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How do deep models work?

Input Output

“Some Nonlinear Transformation”This is an apple



Three Major Problems

Understanding how
Deep Models work

Expressibility

Optimization

Generalization

“Neural Network is a universal approximator”
“Deep Models can express functions more efficiently than shallow ones”

“Gradient vanishing/exploding”
“Gradient Descent might get stuck at saddle point / local minima”
“Can GD/SGD go to global optima? How fast?”

“Does zero training error often lead to overfitting?”
“More parameters might lead to overfitting.”

+ -
+-



Supervised Learning

Student Network
(Learnable Parameters)

Dataset
{(𝑥! , 𝑦!)}

Supervision



Student-Teacher Setting

Teacher/Oracle Network
(Fixed parameters)

Student Network
(Learnable Parameters)

No direct supervision

Supervision

By Network
Expressibility



Setting in this paper

Teacher/Oracle Network
(Fixed parameters)

(Over-realized) Student Network
(Learnable Parameters)

No direct supervision

1. Finite𝑚! and 𝑛!
2. Works for 𝑛" ≥ 𝑚"
(no crazy overparameterization)



Why Student-Teacher Setting?

Understanding how
Deep Models work

Expressibility

Optimization

Generalization

Provide a target function with bounded complexity

Student Specialization yields generalization

Study fine dynamics behaviors by comparing with teacher

+ -
+-

Our focus



Student Specialization

Input space

𝑤"∗

𝑤$ 𝜕𝐸$
𝜕𝐸"∗

𝜕𝐸#: Boundary of node k

𝜕𝐸$∗: Boundary of teacher node j

𝝐-alignment: sin +𝜃$# ≤ 𝜖 and 𝑏$ − 𝑏#∗ ≤ 𝜖
&𝜃!"

teacher j student k

Teacher/Oracle Student



Main Question

Student aligns
with the teacher

è Small training error leads to good generalization

? ? ?
Small gradient
at every training sample
during training



Notation

GD: expectation taken over the entire dataset
SGD: expectation taken over a batch

Layer l – 1
(𝑛()* nodes)

Layer l
(𝑛( nodes)

Weight update rule:

Activation

Gradient



Lemma1: Recursive Gradient Rule

Teacher mixture Student mixture

For layer 𝑙, there exists 𝐴%(𝑥) and 𝐵%(𝑥) so that:

Student gradient
Student gating

𝐴%(𝑥) and 𝐵%(𝑥) are piece-wise constant.



Start with A Demonstrative Case:

Two-layer Network, Zero Gradient and 
Infinite Samples



Assumption of the dataset

Infinite dataset!

(Region needs to have interiors)

No parametrized assumptions



Assumptions on Teacher Network

• Cannot reconstruct arbitrary teachers
• e.g., all ReLU nodes are dead

Distinct teacher nodes Teacher’s ReLU boundary are visible in the dataset



Definition of “Observation”

Teacher j is observed by a student k

Observer
boundary

Teacher boundary

𝐸#: Activation region of node k

𝐸#

𝜕𝐸$∗

𝑤#

𝜕𝐸!∗ ∩ 𝐸# ≠ ∅



Main results: Alignment could happen!

Teacher j is aligned with
at least one student k’

Teacher node j is observed
by a student node k

𝒈$ 𝑥 = 𝟎 for all 𝑥 ∈ 𝑅%
(all input gradients at layer 1 is
zero at all training samples)



Proof Sketch

The gradient of observer k is 0:

From Lemma 1, 𝑔# 𝑥 = 𝜶#&𝒇∗ 𝑥 − 𝜷#&𝒇 𝑥 = 0
If 𝑥 ∈ 𝐸# 𝜕𝐸"

𝐸$



Proof Sketch

The gradient of observer k is 0:

ReLUs are
linear independent!

Coefficients for teacher j
direction must be 0

From Lemma 1, 𝑔# 𝑥 = 𝜶#&𝒇∗ 𝑥 − 𝜷#&𝒇 𝑥 = 0
If 𝑥 ∈ 𝐸# 𝜕𝐸"

𝐸$



Proof Sketch

The gradient of observer k is 0:

ReLUs are
linear independent!

Coefficients for teacher j
direction must be 0

Teacher j is aligned with
at least one student k’
(sum of coefficients = 0)

From Lemma 1, 𝑔# 𝑥 = 𝜶#&𝒇∗ 𝑥 − 𝜷#&𝒇 𝑥 = 0
If 𝑥 ∈ 𝐸# 𝜕𝐸"

𝐸$



Why Over-realization helps?

student k’

More observers!



What happens to unaligned students?

Aligned
(can be one-to-many)



Simple 2D experiments
Student Boundary
Teacher Boundary



Simple 2D experiments Norm of the
fan-out weights.



L-shape curve at convergence

Student nodes

Normalized correlation of a student node
to its best correlated teacher (degree of specialization)

10x over-realization



Multi-Layer case: Alignment could happen!

teacher j
student k’ observer k

Piece wise constant, apply the same logic per region!

Layer 0

Layer 1

Layer 2

Layer 3

Lowest Layer



Training Progresses

Layer 1

Layer 2

Layer 3

Layer 4

For 2-layer:



Solutions can be connected by line segments

[Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs, Garipov et al. NeurIPS 2018]

[Explaining Landscape Connectivity of Low-cost Solutions for Multilayer Nets, Kuditipudi et al, 2019]
[Essentially No Barriers in Neural Network Energy Landscape, Draxler et al, 2018]



Student Solution 1

Un-specialized

Un-specialized

Student Solution 2

Linear segment

Linear segment

Linear segment

(a)

(b)

(c)

(d)

Our Explanation



More Realistic Case:

Student Specialization with 2-layers ReLU nets,
Small Gradient and Finite Samples



Dataset Assumption

𝐼$ 𝜖

𝐷 ∩ 𝐼! 𝜖 ≤ 𝜂𝜖 𝐷 + (𝑑 + 1)
Intuition: Data should be full-rank

Failure case
(low-rank)

2𝜖

𝐷 ∩ 𝐼! 𝜖 ≈ |𝐷|
But 𝜖 is small

Dataset 𝐷

For any hyper-plane band 𝐼$ 𝜖 :

Infinite case



Dataset-Teacher Compatibility

𝐷 ∩ 𝐼'∗ 𝜖 ≥ 𝜏𝜖 𝐷

𝐼(∗ 𝜖

Sufficient Data around teacher boundary

Infinite case

𝜕𝐸(∗



Observation in Finite Sample Case

The boundary
of observer k

the boundary
of node j

|𝐷 ∩ 𝐼! 𝜖 ∩ 𝐸#| ≥ 𝜅 |𝐷 ∩ 𝐼! 𝜖 |𝜕𝐸$∗

𝜕𝐸#

𝑤#

𝐼! 𝜖

𝐸#

A sufficient portion of boundary samples lie in 𝐸!

For a teacher node j, there exists a student k:

Observer
boundary

Teacher boundary

𝐸!

𝜕𝐸!∗

𝑤#

Infinite case



Data Augmentation

Teacher-agnostic augmentation
D’ = Aug(D)
|D’| = (2d+1)|D|

Original
Dataset 𝐷

Augmentation

Teacher-aware augmentation
D’ = Aug(D)
|D’| = 2m|D|

Original
Dataset 𝐷

Augmentation

𝒘𝒍
∗



Polynomial Complexity for 2-layered Network
To achieve 𝜖-alignment between a teacher j and student k 𝐾* = 𝑚* + 𝑛*

Teacher-agnostic augmentation
D’ = Aug(D)
|D’| = (2d+1)|D|

Teacher-aware augmentation
D’ = Aug(D)
|D’| = m|D|

Small gradient

Sample Complexity of original Dataset 𝐷



Polynomial Complexity for 2-layered Network
To achieve 𝜖-alignment between a teacher j and student k 𝐾* = 𝑚* + 𝑛*

Small gradient

𝛼#$: = 𝒗#3𝒗$∗large small

Strong teacher nodes are learned faster
1. Robust to Noise!😃
2. Hard to learn weak teacher nodes😢



Weak teacher nodes are slow to learn

Weak teacher Strong teacher

Epoch Epoch Epoch Epoch

Teacher j:



Polynomial Complexity for 2-layered Network
To achieve 𝜖-alignment between a teacher j and student k 𝐾* = 𝑚* + 𝑛*

Linear w.r.t 𝑑

No 𝑑

Teacher-agnostic augmentation
D’ = Aug(D)
|D’| = (2d+1)|D|

Teacher-aware augmentation
D’ = Aug(D)
|D’| = m|D|

Small gradient

Sample Complexity of original Dataset 𝐷



Teacher-Agnostic versus Teacher-aware

#Samples #Samples



Multi-layer case

teacher j
student k’ observer k

Layer 0

Layer 1

Layer 2

Layer 3

Lowest Layer

Small gradient Sample Complexity of original Dataset 𝐷

Q: #boundaries of hyperplanes (w.r.t network depth)



CIFAR 10
1. Train a conv teacher network of size 64-64-64-64.
2. [Construct Oracle] Prune the teacher network with [0.3,0.5,0.5,0.7] rate.
3. Then train a student network to mimic teacher‘s output (before softmax)

The student network has more parameters



Summary and Future Works
• Student Specialization in finite width and finite input dimension
• Polynomial sample complexity in 2-layer ReLU networks.
• Specialization in the lowest layer of deep ReLU networks
• Experiments verify the claims.

• Future Works
• Specialization at intermediate layers
• Generalization Bound
• Training Dynamics
• Connect with empirical practices (e.g., network distillations).



Thanks!


