+

jk(z
′
j)

Intuitively, δū−jk(·) gives an upper bound on how large the variance of relative shifts of parent j
will be, if the child k change their types up to a limit 2λ. Similarly, δū+

jk(·) gives an upper bound
on how large the variance of child k will be, if the parent j changes its type up to a limit 2λ. Both
functions are monotonously increasing:

δū+
jk(λ1) ≤ δū+

jk(λ2), λ1 ≤ λ2 (7.19)

δū−jk(λ1) ≤ δū−jk(λ2), λ1 ≤ λ2 (7.20)

since the larger λ is, the loose the constraint is, and the higher the maximum value will be.
Therefore, the following mapping φ+

jk ≡ I + δū+
jk and φ−jk ≡ I + 2δū−jk:

φ+
jk(λ) ≡ λ+ δū+

jk(λ) (7.21)

φ−jk(λ) ≡ λ+ 2δū−jk(λ) (7.22)

always have an inverse.

7.2.4 The Expressive Power of HDMM

One interesting question is what kind of deformation can be represented by HDMM? It turns
out that the model is very expressive. As a specific example, consider the following deformation
field p(·) defined on a T -by-T regular grid lk = (xm, yn) (See Fig. 7.3):

Definition 7.2.2 (Locally Smooth Deformation Field (LS-DF)) A deformation field is locally

smooth if for any k1 and k2, we have:

||p(lk1)− p(lk2)||∞ ≤ cS||lk1 − lk2||∞ (7.23)

where lk are a set of regular grid points on a 2D plane. Without less of generality, for two grid
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lk = (xm, yn)

(x1, y2)

(x1, y1) (x2, y1)

T
Figure 7.3: Regular grid used to construct Hierarchical Deformable Mixture Model.

points lk1 = (xm1 , yn1) and lk2 = (xm2 , yn2), their distance is:

||lk1 − lk2 ||∞ = max(|m1 −m2|, |n1 − n2|) (7.24)

The degrees of freedom for LS-DF is proportional with respect to the diameter of lk. There-
fore, for grid points that cover a large range, to enumerate all possible such deformations is
intractable.

However, one can construct a HDMM that has the same expressive power as LS-DF, and yet
has a guaranteed solution with much lower computational complexity, which will be analyzed in
great details in the next sections. The construction of such HDMM is as follows:

Definition 7.2.3 (HDMM for LS-DF) We define a hierarchical structure with T layers. For any

vertex j, we have:

• |Zj| = 1. That is, there is no type variable.

• No relative shifts: δuj ≡ 0.

• ḡj = 2cS

In layer t, there are t2 vertices and each vertex Vj1,j2 (1 ≤ j1, j2 ≤ t) covers a sub-rectangle

of landmarks Sj1,j2:

S(j1,j2) = (xj1 , xj1+1, . . . , xj1+T−t)× (yj2 , yj2+1, . . . , yj2+T−t) (7.25)
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Note that |S(j1,j2)| = (T − t + 1)2. From {Sj}, we thus can construct the hierarchical structure

according to Sec. 5.4.

The resulting HDMM looks like Fig. 5.5.

Then we are going to show that LS-DF can be represented by this HDMM. We start from the
following lemma:

Lemma 7.2.4 (Properties of HDMM (Eqn. 7.2.3)) The followings are true:

• (a) The pairwise distance ||lk1 − lk2 ||∞ is on a discrete set {0, 1, . . . , T − 1}.
• (b) For layer t, for any lk1 , lk2 ∈ Sj1,j2 , we have

||lk1 − lk2||∞ ≤ T − t (7.26)

• (c) If ||lk1 − lk2 ||∞ = l, then there exists a path P = [k1, . . . , j, . . . , k2] that contains 2l+ 1

vertices on the hierarchical structure from vertex k1 to vertex k2. Here t(j) = T − l.

Proof Since lk is a regular grid of size T -by-T , (a) is true. From the construction of S(j1,j2), (b)
is true. Finally, for lk1 = (xm1 , yn1), lk2 = (xm2 , yn2), since:

||lk1 − lk2||∞ = max(|m1 −m2|, |n1 − n2|) = l (7.27)

at layer T − l there exists a vertex j with t(j) = T − l that covers both landmarks. From j to k1

there exists a sequence of parent-child pair that contains l vertices (excluding j). Similarly there
is a sequence of length l between j and k2. Connecting them together yields the final path P .

and a definition:

Definition 7.2.5 For any vertex (j1, j2), its grid point location is assigned to be:

l(j1,j2) = (xj1 , yj2) (7.28)

Then we show the relationship between LS-DF and HDMM constructed from Definition 7.2.3.

Theorem 7.2.6 (HDMM accepts LS-DF) If a deformation field defined on the regular grid lk

is LS-DF, then all the states (hj, gj) computed from Eqn. 7.7 and Eqn. 7.8 are valid:

||gj||∞ ≤
ḡj
2

(7.29)

Proof We first consider parent layer T−1 and child layer T . By Eqn. 7.26, for each parent vertex
j ∈ [T − 1], we have for any lk1 , lk2 ∈ Sj (or equivalently k1, k2 ∈ ch(j)), ||lk1 − lk2 ||∞ ≤ 1. By
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Eqn. 7.23, we thus have
||p(lk1)− p(lk2)||∞ ≤ cS (7.30)

Therefore, by setting uj = meank∈ch(j)p(lk), for any k, we have

||gjk||∞ = ||uj − p(lk)||∞ ≤ cS =
ḡj
2

(7.31)

since δuj ≡ 0. Therefore, ||gj||∞ ≤ ḡj/2. Furthermore, for two vertices (j1, j2)and(j′1, j
′
2) ∈

[T − 1], since they both have 4 children:

||u(j1,j2) − u(j′1,j
′
2)||∞ ≤ 1

4

1∑
m=0

1∑
n=0

||p((xj1+m, yj2+n))− p((xj′1+m, yj′2+n))|| (7.32)

≤ 1

4

1∑
m=0

1∑
n=0

cS||(xj1+m, yj2+n)− (xj′1+m, yj′2+n)|| (7.33)

=
1

4

1∑
m=0

1∑
n=0

cS max(|j1 +m− j′1 +m|, |j2 +m− j′2 +m|)(7.34)

= cS max(|j1 − j′1|, |j2 − j′2|) = cS||lj1,j2 − lj′1,j′2|| (7.35)

Therefore, {uj} is also a LF-DF with smoothness constant cS on grid points {lj}, and the grid
points satisfies Eqn. 7.24. We thus can apply the proof recursively and Eqn. 7.29 holds for any
layer.

Theorem 7.2.7 (HDMM produces LS-DF) Given any compatible state set {(hj, gj)} of HDMM,

the leaf node locations satisfy:

||uk1 − uk2||∞ ≤ 2cS||lk1 − lk2||∞ (7.36)

for any k1, k2 ∈ [T ]. This shows the leaf locations {uk} meet the definition of LS-DF with

smoothness coefficient 2cS .

Proof By Lemma 7.2.4, for ||uk1 − uk2||∞ = l, there exists a path P = [k1, . . . , j0, . . . , k2] that
contains 2l+1 vertices on the hierarchical structure from vertex k1 to vertex k2 and t(j0) = T−l.
For any parent-child pair (j, k), since δuj ≡ 0 and (hj, gj) ∼ hk, we have

||uj − uk||∞ = ||gjk||∞ ≤ ḡj/2 = cS (7.37)

Using triangle inequality l times, and we obtain ||uj0 − uk1 ||∞ ≤ lcS and ||uj0 − uk2||∞ ≤ lcS ,
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and thus:

||uk1 − uk2||∞ ≤ ||uj0 − uk1||∞ + ||uj0 − uk2||∞ ≤ 2cSl = 2cS||lk1 − lk2||∞ (7.38)

Note that Theorem 7.2.7 does not hold for tree structured hierarchy. Since any tree structure
will have two vertices k1 and k2 whose distance is 1 but whose path has length 2T − 1. As a
result, a deformation accepted by any tree-structured HDMM will not satisfy local smoothness
condition.

7.3 The Invariant Representation

For any held state hj ∈ Hj , the confidence map Ij = Ij(hj) tells the confidence that j-th patch
appears with the (rough) pose encoded by hj . In particular, for a binary map, Ij(hj) tells whether
a part with the given (rough) pose hj exists on the image.

Interestingly, the confidence map Ij can be used as a representation due to its invariant prop-
erty: Ij only depends on rough state hj rather than the complete state p(Sj). Therefore, if the
local deformation is changed slightly, p(Sj) will indeed change but not hj . This keeps Ij invari-
ant to local changes that play no roles in high-level decisions. Just like our metaphor, Ij is the
report sent from Duke’s friends that omits detailed affairs but only contains gross incomes.

In contrast, in Top-down Hierarchical Predictions (Chapter 6), representations in all patches
are just raw pixels, although in practice, some image blurring and downsampling may be added to
improve the Lipschitz constants. Although such a representation is simple, this brings about the
concentration of degrees of freedom on the top layers, since one need to handle every details of
every pixel of a large raw image, in order to achieve worst-case guarantees for Nearest Neighbor
predictors.

Then, how to compute the invariant representation Ij(·) for a patch j? Naively, Ij(·) can be
built directly from the raw image I , by enumerating all locations and poses of patch j. Once
a candidate pose is found through this exhaustive search, discard all details and only report the
rough pose in Ij . This is like how our ex-Baron, Robert, writes his report before he invites his
friends. Although the report contains concise information, the procedure of writing it requires
knowing all the details.

A more clever way is to write a report on reports, which is how our Duke does. He checks the
reports from his friends, finds critical parts, and integrates them to write his own version to the
King. Similarly, the representation Ij is computed from all its children’s representations Ich(j) ≡
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{Ik}k∈ch(j). Since each representation Ik already discards a lot of details, the computational
burden reduces to checking all the rough information contains in Ich(j) and discards those relative

details from j-th part’s point of view.

This yields a much lower computational cost. Throughout the algorithm, the total degrees of
freedom d0 of hj and gj will never exceed a manageable limit, and is much smaller than the ef-
fective degrees of freedom d of the entire deformation field. The final computational complexity
is only exponential to d0 � d, breaking the curse of dimensionality.

7.3.1 Computing Representations

Alg. 6 and Alg. 7 are the algorithms used to compute binary invariant representation Ij in a
bottom-up fashion. Alg. 6 is the ideal algorithm that leads to concise theoretical analysis. How-
ever, an implementation of this algorithm requires enumerating over infinite set Hj and Gj . In
practice, we propose its discrete version (Alg. 7) in which only sample points are enumerated.
To keep the same theoretical guarantees, an additional pooling procedure is introduced.

We list the key updating from child k to parent j in the continuous algorithm as follows:

Ik→j(hj, gj) = max
hk∼(hj ,gj)

Ik(hk) (Translation) (7.39)

Ĩj(hj, gj) =
∨

k∈ch(j)

Ik→j(hj, gj) (Aggregation) (7.40)

Ij(hj) = max
gj∈Gj

Ĩj(hj, gj) (Reduction) (7.41)

where the aggregation operator
∨

is simply the minimal operator min. Intuitively, Eqn. 7.39 col-
lects the information from each child vertex, Eqn. 7.40 aggregates the information and Eqn. 7.41
discards the details to form the representation for the parent vertex j. Fig. 7.4 shows the work-
flow.

In the discrete case, we simply replace ∼ with ∼ε (which will be introduced in Defini-
tion 7.3.5) and evaluate response maps (Ik), on a set of samples with a given density.

Both (upstream) algorithms look very similar to the message-passing procedure on a tree, in
which messages go from the leaves to their parents. However, as we shall see, our algorithm has
guarantees even in the presence of loopy hierarchy.

7.3.2 Lipschitz Conditions on Representations

It seems that these two algorithms are complicated. However, if the following assumptions hold,
then we can have very good theoretical properties for these two algorithms, which serves as the
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Ij(hj)

Ĩj(hj , gj)

Ik1(hk1) Ik2
(hk2

) Ik3
(hk3

)

Ik1→j(hj , gj) Ik2→j(hj , gj) Ik3→j(hj , gj)

Representations 
in Layer t

Representations 
in Layer t+1

Translation

Aggregation

Reduction

Figure 7.4: Building invariant representations. The parent j first translates the child representa-
tion Ik(hk) to its parental form Ik→j(hj, gj) using Eqn. 7.39, aggregates all information from its
children to obtain Ĩj(hj, gj) (Eqn. 7.40) and then discards details to obtain its own representation
Ij(hj) (Eqn. 7.41).

Algorithm 6 Computing Representations, Continuous Case
1: INPUT Raw image I .
2: OUTPUT Invariant representations {Ij}.
3: Compute response map for each landmarks {Ik}Kk=1 = InitRep(I).
4: for t = T downto 1 do
5: for Vertex j ∈ [t] do
6: for State hj = (uj, zj) ∈ Hj do
7: for Local Displacement gj ∈ Gj do
8: for Child k ∈ ch(j) do
9: Ik→j(hj, gj) = maxhk∼(hj ,gj) Ik(hk).

10: end for
11: end for
12: Let Ĩj(hj, gj) =

∨
k∈ch(j) Ik→j(hj, gj) where

∨
= min.

13: Set Ij(hj) = maxgj∈Gj Ĩj(hj, gj).
14: end for
15: end for
16: end for
17: RETURN {Ij}.
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Algorithm 7 Computing Representations, Discrete Case
1: INPUT Raw image I .
2: INPUT Samples (uij) ∈ Hj and gij ∈ Gsj with density parameters εhk and εgk defined in

Eqn. 7.81.
3: OUTPUT Invariant representations {Ij}.
4: Compute response map for each landmarks {Ik}Kk=1 = InitRep(I).
5: for t = T downto 1 do
6: for Vertex j ∈ [t] do
7: for i1 = 1 to #{uij} do
8: for zj ∈ Zj do
9: for i2 = 1 to #{gij} do

10: Set hij = (ui1j , zj).
11: for Child k ∈ ch(j) do
12: Compute (See Eqn. 7.7): ũk = ui1j + δujk(zj) + gi2jk.
13: Pooling. Set

Ik→j(u
i1
j , zj, g

i2
j ) = max

||ui′k−ũk||≤ε
h
k

max
zk∼zj

Ik(u
i′

k , zk) (7.42)

= max
sampled hi′k∼ε(h

i
j ,g

i2
j )

Ik(h
i′

k ) (7.43)

14: end for
15: end for
16: Let Ĩj(ui1j , zj, g

i2
j ) =

∨
k∈ch(j) Ik→j(u

i1
j , zj, g

i2
j ) where

∨
= min.

17: Set Ij(ui1j , zj) = maxi2 Ĩj(u
i1 , zj, g

i2
j ).

18: end for
19: end for
20: end for
21: end for
22: RETURN {Ij}.
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αj

γj
rj

Ij(hj) = 1

Ij(hj) = 0

αj

γj

rj

(a) (b)

Deeper

Figure 7.5: The constants (αj, γj, rj) in the Lipschitz Condition (Assumption 7.3.1). (a) Within
radius αj of the true state hj , Ij(hj) = 1; for hj that is within the radius of rj but out of the radius
γj , Ij(hj) = 0. For the remaining regions, Ij(hj) is not determined. (b) How the constants
change with respect to the depth. From bottom to top, αj and rj decrease while γj increases
(See Eqn. 7.68, Eqn. 7.69, Eqn. 7.70). As long as the condition (Eqn. 7.110) holds, the global
optimality of Alg. 8 is guaranteed.

building block of our bottom-up deformation estimation algorithm:

Assumption 7.3.1 (Lipschitz Conditions of Landmarks) Given an image Ip that is generated

from the parameter p, it is assumed there is a procedure called InitRep that compute a 2D

response map Ik for each landmark k so that there exists a 3-tuples αj < γj < rj:

• Smooth: For any v with ||p(k)− v||∞ ≤ αk, Ik(v) = 1. As a special case, Ik(p(k)) = 1.

• Local Distinctive: For any v with rk ≥ ||p(k)− v||∞ ≥ γk, Ik(v) = 0.

Note that in this assumption, if rk = +∞, then the landmark k becomes globally distinctive.
This means that it can be independently identified without knowing the location of other land-
marks. Feature matching approaches, such as SIFT, implicitly assumes rk = +∞ for key points
and thus has stronger assumptions compared to Assumption 7.3.1.

Given this assumption, we now proceed to show that the representation computed from Alg. 6
and Alg. 7 are well-behaved. To achieve that, we consider an image Ip that is generated from
the parameter p. Denote h∗j = (u∗j , z

∗
j ) as the derived parameter set computed from Eqn. 7.7 and

Eqn. 7.8, and hj ∈ Hj as an arbitrary held state. We define the distance between two held state
hj and h′j as:

dist(hj, h
′
j) = ||uj − u′j||∞ + ||δuj(zj)− δuj(z′j)||

where ||δuj(zj)− δuj(z′j)|| is defined in Eqn. 7.10.

It is easy to verify the distance dist(hj, h
∗
j) satisfies the requirement of metric:

• dist(hj, h
′
j) ≥ 0 and dist(hj, h

′
j) = dist(hj, h

′
j). That is, the distance is nonnegative and

symmetric.
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• dist(hj, h
′
j) = 0 if and only if hj = h′j , i.e., uj = u′j and zj = z′j . This can be proven from

nondegenerative condition of types (Eqn. 7.9).

• The triangle inequality for dist(hj, h
′
j) follows naturally from the metric property of ||δuj(zj)−

δuj(z
′
j)||.

In addition, the distance metric satisfies the following lemma, which serves as the building
block of our analysis:

Lemma 7.3.2 (Parent-Child Bound) Suppose we have state hj , (h′j, g
′
j) and h′k with the condi-

tion dist(hj, h
′
j) ≤ λ and (h′j, g

′
j) ∼ h′k. Then for any child k ∈ ch(j), any child type zk ∼ zj

and local displacement gj , the constructed held state hk = (uk, zk) ∼ (hj, gj) satisfies:

dist(hk, h
′
k) ≤ φ+

jk(λ) + ||gj − g′j||∞ (7.44)

Proof The premise dist(hj, h
′
j) ≤ λ means

||u′j − uj||∞ + ||δuj(z′j)− δujk(zj)||∞ ≤ λ (7.45)

Therefore, we have for any k ∈ ch(j) and any gj ∈ Gj:

||uk − u′k||∞ = ||uj + δujk(zj) + gjk − (u′j + δujk(z
′
j) + g′jk)||∞ (7.46)

≤ ||uj − u′j||∞ + ||δujk(zj)− δujk(z′j)||∞ + ||gjk − g′jk||∞ (7.47)

≤ dist(hj, h
′
j) + ||gjk − g′jk|| (7.48)

≤ λ+ ||gj − g′j||∞ (7.49)

On the other hand, from Eqn. 7.45, we have:

||δuj(z′j)− δuj(zj)|| ≤ λ (7.50)

Therefore, using the definitions in Eqn. 7.21, we have:

||δuk(zk)− δuk(z′k)|| ≤ δū+
jk(λ) (7.51)

Combining them together, if k is not a leaf vertex, we have for any zk ∈ ψ+
jk(zj):

dist(hk, h
′
k) = ||uk − u′k||+ ||δuk(zk)− δuk(z′k)|| (7.52)

≤ λ+ ||gj − g′j||∞ + δū+
jk(λ) (7.53)

= φ+
jk(λ) + ||gj − g′j||∞ (7.54)
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If k is a leaf vertex, then δū+
jk(λ) is simply zero and φ+

jk is the identity function. The inequality
still holds.

Lemma 7.3.3 (Parent-Child Bound #2) Since we have two pairs of states hk ∼ (hj, gj), h′k =

(u′k, z
′
k) and h′j = (u′j, z

′
j) with z′j ∼ z′k. In addition, we have the condition dist(hk, h

′
k) ≤ λ,

then we have:

dist(hj, h
′
j) ≤ φ−jk(λ) +

ḡj
2

+ ||u′j + δujk(z
′
j)− u′k||∞ (7.55)

In particular, if h′k ∼ (h′j, g
′
j), then

dist(hj, h
′
j) ≤ φ−jk(λ) + ḡj (7.56)

Proof Note that the condition dist(hk, h
′
k) ≤ λ means:

||uk − u′k||∞ ≤ λ ∧ ||δuk(zk)− δuk(z′k)|| ≤ λ (7.57)

From the definition of Eqn. 7.22, we have:

||δuj(zj)− δuj(z′j)|| ≤ δū−(λ) (7.58)

On the other hand, denote g̃jk = u′k − u′j − δujk(z′j), then u′j = u′k − δujk(z′j) − g̃jk, and we
have:

||uj − u′j||∞ = ||uk − δujk(zj)− gjk − (u′k − δujk(z′j)− g̃jk)||∞ (7.59)

≤ ||uk − u′k||∞ + ||δujk(z′j)− δujk(zj)||∞ + ||gjk||∞ + ||g̃jk||∞ (7.60)

≤ ||uk − u′k||∞ + ||δuj(z′j)− δuj(zj)||+ ||gjk||∞ + ||g̃jk||∞ (7.61)

≤ λ+ δū−(λ) +
ḡj
2

+ ||g̃jk||∞ (7.62)

Combining the two together, and we have:

dist(hj, h
′
j) = ||uj − u′j||∞ + ||δuj(zj)− δuj(z′j)|| (7.63)

≤ λ+ 2δū−(λ) +
ḡj
2

+ ||g̃jk||∞ (7.64)

= φ−jk(λ) +
ḡj
2

+ ||u′j + δujk(z
′
j)− u′k||∞ (7.65)
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Lipschitz Conditions, Continuous Case

With the help of Lemma 7.3.2, we thus proceed to prove the main theorem for invariant repre-
sentations. We start from the continuous case (Alg. 6) which is not implementable but easier to
understand and analyze.

Suppose we have an image Ip that is generated from the parameter p. Denote h∗j = (u∗j , z
∗
j )

as the derived parameter set computed from Eqn. 7.7 and Eqn. 7.8, and hj ∈ Hj as an arbitrary
held state.

In the continuous case, Thm. 7.3.4 shows that each layer of the invariant representations
computed from raw image I = Ip are all well-behaved, if representations are constructed using
Alg. 6.

Fig. 7.5 shows graphically how Ij(uj, zj) looks like. In the local neighborhood (dist(hj, h
∗
j) ≤

αj) of the true location h∗j , the responses remain positive. If we step away from the true location,
in the region of ring (γj ≤ dist(hj, h

∗
j) ≤ rj), the responses must be negative. In the gray region

αj < dist(hj, h
∗
j) < γj , one cannot guarantee the responses. Here the constants (αj, γj, rj) are

built from bottom to up.

Theorem 7.3.4 (Invariant Representations, Continuous Case) Then if Assumption 7.3.1 holds

for all landmarks, for every part j, using Alg. 6, we have:

• Smooth: If a state hj is sufficiently close to the “true” h∗j , then hj is also plausible:

dist(hj, h
∗
j) ≤ αj =⇒ Ij(hj) = 1 (7.66)

• Local Distinctive: If hj is far away from the “true” h∗j but is not too far, then hj is not

plausible:

rj ≥ dist(hj, h
∗
j) ≥ γj =⇒ Ij(hj) = 0 (7.67)

if the 3-tuples (αj, γj, rj) are built for j-th part in a bottom-up fashion, using the following

relationship (ah(j) are the anchor points of j-th part):

αj = min
k∈ch(j)

(φ+
jk)
−1(αk) (7.68)

γj = min
k∈ah(j)

φ−jk(γk) + ḡj (7.69)

rj = min
k∈ah(j)

(φ+
jk)
−1(rk − ḡj) (7.70)

Proof We prove the theorem by induction. The base case follows naturally from Assump-
tion 7.3.1 with |Zk| = 1 for all leaf vertex k. Now let us prove that this theorem works for
any vertex j given all its children follows the theorem.
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Smooth: Using Lemma 7.3.2, from the premise dist(hj, h
∗
j) ≤ αj , for any k ∈ ch(j) and

any zk ∼ zj , we can construct hk = (uk, zk) with gj = g∗j so that:

dist(hk, h
∗
k) ≤ φ+

jk(αj) ≤ αk (7.71)

The last inequality is due to the fact that φ+
jk(·) is a monotonously increasing function. By

induction, Ik(hk) = Ik(uk, zk) = 1 for any k ∈ ch(j) and any zk ∼ zj . Therefore, for the
particular (uk, zk) = hk ∼ (hj, gj) for any k:

Ik→j(uj, zj, gj) = Ik→j(hj, gj) = max
h′k∼(hj ,gj)

Ik(h
′
k) ≥ Ik(hk) = 1 (7.72)

which means
Ĩj(uj, zj, gj) = min

k∈ch(j)
Ik→j(uj, zj, gj) = 1 (7.73)

Since for this particular gj , Ĩj(uj, zj, gj) = 1. we have:

1 ≥ Ij(uj, zj) = max
gj∈Gj

Ĩj(uj, zj, gj) ≥ 1 (7.74)

Therefore, Ij(hj) = Ij(uj, zj) = 1.

Local Distinctive: We prove this part by contradiction, i.e., if dist(hj, h
∗
j) ≤ rj and Ij(hj) =

1, then dist(hj, h
∗
j) ≤ γj .

Since Ij(hj) = 1, there exists gj so that

Ĩj(uj, zj, gj) = min
k∈ch(j)

Ik→j(uj, zj, gj) = 1 (7.75)

Therefore, for any k, we have

Ik→j(uj, zj, gj) = max
hk∼(hj ,gj)

Ik(hk) = 1 (7.76)

which means there exists (uk, zk) = hk ∼ (hj, gj) so that

Ik(hk) = Ik(uk, zk) = 1 (7.77)

Using Lemma 7.3.2, for the anchor points k ∈ ah(j), for zk ∼ zj , for gjk and their associated
hk, we have:

dist(hk, h
∗
k) ≤ φ+

jk(rj) + ||gj − g∗j || ≤ φ+
jk(rj) + ḡj ≤ rk (7.78)
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where the final inequality is due to the condition (Eqn. 7.70). By induction, for all k ∈ ah(j),
we have dist(hk, h

∗
k) ≤ γk. Note that by definition hk ∼ (hj, gj) and h∗k ∼ (h∗j , g

∗
j ), then using

Lemma 7.3.3 and we have:
dist(hj, h

∗
j) ≤ φ−jk(γk) + ḡk (7.79)

This works for any k ∈ ah(j), therefore, we have:

dist(hj, h
∗
j) ≤ min

k∈ah(j)
φ−jk(γk) + ḡk = γj (7.80)

7.3.3 Lipschitz Conditions: Discrete Case

Obviously, one cannot enumerate over an infinite set Hj or Gj , which leads to infinite sample
complexity. Then the problem becomes, can the similar guarantee be obtained if we just sample
from the infinite sets Hj and Gj? Fortunately, as indicated by Thm. 7.3.7, if the sample density
is high enough, the answer is yes with a modified algorithm (Alg. 7).

For every part j, we sample the spaceHj and Gj so that for every uj and every gj ∈ Gj , there
exists at least one sample ui1j and gi2j that are close to them:

||ui1j − uj||∞ ≤ εhj , ||gi2j − gj||∞ ≤ εgj (7.81)

Note Zj need not be sampled since it is a discrete space. We can also define the compatibility
symbol ∼ε in the discrete case:

Definition 7.3.5 (hj, gj) ∼ε hk if and only if zj ∼ zk and ||uj + δujk(zj) + gjk − uk|| ≤ εhk

Given these sampling strategy, we can prove the following lemma, which is an extension for
Lemma 7.3.2:

Lemma 7.3.6 (Parent-Child Bound, With Samples) Suppose we have a sample point hij , a

state (h′j, g
′
j) and h′k with dist(hij, h

′
j) ≤ λ and (h′j, g

′
j) ∼ h′k. For any local displacement

gj , for any child k ∈ ch(j), any sampled state hi
′

k = (ui
′

k , zk) ∼ε (hij, gj) satisfies

dist(hi
′

k , h
′
k) ≤ φ+

jk(λ) + εhk + ||gj − g′j||∞ (7.82)

Proof Using Lemma 7.3.2, since dist(hij, h
′
j) ≤ λ, for any k ∈ ch(j) and any zk ∼ zj and any

gj , we can construct a state hk = (ũk, zk) ∼ (hij, gj) so that:

dist(hk, h
∗
k) ≤ φ+

jk(λ) + ||gj − g∗j ||∞ (7.83)
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with ũk = uij + δujk(zj) + gjk. Note that ũk is not necessarily within the samples. However,
since the sample state hi′k = (ui

′

k , zk) is ε-compatible with (hij, gj), we have

||ũk − ui
′

k ||∞ ≤ εhk (7.84)

Therefore, for hk = (ũk, zk) and hi′k = (ui
′

k , zk), we apply triangle inequality and obtain:

dist(hi
′

k , h
∗
k) ≤ dist(hi

′

k , hk) + dist(hk, h
∗
k) ≤ φ+

jk(λ) + εhk + ||gj − g∗j ||∞ (7.85)

We thus have the following theorem:

Theorem 7.3.7 (Invariant Representations, Discrete Case) If Assumption 7.3.1 holds for all

landmarks and the sample density satisfies Eqn. 7.81, then for every part j, using Alg. 7, we

have:

• Smooth: If a sampled state hij is sufficiently close to the “true” h∗j , then hij is also plausi-

ble:

dist(hij, h
∗
j) ≤ αj =⇒ Ij(h

i
j) = 1 (7.86)

• Local Distinctive: If a sampled state hij is far away from the “true” h∗j but is not too far,

then hij is not plausible:

rj ≥ dist(hij, h
∗
j) ≥ γj =⇒ Ij(h

i
j) = 0 (7.87)

if the 3-tuples (αj, γj, rj) are built for j-th part in a bottom-up fashion, using the following

relationship (ah(j) are the anchor points of j-th part):

αj = min
k∈ch(j)

(φ+
jk)
−1(αk − εgj − εhk) (7.88)

γj = min
k∈ah(j)

φ−jk(γk) + ḡj + εhk (7.89)

rj = min
k∈ah(j)

(φ+
jk)
−1(rk − ḡj − εhk) (7.90)

Proof We prove the theorem by induction. The base case follows naturally from Assump-
tion 7.3.1 with |Zk| = 1 for all leaf vertex k. In addition, for any sample distribution, the
smoothness and local distinctiveness conditions will hold.

Now let us prove that this theorem works for any vertex j given all its children follows the
theorem.

Smooth: From Eqn. 7.81, there exists gi2j so that ||gi2j − g∗j ||∞ ≤ εgj . For any sampled state
hij and the particular local displacement gi2j , for every child k, by the sample density condition
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(Eqn. 7.81), there exists ui
′

k so that

||ui′k − ũk||∞ ≤ εhk (7.91)

where ũk = uij + δujk(zj) + gi2jk. Therefore, we can construct a sampled state (ui
′

k , zk) = hi
′

k ∼ε
(hij, g

i2
j ). Using Lemma 7.3.6, we have:

dist(hi
′

k , h
∗
k) ≤ φ+

jk(αj) + εhk + ||gi2j − g′j||∞ ≤ φ+
jk(αj) + εhk + εgj ≤ αk (7.92)

The last inequality is due to the fact that φ+
jk(·) is a monotonously increasing function. By

induction,
Ik(h

i′

k ) = Ik(u
i′

k , zk) = 1 (7.93)

holds for any k. Since hi′k ∼ε (hij, g
i2
j ), from the pooling operation Eqn. 7.43, we have:

Ik→j(h
i
j, g

i2
j ) = max

hi
′
k∼ε(h

i
j ,g

i2
j )

Ik(h
i′

k ) = 1 (7.94)

holds for any k. and thus

Ĩj(h
i
j, g

i2
j ) = min

k∈ch(j)
Ik→j(h

i
j, g

i2
j ) = 1 (7.95)

Therefore, we have
Ij(h

i
j) = max

i2
Ĩj(h

i
j, g

i2
j ) = 1 (7.96)

Local Distinctive: We prove this part by contradiction, i.e., if dist(hij, h
∗
j) ≤ rj and Ij(hij) =

1, then dist(hij, h
∗
j) ≤ γj .

Firstly, using Lemma 7.3.2, for any anchor point k ∈ ah(j), for any zk ∼ zj , any gjk, and
their associated ũk

ũk = uij + δujk(zj) + gjk (7.97)

and h̃k = (ũk, zk), we have:

dist(h̃k, h
∗
k) ≤ φ+

jk(rj) + ḡj ≤ rk − εhk (7.98)

Since Ij(hij) = 1, there exists gi2j so that

Ĩj(u
i
j, zj, gj) = min

k∈ch(j)
Ik→j(u

i
j, zj, g

i2
j ) = 1 (7.99)
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which also holds for the anchor point k ∈ ch(j). Therefore,

Ik→j(u
i
j, zj, g

i2
j ) = max

hi
′
k∼ε(h

i
j ,g

i2
j )

Ik(h
i′

k ) = 1 (7.100)

which means there exists (ui
′

k , zk) = hi
′

k ∼ε (hij, g
i2
j ) so that

Ik(h
i′

k ) = Ik(u
i′

k , zk) = 1 (7.101)

From the definition of ∼ε, we thus have:

||ui′k − ũk||∞ ≤ εhk (7.102)

Now we have:

dist(hi
′

k , h
∗
k) ≤ dist(hi

′

k , h̃k) + dist(h̃k, h
∗
k) ≤ ||ui

′

k − ũk||∞ + dist(h̃k, h
∗
k) ≤ rk (7.103)

By induction, we have dist(hi
′

k , h
∗
k) ≤ γk.

On the other hand, combining Eqn. 7.102 and Eqn. 7.97, we have:

||uij + δujk(zj)− ui
′

k || ≤ ||uij + δujk(zj) + gjk − ui
′

k ||∞ + ||gjk||∞ (7.104)

= ||ũk − ui
′

k ||∞ + ||gjk||∞ (7.105)

≤ ḡj
2

+ εhk (7.106)

Note that hi′k ∼ε (hij, g
i2
j ) and h∗k ∼ (h∗j , g

∗
j ), we then apply Lemma 7.3.3 and obtain:

dist(hj, h
∗
j) ≤ φ−jk(γk) + ḡk + εhk (7.107)

This works for any k ∈ ah(j), therefore, we have:

dist(hj, h
∗
j) ≤ min

k∈ah(j)
φ−jk(γk) + ḡk + εhk = γj (7.108)
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7.4 The Algorithm

Now we have studied the properties of invariant representations. From the representation, we
naturally arrive at Alg. 8 for estimating the location of landmarks.

Algorithm 8 Bottom-Up Deformation Estimation
1: INPUT: Input Raw Image I .
2: INPUT: Initial root guess h̃root so that dist(h̃root, h

∗
root) = rroot/2.

3: OUTPUT: {ĥj} for every part j.
4: From raw image I , Compute invariant representations {Ij} using Alg. 7.
5: Search the circle with radius rroot/2 centered at h̃root and find ĥroot so that Iroot(ĥroot) =

1.(Thm. 7.4.2)
6: for t = 1 to T do
7: for Vertex j ∈ [t] do
8: Consistency Check: if there exists l1 and l2 so that

dist(ĥl1→j, ĥl1→j) > 2γj (7.109)

Then RETURN FAIL.
9: Randomly pick parent l and set ĥj = ĥl→j . From Thm. 7.4.1, Ij(ĥj) = 1.

10: Obtain optimal ĝj associated with ĥj from the bottom-up procedure.
11: for Child k ∈ pa(j) do
12: Find hi′k ∼ε (ĥj, ĝj) so that Ik(hi

′

k ) = 1. Thm 7.4.1 guarantees its existence.
13: Set ĥj→k = ĥik.
14: end for
15: end for
16: end for
17: RETURN {ĥj, ĝj}.

7.4.1 Global Optimal Guarantees Under Generative Models

Now we show the global optimal guarantees of Alg. 8 if the input image I = Ip is generated by
displacements p of k landmarks.

Lemma 7.4.1 (Top-down Pass of Correct Parameters) If the following condition holds for ev-

ery parent-child pair k ∈ ch(j):

φ+
jk(γj) + ḡj + εhk ≤ rk (7.110)
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Then for j-th patch, if there is a sampled point hij = (uij, zj) satisfying:

dist(hij, h
∗
j) ≤ rj ∧ Ij(h

i
j) = 1 (7.111)

then there exists a sampled point gi2j ∈ Gj so that for every child k, we can find a sampled point

hi
′

k = (ui
′

k , zk) ∼ε (hij, g
i2
j ) so that:

dist(hi
′

k , h
∗
k) ≤ rk ∧ Ik(h

i′

k ) = 1 (7.112)

Proof Since Ij(hij) = 1, according to the construction of invariant representation (Alg. 7), there
exists gi2j so that for every k, we can find at least one (ui

′

k , zk) = hi
′

k ∼ε (hij, g
i2
j ) so that Ik(hi

′

k ) =

1. Now we need to prove such hi′k is close to h∗k.

From Thm. 7.3.7, if dist(hij, h
∗
j) ≤ rj and Ij(hij) = 1, then dist(hij, h

∗
j) ≤ γj . By Lemma 7.3.6,

for the particular gi2j and particular zk, hi′k ∼ε (hij, g
i2
j ) satisfies:

dist(hi
′

k , h
∗
k) ≤ φ+

jk(γj) + ||gi2j − g∗j ||∞ + εhk ≤ φ+
jk(γj) + ḡj + εhk ≤ rk (7.113)

Then we present the main theorem that shows Alg. 8 indeed gives

Theorem 7.4.2 (Correctness of Bottom-Up Deformation Estimation (Alg. 8)) Given I = Ip

as input, if

• The initial guess h̃root is close to h∗root: dist(h̃root, h
∗
root) ≤ rroot/2.

• The sample density on the root vertex satisfies the following:

εhroot ≤ αroot (7.114)

• The following inequality holds for any parent-child pair (j, k),

φ+
jk(γj) + ḡj + εhk ≤ rk (7.115)

Then Alg. 8 always succeeds and outputs a set of estimation {ĥj} with guarantees:

Ij(ĥj) = 1 ∧ dist(ĥj, h
∗
j) ≤ γj (7.116)

Proof If εhroot ≤ αroot, there exists at least one sample point hiroot so that dist(hiroot, h
∗
root) ≤ αroot

and Iroot(h
i
root) = 1. Then the search over samples can find it.

Suppose for any vertex j ∈ [t], Eqn. 7.116 holds. We now show for any k ∈ [t + 1], this
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inequality still holds. For any k ∈ [t+ 1], we have multiple answers ĥl→k from each of its parent
l, by Thm. 7.4.1 and the fact that γk < rk:

dist(ĥl→k, h
∗
k) ≤ rk (7.117)

and Ik(ĥl→k) = 1. By Thm. 7.3.7, we can shrink the bound:

dist(ĥl→k, h
∗
k) ≤ λk (7.118)

Therefore, by triangle inequality, the consistency check for vertex k will always be satisfied.
Furthermore, a random pick of ĥk = ĥl∗→k satisfies Eqn. 7.116.

In particular, for each leaf vertex k, we have:

||p̂(k)− p(k)|| = ||ûk − u∗k|| = dist(ĥk, ĥ
∗
k) ≤ γk (7.119)

and Alg. 8 successfully recovers the generating parameters p.

Note that the condition dist(h̃root, h
∗
root) ≤ rroot/2 is not needed, since according to the sam-

pling strategy, for any h∗root there will be a sample sufficiently close to it and shows positive
response. However, in this case, one needs to check false positives that may have a positive
response on the top-most layer.

7.4.2 Sample and Time Complexity

The sample complexity of Alg. 8 can be obtained by simply counting the number of enumera-
tions. To build the representations, the number of operations Nbottom−up needed is:

Spentbottom−up =
∑
j

#{uij} · · ·#{gij} · · · |Zj| ·

 ∑
k∈ch(j)

|Zk|(εhk)2

 (7.120)

where (εhk)
2 is for local searching a compatible solution. On the other hand, the number of

operations Ntop−down used to retrieve the estimation is:

Spenttop−down =
∑
j

∑
k∈ch(j)

|Zk| (7.121)
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Therefore, the total time complexity is dominant by Spentbottom−up, which is:

Spent =
∑
j

(
mn

(εhj )
2

)(
ḡj
εgj

)2ch(j)

|Zj|

 ∑
k∈ch(j)

|Zk|(εhk)2

 (7.122)

The sample complexity N is similar:

N =
∑
j

mn

(εhj )
2

(
ḡj
εgj

)2|ch(j)|

|Zj| (7.123)

where m and n are image dimension. Given a constant topology of hierarchical structure, the
exponent of sample complexityN (as well as the time complexity) is upper-bounded by the num-
ber of fan-outs maxj |ch(j)| and is independent of the total dimensionality d of the deformation.
In this sense, this algorithm breaks the curse of dimensionality!

However, such a big gain is not free at all. To make Alg. 8 works, one has to make sure that
both conditions εhroot ≤ αroot and φ+

jk(γj) + ḡj + εhk ≤ rk will be satisfied. The first condition
forces us to sample densely, while the second condition indicates that we need to have small
ḡj , a slow growing φ+

jk(·) and a large enough effective radius rk. This leads to many trade-offs,
for example, introducing type variables will reduce ḡj since the children’s degrees of freedom is
partitioned, but will increase φ+

jk(·).

A more detailed discussion is in Sec. 7.5.

7.5 Discussion of the Algorithm

To achieve the guarantees, from bottom to top, following Eqn. 7.68, Eqn. 7.69 and Eqn. 7.70, αj
and rj must decrease and γj must increase, as shown in Fig. 7.5. Similar to Top-down Hierarchi-
cal Models, the condition εhroot ≤ αroot indicates that αj is the upperbound for sampling error and
lower αj means higher sample complexity.

On the other hand, γj , together with rj , controls the usability of the algorithm. Since the
condition (Eqn. 7.115):

φ+
jk(γj) + ḡj + εhk ≤ rk (7.124)

has to be satisfied for all parent-child pair (j, k), we need to control the growth of γj and shrink-
age of rk over all the layers, especially among the top layers. On the other hand, the following
condition (Eqn. 7.114)

εhroot ≤ αroot (7.125)
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tells that the inverse sample density ε has to be smaller than αroot. Therefore, we need to control
the shrinkage of αj from bottom to top so that the sample density is kept low.

A few factors determine whether or not these two equations can be satisfied. The introduction
of zj for each patch j, is to squeeze the space of Gj and reduce ḡj . A small ḡj is critical to control
the trend of γj and rj so as to make Eqn. 7.124 hold. A small ḡj will also reduces the shrinkage
of αj . Increasing the inverse sample density εhj and εgj also help make the two equations hold. As
a trade-off, both introduction of zj and increasing ε will lead to higher computational burden.

Choice of the anchor point k for each parent vertex j is also an important factor. From the
updating equations (Eqn. 7.68, Eqn. 7.69 and Eqn. 7.70), γj and rj are determined exclusively
by the anchor point ah(j). Choosing the anchor point that has the largest discriminative range rk
will increase the discriminative range rj for parent j. Similarly, choosing the anchor point with
the smallest gray range γk will decrease γj .

Given a set of training images with labeled landmarks, it is thus important to determine how
to build the initial map (i.e., function InitRep) for better (αk, γk, rk), and at each layer which
components are retained for further processing and which components are discarded. For the
retained part, one needs to determine the size of |Zj|, and find good anchor points for each j.
For the discarded part, one needs to find the exact space of Gj (and corresponding ḡj) to search
from. If there exists such an appropriate assignment of (Hj,Gj), then by Thm 7.4.2, we can get
the globally optimal solution. This is the training stage of the algorithm.

7.6 Experiments on Synthesized Data

we have done preliminary experiments on synthesized data, which contains 300 training samples
and 200 test samples and have been used in Top-Down Hierarchy. We use all test samples
as performance evaluation. The Bottom-Up Predictions are implemented with C++/CUDA on
NVidia Quadro 6000 GPU. It takes about 2-3 seconds to compute invariant representation of a
test image and estimate the location of landmarks. In this experiment, there is only one type for
every node j.

A few implementation tricks have been introduced to boost the performance. First, we use
real value representations rather than binary representations. Second, given a parent state hj and
gj , instead of checking Ik(hk) for only the compatible child states hk ∼ (hj, gj), we also check
Ik(h

′
k) for all h′k that are close to hk. This is essentially the same as having more children (and

their representations) for a parent node. Since a parent node is activated only if all its child nodes
are activated, this fine tuning will help eliminate more false peaks in the response map. We call
this child-expanding.
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Samples 50 100 200
Top-Down Hierarchical Prediction 5.11 4.78 4.55
Bottom-Up Hierarchical Prediction 4.63 4.07 3.93

Table 7.1: Performance comparison between Top-Down and Bottom-Up Hierarchical Predictions
on Synthesized Dataset.

Given parent state, h′k represents the compatible state of k’s nearby (virtual) siblings. There-
fore, although representation of the virtual node should also take high value (ideally 1 in the
binary case), Ik(h′k) may not be high. Therefore, we need to match the score of Ik(h′k) be-
tween training and test. This involves storing response template during training and matching
those templates during test. To reduce the dimensionality of the templates, we apply PCA and
pick first 50 principle components. Every principle component is a 2D filter with small support.
Therefore, the

∨
operation in Eqn. 7.40 essentially becomes 2D convolutions, and the template

matching now becomes an inner product.
Furthermore, we can also collect templates that correspond to “negative” information. Ide-

ally, without the child-expanding, the templates should be all-one vectors. This means that only
if all the children are activated, the parent will be activated. With child-expanding, the templates
may have entries that are lower than 1, but still they represent the child patterns that will activate
the parent. Similarly, we can also store the child patterns that will deactivate the parent. The-
oretically this is not necessary given sufficient number of samples, but practically this helps the
performance.

Tbl. 7.1 shows the quantitative comparison between the Top-Down and Bottom-Up hierar-
chies. With the same number of training samples, the Bottom-Up Hierarchical Prediction per-
forms better.
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Chapter 8

Conceptual Comparisons between different
methods

8.1 Data-Driven Descent

As mentioned before, our method is conceptually different from many existing methods. In the
following, we describe this difference in a case-by-case study. To make the comparison and
illustrations clear, we assume one-dimensional parameter space. In such a case, all distorted
images generated from the distortion model form a one-dimensional manifold I (Eqn. (3.2)),
shown as a curve in the image space (Fig. 8.1(a)). The template (p = 0), the training samples
and the distorted test image Ip are identified as points on the curve.

Generative/discriminative approaches. Fig. 8.1 shows the fundamental difference between
our approach and generative and discriminative approaches in the image space. Generative ap-
proaches initialized from the template (p̃ = 0) converge to local optimum due to the complicated
nonlinear structure of the manifold I, as shown in Fig. 8.1(b). On the other hand, discriminative
approaches can get the global optimum given the condition that the training samples densely
cover the manifold I, as shown in Fig. 8.1(c). This may not be a big deal if the manifold is
one-dimensional, but will require enormous number of training samples in the high-dimensional
case. Our approach achieves the same accuracy with an iterative strategy and much fewer train-
ing samples distributed in a radially decreasing way. The samples, especially those close to the
origin, are heavily reused. While the maximum distance of two nearby training samples has to
be O(ε)-close in the discriminative case, the maximum distance between two training samples in
our approach is only required to be smaller than the “gap” of the curve and independent of the
prediction accuracy. The gap is implicitly encoded in the two universal constants L1 and L2 in
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Figure 8.1: Comparison with generative/discriminative approaches, illustrated in the image
space. (a) The image space. The curve parameterized by p is the set of all the distorted im-
ages I generated from the distortion model (Eqn. (3.2)), assuming one-dimensional parameter
space. (b) Generative approaches initialized at the template (p̃ = 0) converge to the local op-
timum. (c) Discriminative approaches obtain an ε-accurate estimation, if the training samples
densely cover the curve. (d) With much fewer samples than the discriminative approaches, our
approach obtains the same accuracy by iteratively refining the parameter estimation, as illustrated
by the dashed red arrows.

Eqn. (3.22).

Combining generative and discriminative approaches.
Fig. 8.2(c)-(d) shows the difference between our method and previous methods combining the
two approaches. Fig. 8.2(c) shows the heuristic that uses the discriminative approach as the ini-
tialization of the generative approach still leads to local minima, while our approach converges to
the global optimum with the same distribution of training samples, as shown in Fig. 8.2(d). Al-
though we do not guarantee global convergence with too few training samples, our approach fails
only if the nearest-neighbor estimation is globally wrong, for example, predicting large negative
values when the true parameter is large positive in 1-D case. In contrast, the way that the previ-
ous methods combine both approaches, as a generative approach by nature, is more sensitive to
the local bumpy structures of the manifold I.

Using warp-back strategies. Fig. 8.2(a)-(b) shows the fundamental difference between our
approach and previous methods [5, 30, 102] with a similar strategy of successively warping-back.
An energy minimization framework is commonly used in those methods. The standard gradient
descent approach yields a trajectory of less distorted images until it reaches the template. By the
formulation, the following two conditions have to be met: (a) the warp-back operations are in
the warping family; (b) all the images on the trajectory have to be on the manifold I, which is
the set of all distorted images generated from the distortion model. This is only possible if the
warping family forms a group.

For non-invertible distortion, if one condition is met then the other is broken. This is the
reason why previous methods cannot handle non-invertible distortion as shown in Fig. 8.2(a).
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Figure 8.2: Left: Comparison with previous works [5, 30, 102] that also use warp-back strategy,
illustrated in the image space. (a) Previous methods use a restricted formulation that requires
both the intermediate distorted images on the curve and the warp-back distortions in the warping
family, which is only possible for warping families that form a group. (b) Our approach allows
the undistorted image off the curve during iterations and still achieves global convergence. Right:
Comparison with other methods that combine the generative and discriminative approaches. (c)
Using the discriminative approach to initialize the generative approach [75, 89] still leads to local
convergence due to the local irregularity of the curve. (d) Using the same training set, our method
converges to the global optimum.

However, our method can handle it by properly relaxing the condition (b) so that (1) the trajectory
of less distorted images is allowed to be off the manifold yet (2) the trajectory converges to the
manifold I when the parameter estimation is close to the true value, and is guaranteed to hit the
template if the parameter estimation is perfect, as shown in Fig. 8.2(b).

Sample distribution. The convergence property of our algorithm is independent of the location
of the test samples within the sphere ||p|| ≤ r0, if the training samples are distributed as explained
in Section 4.2.1. In other words, we attain the guarantee of the worst-case performance. This
differs from many previous methods that only work for a given prior distribution. Furthermore,
if the distribution of the parameters of real-world deformations of an object is known a priori,
then it can be combined with our sampling strategy to reduce the number of training samples
even further.
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Figure 8.3: Two important failure cases. (a) One-to-many mapping case. The manifold I is
(almost) self-intersecting. As a result, two similar images have very different parameters, one
large positive and the other large negative. If we pull-back the test using the wrong parameter,
then Algorithm 2 diverges. Note this does not violate Theorem 4.2.1 since in such cases, L2 →
+∞ and many more train samples are required especially near the ambiguous region to ensure
each time the nearest-neighbor procedure picks the correct one. (b) The test distorted image is
not on the curve. In such a case, the pull-back identity does not hold (Eqn. (3.9)). As a result, the
image sequence of successive warping-back does not approach the manifold I and Algorithm 2
is not guaranteed to converge. This often happens in the case of occlusion, resampling artifacts
or an incomplete distortion model. Yet we empirically show that in such cases, Algorithm 2 still
gives decent results.

8.2 Bottom-up Hierarchy: Relation to Deep Learning and Graph-
ical Models

The key components of bottom-up hierarchical methods is the following three equations to build
invariant representations in a layer-by-layer fashion:

Ik→j(hj, gj) = max
hk∼(hj ,gj)

Ik(hk) (Translation) (8.1)

Ĩj(hj, gj) =
∨

k∈ch(j)

Ik→j(hj, gj) (Aggregation) (8.2)

Ij(hj) = max
gj∈Gj

Ĩj(hj, gj) (Reduction) (8.3)

8.2.1 Message Passing

The message passing updatings read as follows:

mj(uj, zj) =
∑

k∈ch(j)

mk→j(uj, zj) (8.4)

mk→j(uj, zj) = min
zk

[
min
uk

mk(uk, zk) + θdjk(uj, zj,uk)

]
+ θcjk(zj, zk) (8.5)
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We see message passing is just a soft version of our updating. First of all, the outgoing message
mj(uj, zj) is essentially the representation Ij(hj) = Ij(uj, zj), while the incoming message
mk→j(uj, zj) is maxgj∈Gj Ik→j(uj, zj, gj). The only difference is:

(1) the order of aggregation and reduction is swapped.

(2)
∨

is replaced with a summation (rather than minimal operator).

(3) All the constraints appeared in Eqn. 7.39 now become soft penalties on objective function
with proper weights (or Lagrangian multipliers).

8.2.2 Nonlinearity

In our framework, the operator
∨

is chosen as the minimal operator. This means for part j to
be activated, all of its children have to be activated. This may fail in the presence of occlusion,
where a few parts may be missing. On the other hand, message passing use

∨
=
∑

.

We can extend our framework so that
∨

can be a nonlinear function f that takes a weighted
combination of Ik→j(hj, gj):

Ĩj(hj, gj) = f

bj +
∑

k∈ch(j)

wjkIk→j(hj, gj)

 (8.6)

which coincides with deep learning framework. Using different bj , wjk and f yields different
algorithms. More importantly, from the training data we can determine which parts are more
stable and which parts are versatile, and set bj and wjk accordingly.

8.2.3 Criteria used in Unsupervised Deep Learning

Sparsity and reconstruction error are two major criteria extensively used to train deep architec-
tures in an unsupervised and layer-by-layer manner. Although many papers have empirically
shown their powers, few of them explain why they help. Indeed, if these criteria are not related
to labels in supervised learning, how can they help in most supervised tasks?

It turns out that our bottom-up model can explain their effectiveness in a principled manner.
For example, AutoEncoder minimizes reconstruction error of the input signal with some forms
of regularization, e.g., imposing a norm penalty or using a limited number of model parameters.
After optimization, the resulting parameters give a lossy reconstruction of the input signal, dis-
carding information that has lower energy. To some extent, this coincides with our principle of
lossy reconstruction. However, whether or not information with lower energy is related to the

137



high-level decision making remains unknown. If the answer is yes, then minimizing reconstruc-
tion error will give a good representation.

From our framework, we can clearly see that sparsity helps build a representation with less
ambiguity (larger rj) in Assumption 7.3.1. For example, in the lowest level, we can have multiple
types for each part so that Ik(·, zk) are sparser representations with larger “radius of acceptance”
rj , than its solo-type counterpart Ik(·) = maxzk Ik(·, zk). Similar things happen in higher levels
by splitting response peaks into response maps of different types. Moreover, the sparser the
responses are, the better different peaks are separated. The trade-off is that more response maps
lead to higher computational cost.
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Part III

Application-Specific Modeling
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Chapter 9

Document Rectification

Over the past thirty years, optical character recognition (OCR) technology has matured to achieve
very accurate results. Using OCR, printed books can be digitized rapidly into electronic form
that can be easier to store, retrieve and edit. However, the document images input to OCR are
required to be taken without distortion, i.e., the document must be planar with text lines being
horizontal and straight. Any distortion significantly reduces the accuracy of OCR.

Traditionally the image of the document is acquired using a flat-bed scanner. While this
is perfect for a single sheet of paper, forcibly flattening books (especially if they are old and
precious) is not desirable. In order to address this problem, several vision systems estimate the
distortion and rectify the image of the document. Some systems rely on additional and precisely
calibrated hardware such as stereo cameras [103, 112], laser scanners [7], or structured light
projectors [11, 12] to measure the 3D deformation in the documents. While these systems have
demonstrated accurate results, they are more expensive and less portable and hence have not
found widespread application. Other systems aim to reduce distortion by analyzing a single
captured image of the document. The idea is to infer the distortions from the changes in scale
and orientation of text lines and the foreshortening of text fonts. While these systems are cheap
and flexible, estimation of the 3D deformation and rectification reliably from a single image is a
challenging task.

In this paper, we follow the latter trend and build a vision system that reconstructs the 3D
shape from a single image of curved document and rectifies the image (Fig. 9.1). We first es-
timate the 2D distortion (warping) grid in an image by exploiting the line structure and stroke
statistics in text documents. This estimation consists of two main steps: text lines are automati-
cally identified and densely traced, and the text orientation is determined at every location in the
image. This approach does not rely on more noise sensitive operations such as image threshold-
ing and character segmentation [13, 115], and does not rely on any a priori knowledge of the
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Figure 9.1: First row: From a single image of smoothly curved document as input, our methods
compute the 3D shape of the document and a rectified image of text with no warping or shading
effects. Second row: Two potential applications of our system: mobile text scanning and book
digitization. (Images from Google).

font sizes, types or alphabet.

Unfortunately, knowing just the 2D distortion grid is not sufficient to rectify foreshortening
and shading effects in the document. For this, we present a novel formulation of shape-from-
texture to estimate the 3D deformation from the 2D distortion grid. In most documents, we
observe that the 2D image grid can be regarded as a perspective projection of a 3D parallelo-

gram mesh. This observation allows us to solve an otherwise under-constrained reconstruction
problem exactly using Singular Value Decomposition (SVD) (up to a global scale). Our re-
construction approach can be applied to general smooth surfaces and not restricted to simple
parametric surfaces such as cylinders or developable surfaces as in [13, 50, 51, 117, 118]. Using
the 3D shape, we present algorithms to unwarp the text document and remove shading effects
under general and unknown lighting conditions.

Our system assumes that the image contains only text of the same font type and size. As
shown in Fig. 9.1, our system has many applications. One example is mobile-OCR. Many smart-
phones have high-resolution cameras and can be used to image documents anywhere. Ideally,
one just takes pictures of a note, notice, bulletin, receipt, or a book page and the application
automatically converts the image to text. Another example is high-speed book scanning. In this
scenario, a high-speed camera is used to record a book whose pages are being flipped through,
and then the recorded video frames are rectified and assembled to obtain the textual content. This
reduces the scanning time dramatically and can strongly impact several digital library initiatives.
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9.1 Related work

Estimation of 2D document warping. Several approaches preprocess images using techniques
such as binarization [13], connected component analysis [46, 117] or character segmentation [115]
to estimate 2D warping. Previous line tracing techniques require pre-segmentation of each char-
acter [115], a global text line shape model (e.g. cubic spline [21]), or manual input of starting
points of text lines [111]. These methods may miss many lines in the document. In contrast,
we estimate the 2D distortions using domain knowledge in the form of the line structure and
stroke statistics that is common to most text documents. Our self-similarity measure, scale esti-
mation and line resampling steps do not miss lines, do not rely on thresholding and segmenting
or identifying specific languages and fonts, and works even on low-resolution images.

3D reconstruction. To make 2D warp estimation more stable, many previous works assume
a strong shape model, e.g., part of a cylinder [13], piecewise cylinder [118] or a developable sur-
face [50, 51, 117]. In this paper, since the usage of domain knowledge leads to a better estimation
of text warping, fewer assumptions are needed to reconstruct a broader class of 3D shapes. Most
previous shape-from-texture works start by estimating the local differential quantities that the 3D
shape projects onto the captured image, e.g. projected tangent angle [110], texture distortion [55]
and foreshortening [25]. Since they all minimize non-linear objective functions, the estimation
is not guaranteed to produce the global optimum [25]. In contrast, we formulate shape-from-
texture in the specific context of text document images as a homogeneous least square problem,
in which the globally optimal solution can be obtained using SVD.

9.2 Estimation of document image warping

We define warping in a document image as a two dimensional coordinate system with one co-
ordinate along the text line direction and the other across the text lines. For convenience, we
call the former horizontal lines and the latter vertical directions. In this section, we present a
series of steps to accurately trace and identify the text lines using a self-similarity measure that
works for different sizes and types of fonts and different alphabets. Next, we estimate the ver-
tical directions (or text orientation) by exploiting local stroke statistics in the text. Compared to
previous works [13, 50, 51], our methods use explicit domain knowledge to better estimate the
two dimensional warping in document images.
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9.2.1 Horizontal text line detection

We begin by tracing an initial set of text lines, called seed lines, across the document image
from randomly selected starting points, based on an image self-similarity measure. Then these
seed lines are resampled and refined using dynamic programming. We describe each of the steps
below.

Line tracing using self-similarity measure

Fig. 9.3 illustrates the concept of self-similarity measure: the patches extracted from a set of
points along a text line are similar to each other in terms of an image metric such as normalized
correlation. This property holds for different languages, font types/sizes, illumination and reso-
lution of document images, and thus can be used for line tracing. Unlike the procedure in [111],
our measure is invariant to the choice of the starting point for tracing lines.

But how do we determine the scale (or size) of the patch in self-similarity measure? For this,
we study how the mean gradient magnitude (MGM) changes over image scale. We compute an
image pyramid by successively downsampling the original document image and for each level
of the pyramid, we compute the MGM. We observe that the MGM initially increases during
downsampling, since uniform 2D regions (inter-line whitespace) shrink more than 1D edges.
However, the MGM starts to decrease at a scale where neighboring edges of letters/characters
start to merge. This creates a peak as shown in Fig. 9.2(a). The location of the peak thus is
directly related to the characteristic scale of the fonts in document images.

The text line tracing is done on the image downsampled to the characteristic scale. Starting
from a random location x0, we extract the patch centered at x0, explore the patches at nearby
locations {x0 + (s cos θi, s sin θi)}mi=1 from x0, and pick the one which is most similar to the
current patch, measured by normalized correlation. Here s is the step and m is the number of
angles to be explored. We repeat this process until the tracing trajectory reaches the boundary of
the text region. We trace in both directions to cover the entire text region. The resulting lines are
sorted from the top of the image to the bottom (Fig. 9.2(b)).

Resampling traced lines

Let L ≡ {l1, l2, . . . , lK} be the seed lines traced and sorted as described above. Since the seed
lines start from randomly selected points in the image, they typically skip text lines and may
contain duplicate tracings for a single text line. A naive but inefficient approach would be to
trace from every pixel of the image and pick a comprehensive set of text lines that cover the text
region. Instead, using the fact that the directions of neighboring text lines are likely to be similar,
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we can interpolate the sparse set L to obtain a dense set L′ ≡ {l̃1, l̃2, . . . , l̃K′} where K ′ > K.

From this dense set L′, our goal is to pick exactly one tracing for each text line and inter-line
whitespace. For this, we consider the mean pixel intensity (MPI) computed on each interpolated
tracing l̃. MPI(l̃) is low on dark text lines and high on whitespaces. Therefore, from the top
to the bottom of the document image, the MPIs of L′ depicts a sinusoidal profile, and the local
extremes of this profile (i.e., MPI(l̃i) > MPI(l̃i±1) or MPI(l̃i) < MPI(l̃i±1)) yield the
desired set of tracings, one for each text line and one for inter-line whitespace.

Line refinement

Each of the above set of tracings passes near the center of the text line or inter-line white space.
However, this is not accurate enough for estimation of warping and rectification. To refine these
tracings, we first identify the top and bottom of every text line by interpolation (as show in the
rightmost figure of Fig. 9.4). This is because they are easier to localize than the line centers.
Then we maximize the following objective function for the interpolated top or bottom tracing
that is represented by a set of points l = {(x1, y1), (x2, y2), . . . , (xn, yn)}:

E(δy1, δy2, . . . , δyn) =
n∑
i=1

φi(δyi) + λ
n−1∑
i=1

ψi,i+1(δyi; δyi+1) (9.1)

where {δyi} are the vertical shifts of the point (xi, yi). The first term φi(δyi) measures the log-
likelihood of a shifted point (xi, yi + δyi) being at the true top or bottom boundary of the text
line. The second term ψi,i+1(δyi, δyi+1) is a smoothness measure that penalizes sharp changes
in the tangents of the tracing. The shifts δyi are bounded by adjacent text lines in order to avoid
intersection of tracings.

Although the objective function is nonlinear, it can be solved exactly using dynamic pro-
gramming in linear time. As shown in Fig. 9.2(d), the result of the above steps is an accurate
identification and tracing of horizontal text lines.

9.2.2 Text orientation estimation using local stroke statistics

The alphabet in many languages, such as English, Chinese and Hindi, contain vertical strokes
(e.g., “b”, “d”, “k” and “l” in English). This property can be exploited to estimate the vertical
direction at each location of the text region. The vertical text direction along with the horizontal
line tracing of the previous section constitutes the coordinate grid for the warping of the deformed
document.
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As shown in [50, 51], the stroke statistics can be captured by locating the peaks in the edge
orientation histogram of a local region. However, it is nontrivial to find the right scale of such
local regions. Small scales have good localization but can be unstable due to other interfering
strokes in the letters, whereas a large scale is more stable but with poorer localization. Instead
of simply smoothing over local estimations [51], we provide a formulation robust to interfering
strokes and achieves stable estimation even in small scales.

Let Ω be the set of all the image pixels and m(x) and θ(x) be the gradient magnitude and
orientation at pixel x. We partition Ω into M overlapping local regions {R1, R2, . . . , RM}.
Our goal is to find A ⊆ Ω that ideally contains only the vertical strokes in the image, so that
within each region Ri, the gradient orientations of A are similar. Once A is obtained, vertical
direction can be estimated stably even in small scales. Mathematically, we optimize the following
objective:

J(A) =
M∑
i=1

Ji(Ai) =
M∑
i=1

Ji(A ∩Ri)

Ji(Ai) =
∑
x∈Ai

m(x)(θ(x)− θ̄Ai)2 − β
∑
x∈Ai

m(x)

where Ai = A ∩ Ri and θ̄Ai =
∑

x∈Ai
m(x)θ(x)∑

x∈Ai
m(x)

is the weighted average of local gradient orien-
tations. The first term of Ji(Ai) penalizes the weighted variance of gradient orientations of Ai.
The second term is a regularization term to avoid the trivial solution A = ∅.

To solve this intractable combinatorial optimization, we introduce intermediate variables θi
(the local dominant orientations) for each region Ri and write J(A) as minimization of the fol-
lowing function J ′(A; {θi}) over {θi}:

J ′(A; {θi}) =
M∑
i=1

J ′i(Ai; θi)

where J ′i(Ai; θi) =
∑

x∈Aim(x)(θ(x)− θi)2 − β∑x∈Aim(x). Obviously minA J(A) is equiv-
alent to minA min{θi} J

′(A, {θi}). We obtain a solution by alternatively minimizing θi and Ai
for each region while fixing the region A − Ai (A excludes Ai) and other variables θj (j 6= i).
For each region Ri, we initialize θi as the perpendicular direction to the estimated horizontal text
lines. An example result is shown in Fig. 9.5. The entire workflow of estimating the two dimen-
sional warping of the document image is summarized in Fig. 9.4. We emphasize that accurate
warping estimation is crucial for 3D reconstruction.
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9.3 Reconstruction from a single image

Using the 2D warping, we can make the text line horizontal and text orientation vertical. How-
ever, this is not sufficient to rectify the document image due to the following two reasons. First, a
pure geometric rectification cannot remove the shading on the images. Second, due to the depth
variation, the foreshortening effects along the text lines cannot be correctly rectified as shown in
Fig. 9.8(c). In this paper, we address these two problems by first estimating the 3D deformation
of the curve document from only the 2D warping. Then the foreshortening effects can be recti-
fied by using the depth variation along the text lines. The shading can be removed by computing
surface normals of the 3D deformation and by assuming a reflectance model (e.g. Lambertian)
for the document.

Without any assumptions, 3D reconstruction from a single image is an under-constrained
problem with more unknown variables than constraints. In this work, we assume (1) the camera
projection is perspective and (2) each cell of the 2D warping coordinate grid is a parallelogram
in 3D space. The second assumption is reasonable because (a) the surface can be assumed to be
locally planar or rigid if grid cells are sufficiently small, as demonstrated in recent work [94],
and (b) for most undistorted planar documents, the text lines are parallel and so are local vertical
text directions, thus forming a parallelogram grid.

But why not use a triangle mesh as in the work of Taylor et.al [94]? As shown in Fig. 9.6,
the equilateral property in a parallelogram makes it possible to estimate its depth up to a global
scale from a single perspective view. This is in contrast to [94] in which three camera views are
required to reconstruct a 3D triangle up to a “flip” ambiguity.

We now formulate the problem of reconstructing a 3D parallelogram mesh from a 2D warping
grid. Consider the illustration in Fig. 9.6. We denote the 3D coordinates of the i-th grid vertex
as Vi = (Xi, Yi, Zi) = (xiZi, yiZi, Zi), where (xi, yi) is its 2D coordinates. For simplicity,
focal length is assumed to be 1 and center of projection is at the origin. Let {Pj}Npj=1 denote the
parallelograms where Pj,1:4 are the four vertices in counter-clockwise direction. The necessary
and sufficient condition that the four vertices form a parallelogram is ∆Pj ≡ VPj,1 + VPj,3 −
VPj,2 −VPj,4 = 0. Thus we minimize the following objective:

Q(Z1, Z2, . . . , Zn) =

Np∑
j=1

||∆Pj ||2 (9.2)

To avoid the trivial solution of Z ≡ [Z1, Z2, . . . , Zn] = 0, we add a global scale constraint
||Z|| = 1 and solve Eqn. 9.2 exactly using Singular Value Decomposition (SVD) up to a global
scale factor. Each 3D parallelogram brings forward 3 linear constraints, making the problem
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Noise level 0 0.001 0.005 0.01 0.05
Errors 0.0012 0.0014 0.0044 0.0085 0.0503

Table 9.1: Reconstruction errors of randomly generated synthetic 3D shapes under different noise
levels. Gaussian noise is added to the 2D projections, with standard deviations as shown. The
average side length of grid cells is 1. The relative root-mean-square errors between ground truth
and reconstructed 3D shapes are averaged over 100 random shapes for each noise level. The low
errors demonstrate the robustness of our approach.

well-constrained.

For robustness to noise in the 2D grid locations, we add the re-projection errors to relax
Eqn. 9.2:

Q′({Vi}ni=1) =

Np∑
j=1

||∆Pj ||2 + α
n∑
i=1

(Xi − xiZi)2 + (Yi − yiZi)2 (9.3)

where Vi = (Xi, Yi, Zi) is the estimated 3D location of the i-th grid vertex and α is the regu-
larization constant. Eqn. 9.3 can also be solved exactly using SVD. Note that globally optimal
solution is attained without initial guess of Z.

There are a few special cases, e.g. plane and cylinder, in which the local parallelogram
assumption is strictly true. In general, even if this assumption is only approximately true (because
of local curvature), minimizing Eqn. 9.2 (or Eqn. 9.3) still gives very good estimations of a broad
class of 3D shapes, including many non-ruled surfaces, as shown in Fig. 9.7. Fig. 9.9 shows a
synthetic example in which text is mapped onto a sphere and projected back to the image plane.
Using the methods in Section 9.2.1, we build the 2D coordinate grid and apply Eqn. 9.3 to obtain
the 3D reconstruction. Note that, in principle, such surfaces cannot be reconstructed by previous
approaches [50, 51, 117].

We quantitatively evaluate the 3D reconstructions obtained on a set of smooth surfaces ran-
domly generated using 20 radial basis functions. Table 9.1 shows the relative root-mean-square
errors between the ground truth and the 3D shape estimations. Gaussian noise is added to the 2D
projections, with standard deviations as shown in the table. The average side length of grid cells
is set to 1. The low errors demonstrate the robustness of our approach.

Note that more constraints could be incorporated into the optimization framework. A typical
example is to enforce grid cells to be not only parallelograms but rectangles (text lines are hor-
izontal and text orientation is vertical). However, such constraints introduce nonlinear terms in
the optimization and global optimality can no longer be guaranteed.
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9.4 Image rectification

9.4.1 Geometric rectification

While the vertical coordinates of the 2D warping grid is well-defined by interleaving text lines
and white spaces, the horizontal coordinates along the text lines are not well-defined without
depth information. An easy way to build the horizontal coordinates is to sample along the text
lines with uniform image distance. This is a perfectly valid sampling for 3D reconstruction, but
causes foreshortening effects in rectified text. As shown in Fig. 9.8(c), while all the text lines are
horizontal, regions in the left appear stretched while regions in the right appear squished.

Fortunately, this foreshortening can be rectified using the 3D shape without knowing the font
sizes, types and alphabet. Consider a patch within an image grid cell Pi. First we compute the
3D lengths of the two sides ai and bi of the parallelogram Pi and their ratio ri = ai/bi. Then we
warp the patch in Pi from the original image to a rectangle Ri of the same aspect ratio ri. This
is done by estimating a perspective transform that maps 4 corners of parallelogram Pi to the 4

corners of Ri. This process is applied to each grid cell independently. The result is shown in
Fig. 9.8(d).

9.4.2 Photometric rectification

Using the estimated 3D shape, we can also remove the shading effects on the document im-
age without knowing the prevailing lighting conditions. By assuming a Lambertian reflectance
model, the pixel brightness at x is:

I(x) = ρ(x)(n(x) ·w) + ρ(x)A (9.4)

where w is the unknown direction of lighting, A is the unknown ambient light and ρ(x) is the
unknown albedo. The surface normal n(x) can be computed from the 3D shape. We will further
assume that the whitespace between lines (detected as described in Section 9.2) has uniform
albedo. Then, we can set up a linear system of equations for patches in the whitespace to estimate
the light direction w, the ambient lightA and the whitespace albedo ρw. The shading of the entire
document image can be removed by computing the albedo image ρ(x) = I(x)/(n(x) ·w + A).
An example result is shown in Fig. 9.8(f).
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9.5 Experimental Results

We have applied our methods to documents with a wide variety of languages, font sizes and
types, and challenging deformations. In order to demonstrate the ease of use, all the images were
captured by an iPhone 4 camera. The focal length (f = 2248 pixels) is calibrated automatically
within a few seconds using the Theodolite app. Fig. 9.12 shows representative results for curved
documents written in English, Chinese and Hindi. From a single image, our system automati-
cally reconstructs the 3D shape and rectifies the document given a few user input specifying the
image region for line tracing. The third and fourth columns show accurate removal of both the
foreshortening and the shading effects. Fig. 9.11 shows the histograms of the white spaces in the
documents before and after photometric correction. The narrow peaks demonstrate the accuracy
of our system.

Failure cases. Fig. 9.10 shows several failure cases of line tracing. A large step (s large. See
Section 9.2.1) in line tracing often yields line skipping, while a small step gives better results but
runs slower. Besides, tracing is not working in non-text regions.

Performance. Our un-optimized MATLAB code takes 2-3 minutes to process an image
(2592x1936) on Intel Core 2 (2.4GHz). The most time-consuming step is line refinement while
others are fast. We are working on a C reimplementation on iPhone 4. The book imaging
application requires fast capture but the processing can be done off-line.

There are several avenues of future work. We wish to extend our system to handle more
general documents with images, text, and illustrations and handle non-smooth deformations such
as folds, creases and tears. We also wish to build a rapid book scanning system using a high-
speed camera that captures the images of quickly flipping pages.
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(a) Estimation of the characteristic scale

(b) Seed line tracing

(c) Line resampling

(d) Line refinement

Figure 9.2: Workflow of horizontal text line tracing. (a) The mean gradient magnitude (MGM)
on each level of the image pyramid, computed by successively downsampling the document
image. The first peak of MGM can be used as a characteristic scale of the text. (b) Line tracings
from random starting points on document images. The tracing performs well in both text regions
and white spaces. (c) Left: A set of tracings are chosen, called “seed lines”; Middle: Mean pixel
intensities computed along densely interpolated seed lines. The centers of text lines and white
spaces correspond to the local extremes of the mean pixel intensities; Right: Then the top and
bottom of the text lines (blue and red) are estimated, (d) and are refined by optimizing Eqn. 9.1.
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Figure 9.3: The self-similarity measure used for line tracing. Local patches extracted along the
text line direction are correlated.

(a) Input image (b) Line tracing/resampling (c) Line refinement (d) Vertical estimation (e) Coordinate grid

Figure 9.4: Estimation of document image warping. (a) The original curved document image; (b)
Horizontal text line tracing and resampling (Section 9.2.1-9.2.1); (c) Text line refinement (Sec-
tion 9.2.1); (d) Estimation of vertical text orientation using local stroke statistics (Section 9.2.2);
(e) The 2D coordinate grid of the image warp obtained using horizontal tracings and text orien-
tation.

Figure 9.5: Example of text orientation estimation by Section 9.2.2.
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V1 V2

V3V4

Pj Pj+1

Figure 9.6: Left: Depth information can be extracted from a perspective projection of a 3D
parallelogram using its foreshortened edges. This is impossible for a triangle. Right: We assume
each grid cell is a parallelogram in 3D space, which gives 3 linear constraints: V1 + V3 −V2 −
V4 = 0. With four unknowns, the parallelogram can be reconstructed up to a global scale.
With more constraints than unknowns, estimating the depths of a grid with shared vertices is a
well-defined problem.
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Figure 9.7: Example reconstructions of synthetic shapes. The ground truth shapes are shown in
blue, while reconstructed shapes using Eqn. 9.3 are shown in red. Our method can reconstruct
both ruled and non-ruled surfaces.
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(a) Input image with grid

(b) 3D reconstruction

(c) Image rectification with 2D grid

(d) Rectification w/o foreshortening

(e) Shading estimation

(f) Final rectification w/o foreshortening and shading

Figure 9.8: 3D reconstruction and image rectification. (a) Original image with the 2D coordinate
grid (Section 9.2); (b) 3D reconstruction from a single image (Section 9.3); (c) Image rectifica-
tion using the 2D coordinate grid. Notice the foreshortening and shading effects. Using 3D
information, (d) foreshortening can be rectified (Section 9.4.1) and by exploiting a reflectance
model (e.g. Lambertian), (e-f) shading can be estimated and normalized to yield an albedo image.
(Section 9.4.2).

(a) (b) (c)

Figure 9.9: Example 3D reconstruction of text printed on a sphere. (a) The input image; (b) The
estimated 2D coordinate grid (Section 9.2); (c) 3D reconstruction using Eqn. 9.3.
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(a) (b)

Figure 9.10: Failure cases in line tracing. (a) Tracing with large step (s = 5) yields line skipping
(red solid line). Tracing with small step (s = 3) tends to suffer less from line skipping (blue
dotted line). (b) Line tracing on complicated text layout with images. The algorithm tends to
follow straight lines in non-text region.
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Figure 9.11: Histograms of white spaces in the documents before (red dotted lines) and after
(blue solid lines) shading removal. The five histograms correspond to the five document images
from top to bottom in Fig. 9.12. The intensity distributions on the computed albedo images are
significantly narrower after shading removal.
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Input image with grid 3D reconstruction Image rectification Insets

(a)

(b)

(c)

(d)

(e)

Figure 9.12: Image rectification and 3D reconstruction from a single curved document image.
First column: Estimated 2D coordinate grid; Second column: 3D reconstruction. Third col-
umn: Image rectification. Fourth column: The insets show comparisons between rectified
images (orange rectangles) and original distorted images (blue rectangles). The geometric defor-
mations, text foreshortening and shading effects are all removed by our system. (Please zoom in
to see the details.)
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Chapter 10

Depth from Turbulence

The visual manifestations of clear air turbulence occur often in our daily lives — from hot kitchen
appliances like toasters and ovens, to plumes of airplanes, to desert terrains, to roads on hot
summer days, to the twinkling of stars at night. The shimmering and distortion observed are
caused by random fluctuations of temperature gradients near warm surfaces. In this case, the
image projection of a scene point viewed through turbulence is no longer a deterministic process,
and often leads to poor image quality.

Several works in remote sensing and astronomical imaging have focused on image correction
through turbulence. For atmospheric turbulence, the distorted wavefronts arriving from stars can
be optically corrected using precisely controlled deforming mirror surfaces, beyond the angu-
lar resolution limit of telescopes [67]. For terrestrial imaging applications, recent works have
proposed to digitally post-process the captured images to correct for distortions and to deblur
images [28, 31, 35, 41, 122]. Optical flow based methods have been used further to register the
image sequences to achieve modest super-resolution [84].

While previous works have focused on what turbulence does to vision, this article addresses
the question of what turbulence can do for vision. In other words, what information about the
scene can be extracted when viewed through turbulence? Based on the physical model of wave
propagation, we study the relationship between the scene depth and the amount of distortion
caused by homogeneous turbulence over time (see an intuitive illustration in Fig 10.1). Then, we
extend this relationship to more practical scenarios of finite extent and height-varying turbulence,
and show how and in what scenarios we can estimate depth ordering, depth discontinuity and
relative depths. Although general non-homogeneous turbulence does not directly yield depth
information, its statistical property can be used along with a stereo camera pair to improve long-
range depth estimation.

The input to our techniques is a sequence of short exposure images captured from a stationary
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Figure 10.1: Random fluctuations in the refractive index of a medium cause the perturbation of a
light wave radiating from a scene point. The resulting image projections of the scene point over
time are also random. The longer the distance of a scene point from the camera, the greater the
variance of its image projection.
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camera (or camera pair). Depth cues are obtained by first tracking image features and then by
computing the variances of tracker displacements over time. Any feature tracking algorithm can
be applied, such as that based on template matching. We verify our approaches in both laboratory
and outdoor settings by comparing against known (ground truth) distances of the scene from
the camera. We also analyze how the depth cue estimation is influenced by the parameters of
the imaging system, such as aperture, exposure time and the number of frames. The depth
information computed is surprisingly accurate, even when the scene and camera are not within
the turbulent region. Hence, we believe that turbulence should not be only viewed as “noise”
that an imaging system must overcome, but also as an additional source of information about the
scene that can be readily extracted1.

10.0.1 Related Work

Characterizing the structure of turbulence is one of the open problems in physics, with a long
research history, starting from the early methods of Kolmogorov [44]. For this work, we refer-
ence multiple textbooks by Kopeika [47], Tatarskii [93], Ishimaru [38] and Roggemann [67]. To
our knowledge, the key physical model (Eqn. 10.3) in these texts has not been exploited by the
computer vision community.

Direct measurement of turbulent media has received much attention in fluid dynamics. Shad-
owgraph and Schlieren imaging [79, 109] techniques are often used to capture the complex air-
flow around turbines, car engines and airplanes wings. Image displacement observed in turbulent
media has been shown to be proportional to the integral of the refractive index gradient field. This
property is exploited in a tomographic approach [33] with many views to compute the density
field of the medium from image displacements of known backgrounds. This approach, called
Background Oriented Schlieren (BOS) imaging [65, 104, 105], has emerged as a new technique
for flow visualization of density gradients in fluids. Such approaches have also been used to ren-
der refractive volumes of gas flow [4]. Similarly, there has been work [60] that aims to estimate
the shape of a curvy refractive interface between two media (water and air, for example) using
stereo and known backgrounds. In contrast, our work exploits image displacements to extract
the depths cues of an unknown scene using an image sequence captured from a single viewpoint.

1While not the focus of this work, the short exposure (noisy) and distorted input images can be combined using
a dense image alignment approach [99] to improve image quality.
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Figure 10.2: Turbulence due to aircraft plumes or road surfaces on a hot day causes shimmering,
distortion and blurring in images.
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10.1 Characterization of Turbulence

Turbulence causes random fluctuations of the refractive index n(r, t) at each location r in the
medium and at time t. From Kolmogorov’s seminal work [44, 45], n(r, t) forms a random field
in space-time and can be characterized by a structure function D(r1, r2, t) that computes the
expected squared difference of refractive index at two distinct spatial locations r1 and r2:

D(r1, r2, t) = 〈|n(r1, t)− n(r2, t)|2〉 . (10.1)

For stationary turbulence, the structure function is constant over t, i.e., D(r1, r2, t) = D(r1, r2).
Stationary turbulence is homogeneous if D(r1, r2) = D(r), where r = r1 − r2. This means that
the structure function depends only on the relative displacement of the locations. Homogeneous
turbulence is isotropic if the structure function is spherically symmetric, i.e., D(r) = D(r),
where r = ||r||. From dimensional analysis, Kolmogorov shows that the structure function fol-
lows a 2/3 power law [93]:

D(r) = C2
nr

2/3, (10.2)

where, the constant C2
n reflects the strength of turbulence. For non-homogeneous turbulence, C2

n

is a function of absolute location. A non-turbulent atmosphere has C2
n = 0.

In general, the strength C2
n of turbulence depends on a variety of environmental and physical

factors, such as temperature, pressure, humidity and wavelength of light, which in turn depend on
the time of day (less during sunset and sunrise, more at mid-day), cloud cover (less during cloudy
day and more during cloudy nights), and wind patterns. An empirical relationship between these
factors and refractive index changes can be found in Kopeika’s textbook [47].

10.2 Image Formation through Turbulence

When an electromagnetic wave propagates through a turbulent medium, it undergoes random
fluctuations in both amplitude and phase. The perturbed phase determines the angle-of-arrival
(AoA) of the light incident at the camera, which in turn fixes the projected location of the scene
point in the image (Fig. 10.3). Mathematically, the propagation of an electric field under the
influence of the turbulence structure function in Eqn. 10.2 can be obtained by solving Maxwell’s
equations. Since most surfaces and sources of interest to computer vision are at finite distances
from the camera and produce divergent waves, we will consider the propagation of spherical
waves. Then, following the derivations in [38, 47], the variance 〈α2〉 of the angles-of-arrival of
the waves from a scene point at distance L from the camera is obtained by integrating along the
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./aoa2-eps-converted-to.pdf

Figure 10.3: The phase difference of an incident wave (e.g., the phase of point B leads that of A)
at the aperture determines the angle-of-arrival α (AoA) and in turn, the center of the diffraction
kernel, i.e., the location of the projected scene point in the image plane.

line of sight:

〈α2〉 = 2.914D−1/3

∫ L

0

C2
n(z)

( z
L

)5/3

dz, (10.3)

where, D is the diameter of the aperture. The actual fluctuation 〈δ2〉 of the projected image
location can be computed using the relation δ = f tanα where, f is the focal length of the
camera. For small angles, δ ≈ fα .

In the following, we will discuss three important special cases of the above image formation
model. We will address the general case of non-homogeneous turbulence in Section 10.6. First,
consider a scenario where both the camera and the scene of interest are immersed in a homo-
geneous turbulence medium (for example, a road scene with vehicles on a hot summer day), as

162



./twocases-eps-converted-to.pdf

Figure 10.4: Image formation through turbulence. (a): Both the camera and the scene are im-
mersed within a homogeneous turbulence region. (b): The camera and/or scene are outside the
turbulence region.

illustrated in Fig. 10.4(a). Since C2
n is a constant, we can integrate Eqn. 10.3 to obtain:

〈α2〉 = 2.914D−1/3C2
n

∫ L

0

( z
L

)5/3

dz

=
3

8
K2
nL, (10.4)

where, K2
n = 2.914D−1/3C2

n. So, the variance of projected positions of the scene point in the
image plane over time is directly proportional to the distance L between the scene point and the
camera. Setting aside the issue of spatial resolution, this linear relationship determines depth
with constant precision for all distances within the turbulence region. By comparison, in stereo,
the depth precision falls as the square of the distance from the camera to the scene.
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In many scenarios, like the plume of an aircraft or a steaming kettle, the source of turbulence
may not extend over the entire line-of-sight from the camera to the scene. In this case, we will
assume local homogeneity, i.e., C2

n is a constant within a short range and zero elsewhere. For
convenience, we decompose L into three parts: L = Ls + Lt + Lc, as illustrated in Fig. 10.4.
Ls is the distance between the scene point and the turbulence region, Lt is the path length within
the turbulence region and Lc is the distance between the camera and the turbulence region. Once
again, we can integrate Eqn. 10.3 to obtain the analytic form:

〈α2〉 =
K2
n

L5/3

∫ Lt+Ls

Ls

z5/3dz

= K2
n

3

8L5/3

(
(Lt + Ls)

8/3 − L8/3
s

)
. (10.5)

Letting 〈α2
relative〉 = 3

8L5/3

(
(Lt + Ls)

8/3 − L8/3
s

)
allows us to write in short:

〈α2〉 = K2
n〈α2

relative〉. (10.6)

If we fix the camera location Lc and the turbulence region Lt, and move the scene point away
from the camera, the variance is a monotonically increasing function with respect to L, as shown
in Fig. 10.5. From this, we observe that the variance increases even if the scene moves away
from the turbulence region. This is a counter-intuitive result that cannot be explained by ray
optics (hence, the usage of “waves” in this article). The variance, however, converges to a fixed
value 〈α2

∞〉, when the scene point is infinitely far away from the camera (e.g., a distant star).
This can be seen by taking the limit Ls →∞ in Eqn. 10.6 to obtain:

〈α2
∞〉 = K2

n lim
Ls→∞

3

8L5/3

(
(Lt + Ls)

8/3 − L8/3
s

)
= K2

nLt. (10.7)

In this case, the light emitted by the scene point can be modeled as a plane wave.

Height-varying turbulence. In practice, the air turbulence may not be homogeneous in the
entire field of view. For example on an asphalted road, the turbulence is more severe near the
road surface than away from it. We model this effect by writing the strength of turbulence as a
smoothly varying function of height h, yielding a separable model:

〈α2〉 = K2
n(h)〈α2

relative〉. (10.8)

Typically, C2
n(h) (or K2

n(h)) decreases with respect to h.
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Figure 10.5: The variance of the angle-of-arrival predicted by Eqn. 10.6 under different experi-
mental settings. For each curve, the camera and the extent of turbulence (Lc and Lt) are fixed,
while the scene depth (Ls) is varied. Each curve represents a monotonically increasing function
of scene depth that converges to a fixed variance (at infinity). The dashed black line is the linear
relation in the special case when Lc = Ls = 0.

10.3 Depth cues from an Image Sequence

In this section, we investigate what depth cues can be obtained from the observed variance of
image displacements of scene points. The input to all our algorithms is a sequence of images of a
stationary scene viewed through turbulence by a fixed camera. Once the images are captured, we
track a sparse set of distinctive feature points on the scene. While any feature-tracking algorithm
may be used, we adopt a simple frame-to-frame template matching approach. To handle image
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blurring caused by turbulence, we also add blurred versions of the templates. The variance of the
image location of each tracked point is then computed.

For a fixed configuration of camera and extent of the homogeneous turbulence region, the
model (Eqn. 10.6) is a monotonic smooth function of scene depth. Thus, both depth ordering and
discontinuities (like two buildings far apart) of the scene can be readily obtained from variances.
In particular, detecting such discontinuities can be useful to segment the scene into different
depth layers (planes).

On the other hand, a more quantitative measurement, such as relative depth between scene
points, requires additional assumptions. Note that absolute depth cannot be computed without
knowing the turbulence strength, C2

n. Thus, without loss of generality, we will assume Lt = 1.
When the camera and scene are immersed in turbulence (Lc = Ls = 0), the linear variance-depth
relationship (Eqn. 10.4) allows us to obtain relative depth by taking variance ratios to eliminate
the unknown constant K2

n. In general, if Lc, Ls and K2
n are known, depth can be obtained by

inverting Eqn. 10.6. By monotonicity of the model, only a unique depth can be obtained from a
given variance.

However, in practice, these constants are usually unknown. Thus, for N scene points we
have N + 3 unknowns (N depths plus Lc, Ls and K2

n) but N equations. Consider a scene with
repetitive patterns (windows on a building, street lamps, cars parked on a street), then the depths
{Li}Ni=1 of the N points follow an arithmetic sequence:

Li = L0 + i∆L (10.9)

Thus,N depths {Li}Ni=1 are parameterized by 2 variables, L0 and ∆L. As a result, only 2+3 = 5

scene points suffice to estimate (using numerical optimization) both the relative depths and the
extent of the turbulence region.

In the case of height-varying turbulence, we need to estimate the height-varying function
K2
n(h) as well as the scene depth. Fortunately, if the height is aligned with the y-axis of the

image, then separating depth from height can be achieved by treating each scan-line individually.

10.4 Laboratory Experiments

We performed several experiments in a controlled laboratory environment to validate the theory.
A flat cooking griddle of size 52cm × 26cm is used to produce and maintain uniform heat of up
to 400 degrees Fahrenheit, across the flat surface. In the experiment setup (Fig. 10.6), multiple
such griddles are placed side by side to increase the path-length of turbulence. The three griddles

166



./setup-eps-converted-to.pdf

Figure 10.6: Experimental setup: Three adjacent electric cooking griddles are heated up to 400
degrees Fahrenheit to create hot air turbulence. A camera observes a scene through the turbu-
lence. By varying the temperature, we can emulate a variety of outdoor turbulence strengths and
path-lengths of several kilometers.
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set at maximum temperature produce roughly the same shimmering as a kilometer of natural
turbulence in the desert. By controlling the number of griddles and the temperature, a wide
range of turbulence strengths seen outdoors can be emulated. In all experiments, variances are
estimated by capturing a 20-30 seconds long video sequence of the scene at 30 fps.

10.4.1 Quantitative Evaluation

Variance-depth linearity within turbulence region. 50 equally-spaced LEDs are placed 5 cm
above the hot griddle (in the turbulence region). One end of the stick is closer to the camera while
the other is farther away. Fig. 10.7 shows the variances computed for each LED projection onto
the image plane averaged over 3 experimental trials. Consistent with the model (Eqn. 10.6) when
Ls = Lc = 0, indeed the relationship between the depth (represented by the indices of LED)
and the variances is linear with a high correlation coefficient of 0.987. A similar experiment that
estimates the depth of a curvy line on a sphere is also shown in Fig. 10.8.

Identifying depth discontinuity. In this experiment, we place two checker-board patterns verti-
cally at two distinct depths (Lnear and Lfar) and measure variances of the key points on the scene.
We conducted four experiments with different settings of Lnear and Lfar (Table 10.1). All were
captured in the same setting of f/11 with exposure 1/2000, while the zoom was varied to include
the entire scene within the field of view. Fig. 10.9 illustrates the variance discontinuity by two
separate parametric fittings of the key points on two checker-boards in one experiment. Clearly,
the depth discontinuity can be detected from the variance discontinuity.

Validation of the physics model (Eqn. 10.6). As shown in Fig. 10.9, due to height variations
of the turbulence, the variance changes smoothly over the y-axis. However, the variance ratio
computed by two points on two checker-boards at the same scan-line is independent of height
h, amount of turbulence C2

n and aperture diameter D. On the other hand, we can compute the
theoretical variance ratios using the ground truth value of L, Lc, Lt and model Eqn. 10.6,. The
measurement is consistent with the theory, validating the model in all four settings (Table 10.1)
that covers both cases where the scene is within and outside the turbulence region.

Depth estimation of equally spaced scene points. We estimate the depths of equally spaced
points using the method in Section 10.3. A horizontally slanted plane with a texture of a building
facade is placed behind the turbulence region. Fig. 10.10 shows the two views of the computed
variances at key points and the surface fits that demonstrate the near planar geometry. Assuming
Lt = 1 (length of turbulence region), relative depths of scene points can be computed. For
validation, the estimated relative depths are converted to absolute ones using the actual length
(Lt = 196 cm) of the turbulence region. The depth slope of the plane (∆L in Section 10.3) is
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Figure 10.7: Left: LEDs are immersed in the turbulence region. Right: The relationship be-
tween the variance of LED projections and their ground truth depths is very close to linear (cor-
relation coefficient is 0.987), and is consistent with the model (Eqn. 10.6).

No. Lc Lt Lnear Lfar Measured Predicted
Exp1 54 171 163 225 1.77 1.79
Exp2 74 173 183 382 3.60 3.52
Exp3 74 173 247 382 1.67 1.94
Exp4 74 173 247 320 1.56 1.55

Table 10.1: Columns 1-4 show the ground truth measurement (in centimeters) for the four
checker-board experiments. Columns 5-6 show the comparison between the measured (5th col-
umn) variance ratio and that predicted by the model (6th column). In all but one case, the mea-
surements are very accurate.
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Figure 10.8: Ellipse fitting on a video sequence capturing a curve on the sphere through tur-
bulence. Ideally the projection of the LEDs forms an ellipse on the image plane. Left:
A sample frame of the captured video sequence. Right: Average error in fitting is 12.6%.
The average fitting error between a covariant x and dependent variable y is computed using√∑

i(ŷi − yi)2/
√∑

i(ȳ − yi)2, where ŷi is the fitted value of point xi and ȳ is the mean of y.
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Figure 10.9: Experiments with two planar checker-boards placed at different distances from the
camera. The experimental setting can be found in Table 10.1. The first column shows a sample
distorted frame, the second and third columns show two views of the variance distribution of the
corners of the checker-boards. From the figures, variances changes due to depth discontinuity
and height is obvious. We detect the discontinuity and fit smooth surfaces to the variances. The
ratio of variances of the two depth planes are then computed and quantitatively compared to the
ground truth (Table 10.1).
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Figure 10.10: Depth estimation of equally spaced points on an inclined planar scene. A sample
distorted frame due to turbulence is shown on the left. On the right, are two views of the variance
distribution of a sparse set of key points and a smooth function fit illustrating the near planar
geometry. From this, it is possible to predict the relative depths of the scene points (assuming the
length of the turbulence region to be 1). For evaluation, the relative depth estimated is converted
to actual depth by using the actual length (196cm) of turbulence region. The estimated slope of
the plane is 0.517 cm per 10 pixels in horizontal direction, compared to the ground truth value
0.529 cm per 10 pixels.
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Figure 10.11: Influence of imaging parameters on the variance of the corners of the checker-
board pattern. (a) The variance estimates converge with sufficient frames, showing that the
turbulence is stationary during measurement. (b) The measured variance is similar for differ-
ent exposures, except for very long exposures where the tracking performance degrades due to
motion blur. (c) Consistent with the model, the measured variance decreases significantly with
aperture size. (d) Insufficient image resolution results in much lower variance estimation.

estimated as 0.517 cm per 10 pixels in the horizontal direction, compared to the ground truth
value of 0.529 cm per 10 pixels.

10.4.2 Influence of Imaging Parameters

The accuracy of the measured variance depends on many imaging parameters. Larger aperture
reduces the depth-of-field, higher exposure time adds unwanted motion blur, and low image
magnification causes greater quantization of the variance. Here we present an empirical study.

The estimate of the variance converges as the number of captured frames increases. Fig. 10.11(a)
shows the variance of the 10 key points in Exp.1 with different numbers of frames used. In our
experiments, stable estimates are achieved using frames captured over 30 seconds using a 30 fps
camera. To study the effects of aperture, we vary the f/# from f/3.7 to f/11, fix the expo-
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sure time at 1/8000s, and zoom at the highest level. Fig. 10.11(c) shows a significant decrease
in variance as predicted by the model in Eqn. 10.6. The plot in Fig. 10.11(b) shows the vari-
ances computed by changing only the exposure time. Fig. 10.11(d) shows the effect of varying
focal-length. Here we normalize the variances by the pixel size of the checker-board patterns to
remove the effects of image magnification. In these experiments, we have tried to maintain the
same noise level in the camera by maintaining similar image brightness (by varying illumination
intensity). From these plots, aperture size is the main factor that affects the estimation quality.
However, since we take variance ratio as a depth measure, the effect of aperture size is reduced
(in theory, independent). Also, for very low magnification (spatial resolution) or long exposure
time (1/30s), the variance estimate shows large degradation.

In addition, camera shaking can cause false displacements leading to poor variance estimates.
In general, this is a hard problem and we will set it aside for future work.

10.5 Outdoor Experiments

Besides indoor experiments in a controlled environment, we also conducted experiments out-
doors in a desert region. The imaging setup used for the experiments consists of a Prosilica
GC1380H camera and a Celestron C6 Telescope. The focal length is 1500mm. A one-to-one
ratio optical relay is used between the telescope and the camera, without changing the focal
length of the main telescope. We placed two standard contrast targets 110 meters and 160 meters
away from the camera and captured sequences of 300-400 images during mild turbulence (morn-
ing) and strong turbulence (afternoon). We used a 30mm aperture in the morning and a 10mm
aperture in the afternoon, and varied the exposure times between 0.5ms and 1ms.

We tracked a sparse set of points through each image sequence and rejected outliers such
as the static trackers of the dirt on the CCD and high-variance erroneous trackers near locally
repetitive textures. The computed variances of the trackers converge quickly.

Table 10.2 shows the mean variance computed from all the trackers of each image sequence,
for each depth and imaging setting. Since the amount of variance is relatively invariant to expo-
sure change, we further averaged the variance over different exposures. If we take the variance ra-
tio between 110m and 160m, we obtain 1.6857 for 30mm aperture in the morning and 1.5785 for
10mm aperture in the afternoon. Both are close to the ratio of two distances 160/110 = 1.4545,
verifying the dependence of turbulence model on the depth. Besides, Table 10.2 also shows the
standard derivation of variances in each video sequence. The low standard deviation shows that
the turbulence is indeed homogeneous on surfaces that are perpendicular to the optical axis. Note
we do not consider the height variation of turbulence, since compared to the laboratory setting,
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Figure 10.12: Sample frames of the outdoor experiments in the morning and afternoon. The
targets are placed at different distances from the camera.
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Morning Capture. Target 110meters away, 30mm aperture.
0.50ms exposure 0.75ms exposure 1.00ms exposure

4.32± 0.49 4.89± 0.46 4.79± 0.45
Average: 4.67

Morning Capture. Target 160meters away, 30mm aperture.
0.50ms exposure 0.75ms exposure 1.00ms exposure

8.23± 0.88 7.61± 0.67 7.75± 0.64
Average: 7.86

Afternoon Capture. 10mm aperture and 5ms exposure
Target 110meters away Target 160meters away

43.68± 7.50 69.37± 9.49

Table 10.2: Average variance (and its standard derivation) of trackers for outdoor experiment.
The variance ratios between 160m and 110m turbulence video are 7.86/4.67=1.6857 (30mm
aperture captured in the morning) and 69.37/43.68=1.5785 (10mm aperture captured in the af-
ternoon), close to the distance ratio (160m/110m=1.4545), verifying our model.

the target occupies a much narrower field of view.

10.6 Jitter-stereo in Nonhomogeneous Turbulence

Until now, we have addressed depth estimation under homogeneous and simple height-varying
turbulence. However, due to unpredictable temperature and humidity fluctuation, turbulence
cannot be guaranteed to be homogeneous over a large area and a long period of time. In this
case, it is impossible to estimate depth using the model without knowing the turbulence structure
function. Instead, we will exploit a general statistical property of turbulence along with a stereo
camera pair to improve long-range depth estimation.

Recall that binocular stereo estimates the depth of a scene point by computing scene disparity
across two views. If a scene point is far away compared to the stereo baseline, the disparity
may be less than one pixel and the depth estimation may fail. However, in the presence of
turbulence, the location of the scene point “jitters” around its true location in the image. But how
do we estimate the true location of a scene point without turbulence? It has been observed that
distribution of (even non-homogeneous) turbulence distortions is close to zero-mean. This is true
even if the variance of each scene point is different. Thus, the mean positions of the tracked scene
points are their most-likely positions when there is no turbulence. Furthermore, estimating mean
locations of trackers allows us to obtain the disparity possibly with sub-pixel accuracy, helping
in long-range depth estimation with a short baseline. This approach is also similar in spirit to
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Swirski et. al [92] that estimates correspondences in stereo using underwater caustics patterns.

In order to experimentally verify our approach, we captured two image sequences of a planar
scene 110m away from different view points, with baseline of less than 1m. The two sequences
were captured at different times when the turbulence was significantly different. We tracked
a common sparse set of scene points in the two views and compute the mean locations. We
also verified that the distribution of tracker displacements are zero-mean in all our experiments
(see Fig. 10.13). The disparities between the mean-locations of corresponding trackers are then
estimated. Note that the disparity of a scene point on a plane is a linear function with respect
to its x and y coordinates on the image. The linear fit is strong with a correlation coefficient
of 0.976 and is significantly better than computing disparities on a per-frame basis, as shown in
Fig. 10.14.

10.7 Comparisons with Depth-from-X

This work introduces turbulence as a new cue for scene depth. So, it is instructive to discuss the
parallels and differences between depth from turbulence and other depth-from-X approaches in
computer vision.

Structure from motion (SFM): SFM relies on estimating the pixel disparity across different
views of the scene that reduces with depth. In the case of turbulence, variance of projected scene
point is measured from the same camera position over time and monotonically increases with
scene distance. Thus, while SFM is suited for shorter distances (for a fixed baseline), depth from
turbulence is better in general for a longer range and/or stronger turbulence. But if the scene
is outside the turbulence region, the depth precision degrades in the asymptotic region of the
variance curve (Fig. 10.5). At the same time, both approaches share the same issues with finding
and tracking corresponding features.

Depth from defocus or diffusion (DFD): In both cases, the point-spread function varies across
the scene. The extent of the observed blur monotonically increases with distance from the sensor
in the case of turbulence and distance from the focal/diffuser plane in the case of DFD [37, 120].
Depth from turbulence requires capture of a temporal sequence of images, and is similar to
moving a pinhole across the aperture of the lens to compute depth [1].

Structure from bad weather: Perhaps depth from fog or haze [61] is most similar in spirit to
depth from turbulence. These approaches also use a single viewpoint, provide measures that
are more reliable for scenes with long distances, and are (mostly) independent of the scene re-
flectance properties. That said, there are also fundamental differences. Turbulence is a statistical
and temporally varying phenomenon, where depth cues are due to phase variations of the in-
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Figure 10.13: Distribution of x and y displacement of trackers in outdoor image sequence, com-
puted over all trackers and all frames from an image sequence in the afternoon. Consistent with
our assumption, they follows a zero-mean distribution.
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Figure 10.14: Jitter stereo in turbulence. (a) (Uncalibrated) disparity computed from two video
frames at a certain time, due to turbulence, the disparity is noisy. Over the 319 frames, the
correlation coefficient varies from 0.632 to 0.954 with mean being 0.884 and standard derivation
being 0.054. (b) (Uncalibrated) disparity using mean tracker locations. The disparity is clearly
linear (correlation coefficient is 0.976).
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cident light rather than the intensity variations as in fog. The environmental illumination (air
light) provides a strong cue for depth from fog, whereas the specific illumination geometry of
the environment plays little or no part in depth from turbulence.
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Chapter 11

Human Pose Estimation

Human pose estimation is a challenging task in computer vision with many practical applications.
For a scenario using a single image, the goal is to estimate the location of each human part. To
avoid the curse of dimensionality, one popular approach is to build individual detectors for each
human part. Spatial reasoning between parts is then utilized to filter the often noisy responses of
the individual detectors. It is critical to design the spatial model so that it captures a versatile yet
plausible set of poses.

In this chapter, we use a simplified version of our bottom-up hierarchical framework for this
problem. Fig. 11.1 shows our tree-based hierarchy. As mentioned in Sec. 7.2.2, each vertex j
contains a position variable uj and a type variable zj . We train the model within a traditional
max-margin framework and evaluate it on standard benchmarking dataset. Furthermore, we visu-
ally explore the obtained model in two ways: the quality of pose samples and the reconstruction
error of recovered poses from labeled testing datasets. First, we sample the pose mixture (type)
from the learned model and reconstruct the poses to judge their realism. Most of the sampled
poses can be recognized as human-like, while the samples from pairwise tree models [113] are
often not natural, showing our model captures global and high-order relationships of poses rather
than only local information. Besides, our method reconstructs the pose well and is better than
reconstruction using nearest neighbor. This shows that our model can capture a large variation
of human poses and generalize well.

Following the seminar David Marr’s work [56], many recent works [91, 107] also use hier-
archical models for pose estimation. In particular, [91] proposes part types that can be shared
among different configurations. In their settings, each mixture component of a latent node also
corresponds to one HoG template, modeling the image appearance covered by the descendants
of that node. While their main focus is detection, we argue that this is not the ideal strategy for
pose estimation, since appearance could vary exponentially with respect to the number of parts,
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Figure 11.1: (a) The hierarchical model for human pose estimation. All nodes with dashed
boundaries are latent variables that are on top of body parts (leaves). (b) The latent tree model.
For any part j, we want to estimate its location pj = (xj, yj) in the image, and its type zj . Each
type of the object specifies a certain configuration and appearance of that object, as shown in
Fig. 11.2(a). (c) The 6 latent and 26 leaf nodes in our three-layered hierarchy.

especially for a latent top node (e.g. root node) and cannot be captured by a few mixtures. In
our model, only the leaf nodes receive image evidence. The latent nodes handle only geometric
deformation and compatibility between parent/child types. Therefore, the number of poses that
our model can capture is not the number of mixtures of the root node, but instead the product of
mixtures of all nodes.

In terms of numerical evaluation, the performance of our model is on par with the state-of-
the-art on three benchmark datasets (PARSE [64], Leeds Sports Dataset [39] and UIUC peo-
ple [101]). Besides, we also show substantial improvement (∼ 45%) over recent work [107] that
builds a hierarchical loopy model for pose estimation.

11.1 Setting up The Hierarchy

We use a hierarchical tree to represent the articulation of human pose, as shown in Fig. 11.1.
In this hierarchy of 33 vertices, there are two sets of nodes, the leaf nodes (26 vertices) and the
latent nodes (7 vertices, with dashed outlines). Each leaf node is the primitive body part (i.e.,
lower arm, upper arm, palm) that has been manually labeled. Each latent node covers a subset of
primitive parts that are spatially nearby (i.e. left arm is a latent node that covers lower and upper
arms and palm). Finally, the root node represents the entire human body.

As mentioned in Sec. 7.2.2, each vertex Vj has a 2D location variable uj and a type variable
zj . This is different from many previous works [3, 22] and similar to [113].

For a leaf node such as the palm, its type variable zi means the appearance of that node could
be different, i.e., open/close palm, vertical/horizontal arm (Fig. 11.2(a)). We use type variable
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rather than a transformation of a simple template (e.g. rotation/scaling as in [3]), since these
transformations usually cannot capture complicated appearance changes, and it is not always
necessary to enumerate all the rotation/scalings that are rare in both training and test sets.

For a latent node or intermediate node like arm, its type variable zj means that both the spatial

configuration and the preferred types of its children could be different for different hidden state
of the arm (Fig. 11.2(b)). The compatibility between parent type zj and child type zk, as usual,
can be used to encode constraints such as “an upright arm cannot contain a horizontal lower
arm”, or “the hand of an upright arm could be open or closed, facing the camera or not”, which
will be mentioned below.

11.2 Training and Inference

11.2.1 Objective Function

The tree-based hierarchical model defines a graphical model with an objective associated with it:

min
{hi}

J({hi}) = min
{hi}

∑
j

∑
k∈ch(j)

θjk(hj, hk) +
∑
k∈[T ]

θk(hk) (11.1)

where the pairwise score θjk(hj, hk) can be written as the summation of the deformation term
and the comparability term:

θjk(hj, hk) = θdjk(uj;k(hj),uk, zk) + θcjk(zj, zk) (11.2)

where uj;k(hj) = uj + δujk(zj) is the predicted location from parent j to child k. It consists of
two terms θdjk and θcjk.

The deformation term. The deformation term θdjk is defined as:

θdjk(uj;k,uk, zk) = ak(zk)dist(uj;k,uk) (11.3)

It computes the misalignment between the predicted location uj;k and the actual location uk of
Vk. In the training process, ak(zk) is determined from training data. The larger ak(zk), the more
penalty it will impose on the error between uj;k and uk, which corresponds to smaller bound of
gjk = uk − uj;k.

The compatibility term. The compatibility term θcjk(zj, zk) encodes how much the parent
type zj and the child type zk are compatible, which is a soft version of zj ∼ zk as defined in
Eqn. 7.3 and Eqn. 7.4.
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Using types, our model enables appearance to be shared among different latent node (parent)
types. For example, templates of open/close hand can be shared in both upright and side-way
straight arms. Furthermore, our model can specify what kind of sharing is allowed and what is
prohibited (e.g. upright arm cannot have a horizontal lower arm). Such information is encoded
in the compatibility term θcjk(zj, zk), which is a function between parent type zj and child type
zk.

On the other hand, appearance sharing in [113] is more restricted. In their model, an open
palm pointing up in an upright arm cannot be shared (set as the same type) with an open palm in
a side-way straight arm (Fig. 11.2(b), type I vs. type IV). This is because by Eqn. 4 in [113], the
predicted relative location of the lower arm is determined by the type of palm. If these two open
palms are shared (assigned the same type), then the relative location of the lower arm is forced
to be the same, which is not the case in general.

For example (Fig. 11.2(b)), for the constraint “an upright arm cannot contain a horizontal
lower arm”, we can simply set θcjk(zj = upright, zk = horizontal lower arm) = −∞. If we
want to allow “the hand of an upright arm could be open or closed, facing the camera or not”,
then we can set θcjk(zj = upright, zk = open hand) = θcjk(zj = upright, zk = close hand),
meaning they are equally probable.

With the compatibility term θcjk(zj, zk), one can also model high-order relationships between
multiple children. Indeed, by having a common latent parent with large number of mixtures, it is
possible to model any joint distribution of children’s types and locations.

The Unary term. Besides, for each leaf Vk, there is also an unary term θk(Vk) = wk(zk)
Tφ(I,pk),

where φ(I,pk) is the HoG feature extracted from location pk of image I . Note that wk is a func-
tion of zk, meaning that there is a different template for different type of the part.

11.2.2 Training Procedure

The tree structure of our three-layered hierarchy is shown in Fig. 11.1(c). Given training images
with groundtruth location pi(k) for leaf node k, for each latent part j (e.g. arm), we first pick
one of its child’s location as its anchor point (e.g. shoulder), from which we get the location
uij . Then we concatenate the relative spatial configuration uik − uij of all its children in a vector,
cluster them into groups, and estimate the parent-child offsets δujk(·) accordingly within each
group. The clusters are shown in Fig. 11.3. Similarly, we can also build a four-layered hierarchy
by subdividing the set of leaf nodes into 2 further subsets.

Given the parent-child relative shifts, we follow the standard max-margin paradigm and use
latent SVM to discriminatively and jointly train the hierarchical structure, for both the part de-
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tector and the weights for hierarchical model. The formulation is as follows:

min 1
2
wTw + C

∑
i ξi (11.4)

s.t. maxV i siw
TΦ(I i, V i) ≥ 1− ξi (11.5)

ξi ≥ 0, ak(·) ≥ 0 (11.6)

where, w is the overall weight obtained by concatenating the parameters wk(·), ak(·) and θcjk(·, ·)
ak(·) together and si is the positive/negative label of each image i. Note the weights ak(·) for
the distance have to be non-negative. For all our experiments, we set the regularization constant
C = 0.02. For optimization, we have used the primal-dual procedure in [113].

11.2.3 Inference Procedure

For efficient inference within the model, all nodes follow a tree structure and standard message
passing approach can be used. For node Vj , the incoming messagemk→j(uj, zj) and the outgoing
message mj(uj, zj) are computed as:

mj(uj, zj) =
∑

k∈ch(j)

mk→j(uj, zj) (11.7)

mk→j(uj, zj) = min
zk

[
min
uk

mk(uk, zk) + θdjk(uj, zj,uk)

]
+ θcjk(zj, zk) (11.8)

Note that if the parameter ak(zk) is only dependent on zk, then during inference, the message
mdt
k (v, zk) after distance transform

mdt
k (v, zk) = min

uk
mk(uk, zk) + ak(zk)dist(uk,v) (11.9)

can be shared among different zj and the detection procedure is much faster.

11.3 Empirical Evaluations

Datasets: We use three benchmark datasets to evaluate our approach: PARSE dataset [64],
Leeds Sports Dataset (LSP) [39] and UIUC people [101]. PARSE dataset contains 305 images
with 100 for trainings and 205 for testing. Leeds Sports Dataset contains 1000 training images
and 1000 test images, showing a variety of pose changes. UIUC people dataset contains 346 for
training and 247 for testing. Similar to previous works, we use the criterion proposed in [23] for
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Figure 11.3: Mixture of each hidden node in the hierarchical model learnt from different datasets.
The part labeled on top corresponds to the common node of the mixtures.
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performance evaluation, i.e., a part is regarded as correct if its both end-points occur within 50%

of the labeled segment length from their true locations.

11.3.1 Exploring the Hierarchical Model

We first study how well our hierarchical model, once trained on a dataset, can represent the spatial
configuration of the human body. For this, we (1) sample spatial configurations from the model
and observe whether the samples are human-like, and (2) project a given spatial configuration
onto the solution space of the model, and check whether the projection (reconstruction) is close
to the original configuration.

These two operations show complementary effects of a spatial model. A weakly constrained
spatial model, due to its flexibility, may perform extremely well on the reconstruction task, but
once sampled, may generate poses that are not human-like. On the other hand, a model with
strong spatial prior (e.g. traditional pictorial structure [22]) will generate human-like poses with
small variations. But it may fail in reconstructing rare poses accurately. As we shall show, our
model achieves a balance between these two criteria.

Sampling. To sample the model, we omit the unary potentials (image evidence), the defor-
mation score θdjk(p̃k,pk, zk) and only use the binary potentials θcjk(zj, zk) between parents and
children. The truncated score function now becomes:

Jtrunc(Z) =
∑
j

∑
k∈ch(j)

θcjk(zj, zk) (11.10)

where Z is the collection of all type variables of all nodes. Once samples of Z are obtained,
Eqn. 7.3 (with gj = 0) is used to deterministically generate the human poses in a top-down
manner. As a hierarchical tree model, exact sampling is possible.

Fig. 11.6 shows that our model can generate reasonable human-like poses with large vari-
ations. In comparison, sampling from [113] often results in weird-looking poses. This means
that [113] only encodes local connectivity between nearby parts and does not encode their high-
order spatial relationships. In particular, fixing the root type and setting T → 0 gives the most
likely pose of that type, as shown in Fig. 11.4. This roughly corresponds to the pose clusters
the hierarchical model can capture. However, within each cluster, significant variation is still
allowed by changing the type variables below the root node. In contrast, previous works on hi-
erarchical structure [91, 107] all associate a type variable with a template restricting the possible
pose variation each node can handle. Alternatively, we can also fix one type of a latent node
(e.g. leg, head, arm) and sample the remaining nodes. As shown in Fig. 11.5, our method gives
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(a) PARSE (b) Leeds Sports (c) UIUC people

Figure 11.4: The most probable poses of our model for given root types. We can see it encodes
a variety of pose changes. In particular, Leeds Sports contain more varied poses than PARSE or
UIUC sports.

(a) Fixed Right Leg

(b) Fixed Head

(c) Fixed Left Arm

Figure 11.5: Pose sampling from the hierarchical model learned from Leeds Sports Dataset with
one latent node fixed. We can see our model is able to sample human-like poses.

human-like extrapolation of poses.

Reconstruction: For reconstruction, we take one pose from the test sample, allowing the part
detectors to fire only at the groundtruth location, and run the detection procedure. Once the best
detection is obtained, we can reconstruct the pose with just the type variables but no deformation.
Such a reconstructed pose has zero deformation score. The closer the reconstructed pose is to
the groundtruth pose, the better the spatial model can fit the given pose.

Our model, once trained on PARSE, can reconstruct poses in the test set of PARSE, better
than Nearest-Neighbor. The average error for three-layered structure is 7.19, for four-layered it
reduces to 6.55. Our error is lower than 14.63, which is computed from the Nearest-neighbor
approach that fits the best global pose in training to the test image. A more flexible model [113]
achieves slightly lower error (5.39) for 10 mixture components of each part. For their original
model with 5-6 mixtures in each part, the reconstruction error is 7.47. This shows that our model
achieves a good balance between creating human-like poses and reconstructability.
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Hierarchical model [from PARSE]

Pairwise Tree model [Yang and Ramanan]

Hierarchical model [from Leeds Sports Dataset]

Pairwise Tree model [Yang and Ramanan]

Figure 11.6: Comparison between samples drawn from our hierarchical model and from [113],
both learned from PARSE dataset (top) and from Leeds Sports dataset (bottom). Our model
captures large variation of poses (especially for Leeds Sports Dataset) and generates reasonable
human-like poses.
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Dataset Method Torso Head U. Leg L. Leg U. Arm L. Arm Total

PARSE

JE [39] 85.4 76.1 73.4 65.4 64.7 46.9 66.2
YR [113] 97.6 93.2 83.9 75.1 72.0 48.3 74.9

Ours, 3-layer 97.1 92.2 85.1 76.1 71.0 45.1 74.4
Ours 4-layer 96.1 92.7 81.2 71.0 69.5 39.0 71.0

Leeds

JE [39] 78.1 62.9 65.8 58.8 47.4 32.9 55.1
Ours (first 200 training) 93.7 86.5 68.0 57.8 49.0 29.2 58.8

Ours (1000 training, 5 models) 95.8 87.8 69.9 60.0 51.9 32.9 61.3
JE [40] (11000 training) 88.1 74.6 74.5 66.5 53.7 37.5 62.7

UIUC
Wang et.al [107] 86.6 68.8 56.3 50.2 30.8 20.3 47.0

Our method 98.8 96.8 78.7 64.2 62.2 39.5 68.5

Table 11.1: Performance in PARSE, Leeds Sports and UIUC people dataset. For each dataset,
the performance of our method is on par with the state-of-art.

11.3.2 Performance on Benchmark Datasets

For PARSE dataset, our performance (in terms of PCP, the percentage of parts being correctly
detected) on the test set (205 images) is 73.8%, while [113] achieves 74.9% as reported in their
paper. Fig. 11.7 shows that our hierarchical model can handle large pose variations and also often
tackle double-counting problem using high-order relationship among parts. See Table 11.1 for
the correctly detected ratio for each part.

For Leeds Sports dataset, with only first 200 training images, we achieve 57.9% while the
state-of-art achieves 55.2% [39]. Table 11.1 shows the per-part performance.

For UIUC dataset, our hierarchical model outperforms hierarchical poselets [107] by 45%, as
shown in Table 11.1. The loopy structure and poselet over large image region may be the reason
that hurts their performance. See Table 11.1 for the correctly detected ratio for each part.

As shown in Table 11.1, a deeper hierarchy may hurt the performance since more parameters
need to be trained (estimated), resulting in overfitting. However, a shallow one may fail to gener-
alize well since one latent node will be required to encode a large number of joint configurations
of children.

From our experiments, we conclude that our methods are on par with the state of the art
reported for two datasets and improve significantly over other hierarchical methods. In the future,
we will attempt to learn the hierarchical structure automatically from the training data. In terms
of applications, we will apply this approach to tracking of human actions in videos.
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Figure 11.7: Comparison between our method (Left) and [113] (Right) on some test images
of PARSE dataset. Note that our model can handle large pose variation and possibly double-
counting.
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Figure 11.8: Comparison between our method (Left) and [113] (Right) on Leeds Sports dataset.
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Chapter 12

Conclusion and Future Work

This thesis proposes a unified framework and three algorithms with theoretical guarantees to
estimate the parameters W of the following deformation model:

I(W (x)) = I0 (12.1)

where the deformed image I and the template I0 are known. The thesis starts from analyzing
Eqn. 12.1 in details and then points out three fundamental limitations for conventional app-
proaches, i.e., optimization-based and learning-based approaches:

• Local Optimum A local search of a d-dimensional objective function cannot guarantee
global optimality.

• The Nyquist Limits To achieve worst-case ε error, O(1/εd) samples are needed to fit a
mapping on a d-dimensional manifold.

• The Curse of Dimensionality For a mapping on a d-dimensional manifold, the number of
samples needed grows exponentially with respect to d.

The reason for these two fundamental limitations is that, traditional approaches fail to use domain-
specific knowledge on the level of designing optimization and learning procedures.

For this, this thesis proposes three algorithms, Data-Driven Descent, Top-down and Bottom-
up Hierarchical Model, to solve Eqn. 12.1. All approaches have global optimality guarantees
under Lipschitz conditions that regulate the appearance difference ∆I of deformed images and
the parameter changes ∆p.

193



12.1 Data-Driven Descent

The first proposed algorithm, Data-Driven Descent (Chapter 4), gives a solution to Eqn. 12.1
with O(Cd log 1/ε) sample complexity. It globally parameterizes W (x) as a linear combination
of a set of bases: W (x; p) = x + B(x)p, The basic idea is to use the group-like structure of
deformation: a deformed image is still deformed under an additional deformation. In particular,
a deformed image is less deformed if the estimated deformation is close to the true deformation.
Using this structure, two different deformation of a specific template can be related, creating
additional constraints for the high-dimensional mapping from deformed image to its parame-
ters. The approach is thus applied to water deformation and cloth deformation to estimate local
nonrigid deformations.

In general, Data-Driven Descent can be regarded as a procedure to minimize an objective
f(p, I) with respect to p:

p∗(I) = arg min
p
f(p, I) (12.2)

Here the optimal solution p∗(I) is a function of “evidence” I . In the scenario of image defor-
mation, p is the parameters to optimize while I is the deformed image. For single I , p∗(I) can
be found and memorized by a one-time exhaustive search. However, if I is given on the fly,
then how to quickly and accurately obtain p∗(I) becomes a nontrivial task. Optimization on the
fly gives suboptimal solutions while a predictive model I 7→ p∗(I) requires enormous training
samples.

Data-Driven Descent, for the first time, gives a balanced solution to this problem by using the
group-like structure of function f(p, I). From optimization point of view, it would be interesting
to check whether other functions have similar properties and can be efficiently optimized with
the help of data.

12.2 Top-Down Hierarchical Model

The second proposed algorithm, Top-Down Hierarchical Model (Chapter 6), improves on Data-
Driven Descent and gives a solution to Eqn. 12.1 with O(Cd

1 + C2 log 1/ε) sample complexity.
It locally parameterizes W (x) as a linear combination of local bases, each with a finite spatial
support. While the global deformation is first estimated using nearest neighbor like Data-Driven
Descent, finite supports of patches enable the deformation to be factorized into local patches
when the residual deformations becomes smaller. As a result, the sample complexity drops
double-exponentially when the algorithm proceeds, yielding a reduced sample complexity. Fur-
thermore, the required Lipschitz conditions are also relaxed since large patches only need to give
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a rough estimation while only the local patches take care of the final landmark precision.

In general, the Top-Down Hierarchical Model coincides with a context-dependent indepen-
dence in machine learning: a set of variables {p(k)} are independent of each other given evi-
dence I only in a local region ||p||∞ ≤ C0, and is highly correlated elsewhere. In Top-Down
Hierarchical Model, all p(k)s are deformations at different local patches. Such structures are
prevailing in decision trees, in which left and right branches of trees splitting different region of
the space, lead to totally different ways of handling data. The difference is that in our model,
such structures are discovered in the model and hard-wired into the algorithm, while in decision
trees the structures are statistically learned from substantially more training samples.

As a future work, I believe context-dependent independence relationship is abundant in other
models and can be formally discovered after detailed analysis. Conceptually, it is like “divide-
and-conquer” in algorithm design. This helps us in finding a suitable approach for this problem
and may largely reduce their sample complexity.

12.3 Bottom-Up Hierarchical Model

The Bottom-Up Hierarchical Model proposed in Chapter 7 further reduces the sample complexity
by building a layerwise invariant representation that gradually reduces the degrees of freedom
(DoFs) from bottom to up, by discarding information unrelated to high-level decisions. This
improves on Top-Down Model whose top-most layer accumulates all the DoFs and dominates
sample complexity, and finally breaks the curse of dimensionality.

Furthermore, in the bottom-up model, Lipschitz conditions are only assumed on the leaf node,
while in the top-down case, Lipschitz conditions are assumed true at every patch of different
scales and layers. This makes the bottom-up model more appealing since its assumptions are
more likely to be true. The reason is that in the bottom-up model, top-level representations are
computed from bottom levels and can be fully characterized quantatively by relating the Lipschitz
constants (αj, γj, rj) for parent-child pairs.

It is not very satisfactory that Alg. 8 is proposed with nice theoretical guarantees while for
practical problems like human pose estimation, a traditional tree-based graphical model is used.
As a future work, finding a training procedure to Alg. 8 is critical. The meaning of training
here, is to find a suitable hierarchical structure, a set of parameters including ḡj , δujk(·), anchor
point ah(j), weights on aggregation operator wjk (See Eqn. 8.6), so that the Lipschitz conditions
(Assumption 7.3.1) and global optimal conditions (Eqn. 7.110) hold.

It seems that we now have a lot to optimize. Fortunately, with the help of our analysis in
Sec. 7.3.2, parameters all have clear meanings. For example, according to the analysis, param-
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eters such as δujk(·) and ḡj are only related to the deformation field itself, and has nothing to
do with the template image I0. On the other hand, the choice of anchor point ch(j) and the
aggregation weights wjk are related to the distinctiveness and reliability of local part detections.
With these insights, the training procedure will become intuitive and decoupled.

On the contrary, current deep learning research trains billions of parameters jointly using a
huge optimization framework, without knowing the meaning of each parameters. This could
be potentially harmful due to two factors. First, the optimization may involve a search over
hierarchical structure, whose search space is enormously large. Second, even a good model is
found by a massive and yet lucky search, no insights into the model can be obtained. It would be
humiliating to declare that the human brain has been copied to the computer, and still we humans
do not know how it works.

Our bottom-up framework is not restricted to deformation modeling. For image classification
or scene understanding, the same intuition holds as well. Local and ambiguous information is
gathered in the local region and sent to the top level, where a global decision is made and is
propagated downwards. The key here is to determine which components are to be sent and
which are to be discarded.

12.4 Application-Specific Deformation modeling

Chapter 9 introduces a new system for correction of document warping using a single image.
Our method can be used to reconstruct and rectify documents of arbitrary smooth shapes, not re-
stricted to ruling surfaces as in previous works [51, 117]. In addition, it is language and content
independent and can deal with texts written in English, Chinese and Hindi. Many future works
follow from this work. Boosting the process speed of the system is crucial in time-sensitive ap-
plications such as mobile OCR. For book scanning that involve a video sequence of text images,
incorporating temporal information is important for faster processing and more accurate warping
estimation. Systematically modeling interactions between the horizontal and vertical directions
can potentially lead to more robust estimation. Finally, strong perspective is critical for success-
ful 3D reconstruction. In the case of weak perspective, more information, e.g., shading, can be
incorporated to yield better results.

Chapter 10 provides an initial attempt at understanding what depth cues can be extracted
from optical turbulence. We derived a simple relation between scene depths and variance of
the projected scene points under turbulence. Our experiments showed, somewhat surprisingly,
that accurate depth cues can be obtained from optical turbulence. There are several avenues of
future work including dense scene reconstruction and image super-resolution from the image
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sequence under turbulence. We wish to also study several other related physical phenomena.
The twinkling of stars is caused primarily due to the changes in amplitude of the incident wave
that are distance-related as well. Aside from temperature gradients, the chaotic movement of
a medium itself can cause turbulence. This type of phenomenon can occur due to under water
currents, due to strong wind flow in the upper atmosphere, and due to air flow around engines.
We wish to build upon this work to apply to these scenarios.
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Part IV

Appendix
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Chapter 13

Appendix A: Sampling within a Hypercube

Many of the theorems in this thesis are based on a design of sampling strategy so that for every
location p in the hypercube [−r, r]D, there exists at least one sample sufficiently close to it. Fur-
thermore, we want to minimize the number of samples needed for this design. Mathematically,
we want to find the smallest cover of [−r, r]D.

In the following, we provide one necessary and two sufficient conditions. The first is for
the general case (covering [−r, r]D entirely), while the second specifies the number of sam-
ples needed if p is known to be on a low-dimensional subspace, in which we could have better
bounds.

13.1 Covering the Entire Hypercube

Theorem 13.1.1 (Sampling Theorem, Necessary Conditions) To cover [−r, r]D with smaller

hypercubes of side 2αr (α < 1), at least b1/αDc hypercubes are needed.

Proof The volume of [−r, r]D is Vol(r) = (2r)D, while the volume of each hypercube of side
2αr is Vol(2αr) = (2r)DαD. A necessary condition of covering is the total volume of small
hypercube has to be at least larger than Vol(r):

NVol(2αr) ≥ Vol(r) (13.1)

which gives:

N ≥ Vol(r)

Vol(2αr)
=

1

αD
≥
⌊

1

αD

⌋
(13.2)
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Figure 13.1: Sampling strategies for Thm. 13.1.2 and Thm. 13.2.2. (a) Uniform sampling within
a hypercube [−r, r]D so that for any p ∈ [−r, r]D, there exists at least one training sample that
is αr close to p. (b) If we know that in addition to the constraint ||p||∞ ≤ r, p always lies
on a subspace of dimension d < D, then just assigning samples near the subspace within the
hypercube suffices.

Theorem 13.1.2 (Sampling Theorem, Sufficient Conditions) With d1/αeD number of samples

(α < 1), for any p contained in the hypercube [−r, r]D, there exists at least one sample p̂ so that

||p̂− p||∞ ≤ αr.

Proof Uniformly distribute the training samples within the hypercube does the job. In particular,
denote

n =

⌈
1

α

⌉
(13.3)

Thus we have 1/n = 1/d1/αe ≤ 1/(1/α) = α. We put training sample of index (i1, i2, . . . , id)

on d-dimensional coordinates:

p̂i1,i2,...,id = r

[
−1 +

2i1 − 1

n
,−1 +

2i2 − 1

n
, . . . ,−1 +

2iD − 1

n

]
(13.4)

does the job. Here 1 ≤ ik ≤ n for k = 1 . . . D. So each dimension we have n training samples.
Along the dimension, the first sample is r/n distance away from −r, then the second sample
is 2r/n distance to the first sample, until the last sample that is r/n distance away from the
boundary r. Then for any p ∈ [−r, r]D, there exists ik so that∣∣∣∣p(k)− r

(
−1 +

2ik − 1

n

)∣∣∣∣ ≤ 1

n
r ≤ αr (13.5)

This holds for 1 ≤ k ≤ D. As a result, we have

||p− p̂i1,i2,...,iD ||∞ ≤ αr (13.6)
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and the total number of samples needed is nD = d1/αeD.

13.2 Covering a Subspace within Hypercube

Now we consider the case that p lies on a subspace of dimension d, i.e., there exists a column-
independent matrix U of size D-by-d so that p = Uh for some hidden variable h. This happens
if we use overcomplete local bases to represent the deformation. Since each landmark is related
to two local bases, usually D/2 number of landmarks will give the deformation parameters p

with apparent dimension D.

In this case, we do not need to fill the entire hypercube [−r, r]D. In fact, we expect the
number of samples to be exponential with respect to only d rather than D.

Definition 13.2.1 (Noise Controlled Deformation Field) A deformation field p is called noise-
controlled deformation of order k and expanding factor c, if for every p ∈ [−r, r]D, there exists

a k-dimensional vector (k ≥ d) v ∈ [−r,−r]k so that p = f(v). Furthermore, for any v1,v2 ∈
[−r, r]k, we have:

||p1 − p2||∞ = ||f(v1)− f(v2)||∞ ≤ c||v1 − v2||∞ (13.7)

for a constant c ≥ 1.

Note that by the definition of intrinsic dimensionality d, v could be only d-dimensional and still
p = f(v). However, in this case, c could be pretty large. In order to make c smaller, we can have
a redundant k-dimensional representation h with k > d.

Many global deformation field satisfies Definition 13.2.1. For example, an affine deformation
field p defined on a grid has d = 6 and k = 8, no matter how many landmarks (D/2) there are.
This is because each component of p can be written as

p(k) = [λ1xk + λ2yk + λ3, λ4xk + λ5yk + λ6] (13.8)

for location lk = (xk, yk). Therefore, since any landmarks lk within a rectangle can be linearly
represented by the locations of four corners in a convex manner, the deformation vector p(k) on
lk can also be linearly represented by the deformation vectors of four corners (8 DoF):

p(k) = Akv =
4∑
j=1

akjv(j) (13.9)

with v is the concatenation of four deformation vectors from the four corners, 0 ≤ akj ≤ 1 and∑
j akj = 1. For any p ∈ [−r, r]D, v can be found by just picking the deformation of its four
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corners, and thus ||v||∞ ≤ r. Furthermore, we have for v1,v2 ∈ [−r, r]k:

||p1 − p2||∞ = ||f(v1)− f(v2)||∞ ≤ max
k

4∑
j=1

akj||v1(j)− v2(j)|| ≤ ||v1 − v2||∞ (13.10)

Therefore, c = 1.

Similarly, for deformation that contains pure translation and rotation (d = 3), we just pick
displacement vectors on two points (k = 4), the rotation center and the corner as v. Then we
have:

p(r, θ) = pcenter +
r

rcorner
R(θ)(pcorner − pcenter) (13.11)

= (I − r

rcorner
R(θ))pcenter +

r

rcorner
R(θ)pcorner (13.12)

where I is the identity matrix, R(θ) is the 2D rotational matrix and rcorner is the distance from
the center location to the corner. Here we reparameterize the landmarks with polar coordinates
(r, θ). Therefore, for two different v1 and v2, since r ≤ rcorner, we have:

||p1(r, θ)− p2(r, θ)||∞ ≤
∥∥∥∥(I − r

rcorner
R(θ))(pcenter,1 − pcenter,2)

∥∥∥∥
∞

(13.13)

+

∥∥∥∥ r

rcorner
R(θ)(pcorner,1 − pcorner,2)

∥∥∥∥
∞

(13.14)

≤ 2||pcenter,1 − pcenter,2)||∞ +
√

2||pcorner,1 − pcorner,2)||∞ (13.15)

≤ (2 +
√

2)||v1 − v2||∞ (13.16)

since | cos(θ)|+ | sin(θ)| ≤
√

2. Therefore,

||p1 − p2||∞ = max
r,θ
||p1(r, θ)− p2(r, θ)||∞ ≤ (2 +

√
2)||v1 − v2||∞ (13.17)

So c = 2 +
√

2 ≤ 3.5.

Given this definition, we thus have the following sampling theorem for deformation parame-
ters p lying on a subspace that is noise-controlled.

Theorem 13.2.2 (Sampling Theorem, Sufficient Condition for Subspace Case) For any noise-

controlled deformation field p = f(v) with order k and expanding factor c, with cSSd1/αed num-

ber of training samples distributed in the hypercube [−r, r]D, there exists at least one sample p̂

so that ||p̂− p||∞ ≤ αr. Note cSS = dcek
⌈

1
α

⌉k−d.
Proof We first apply Thm. 13.1.2 to the hypercube [−r, r]k. Then with d c

α
ek samples, for any
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v ∈ [−r, r]k, there exists a training sample vi so that

||v − vi||∞ ≤
αr

c
(13.18)

We then build the training samples {pi} by setting pi = f(vi). Therefore, from the definition
of noise cancelling, given any p ∈ [−r, r]D, there exists an v ∈ [−r, r]k so that p = f(v). By
the sampling procedure, there exists vi so that ||v − vi||∞ ≤ α

c
r, and therefore:

||p− pi||∞ ≤ c||v − vi||∞ ≤ αr (13.19)

setting p̂ = pi thus does the job. Finally, note that

⌈ c
α

⌉k
≤ dcek

⌈
1

α

⌉k−d ⌈
1

α

⌉d
(13.20)

So setting cSS = dcek
⌈

1
α

⌉k−d suffices (since dabe ≤ daedbe).
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