Student Specialization in Deep ReLU Networks With Finite Width and Input Dimension

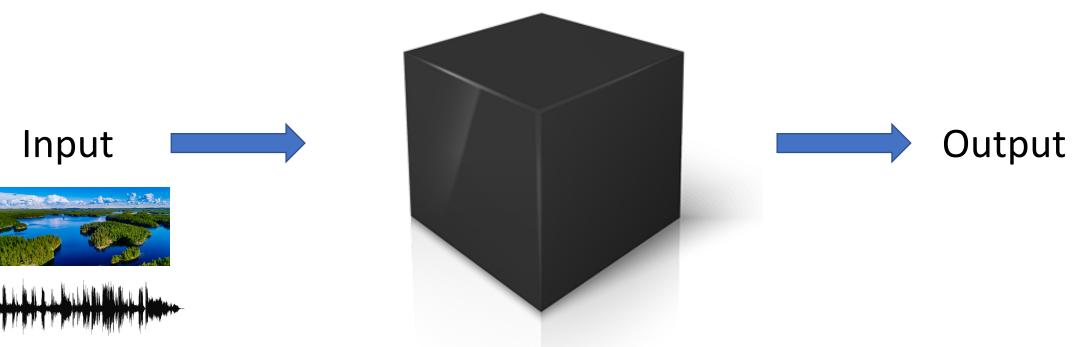
Yuandong Tian

Research Scientist and Manager Facebook AI Research

facebook Artificial Intelligence

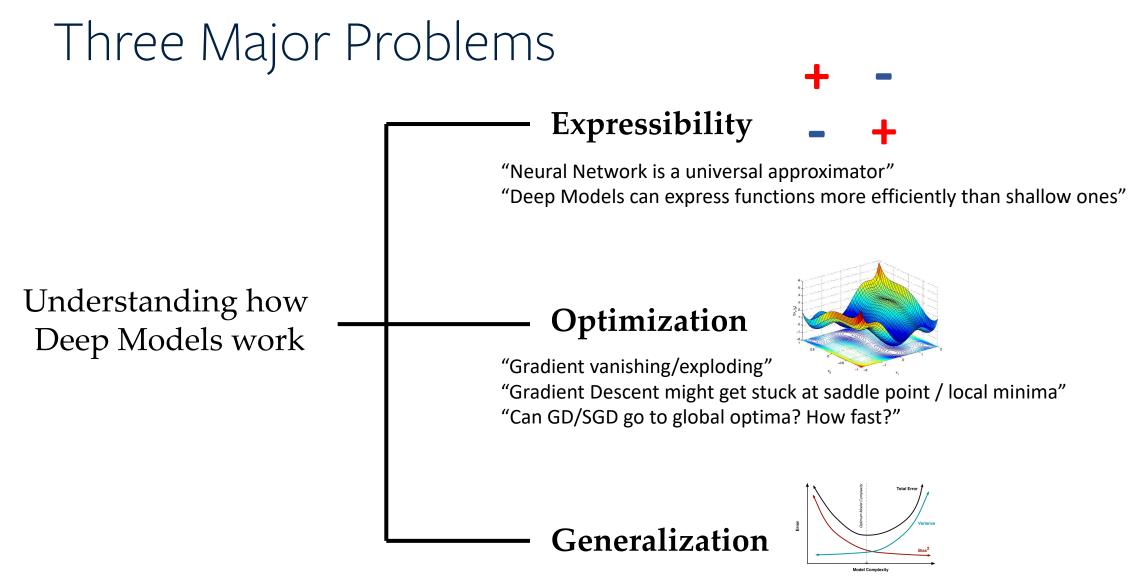
International Conference of Machine Learning (ICML), 2020

How do deep models work?



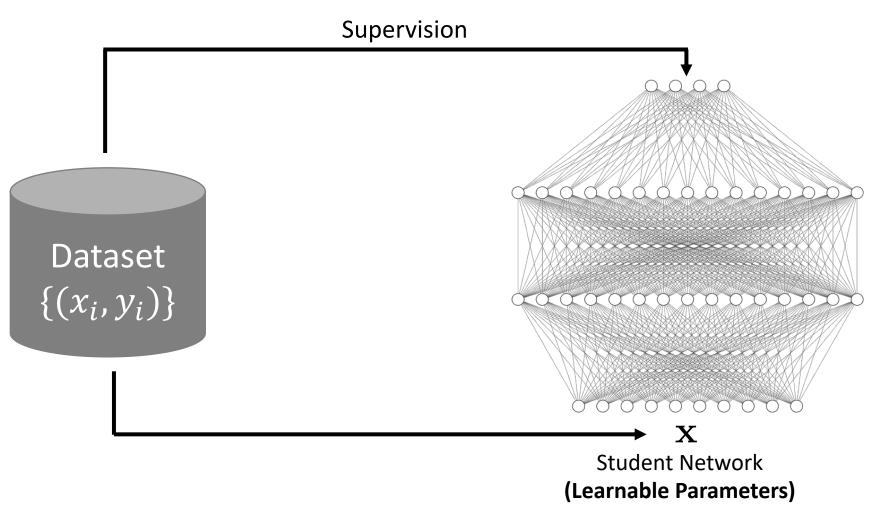
This is an apple

"Some Nonlinear Transformation"

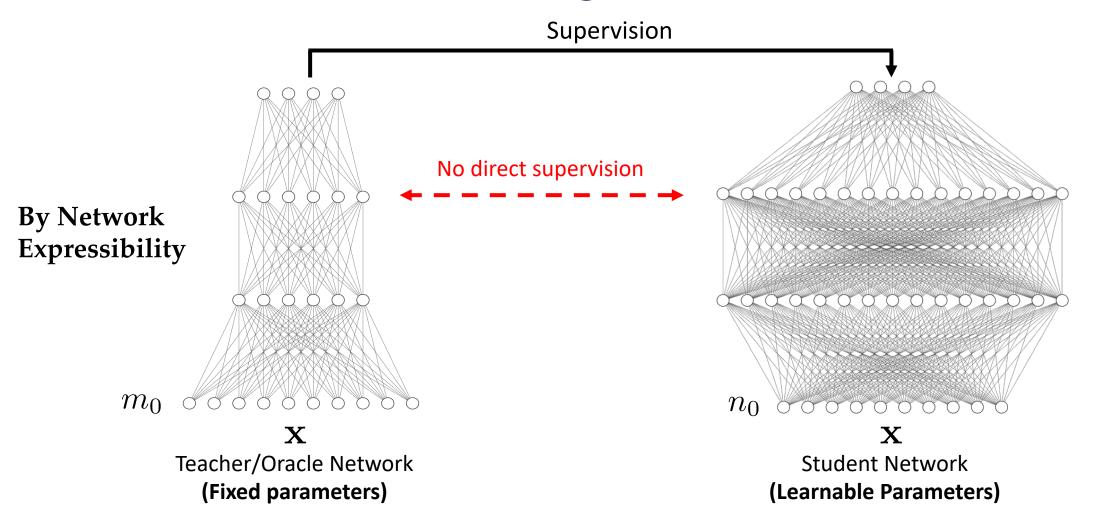


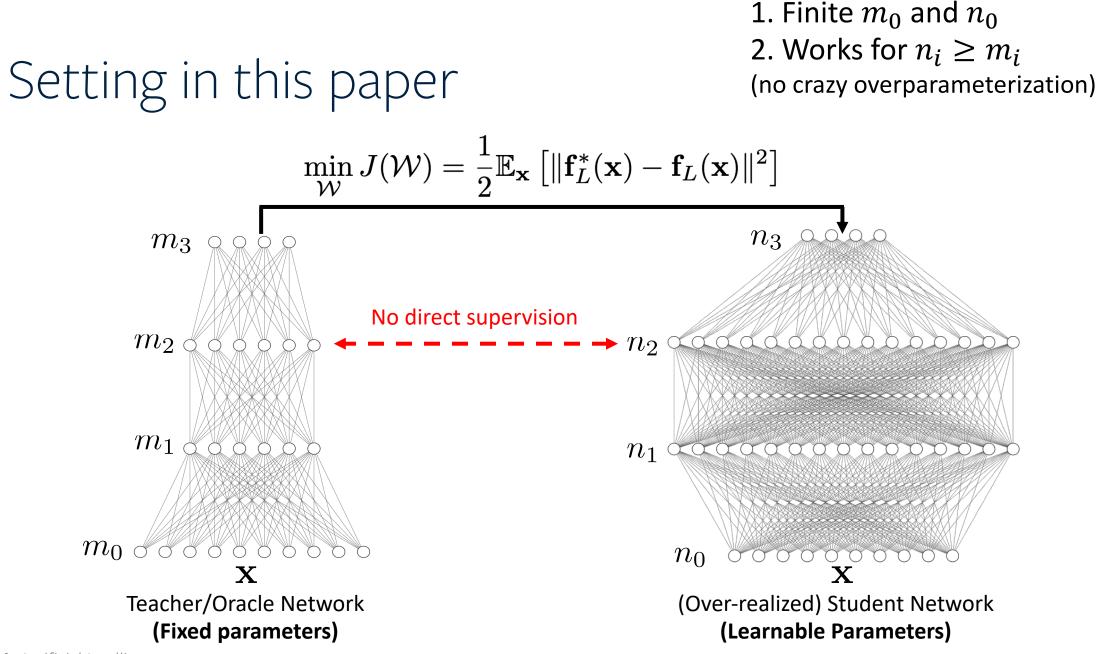
"Does zero training error often lead to overfitting?" "More parameters might lead to overfitting."

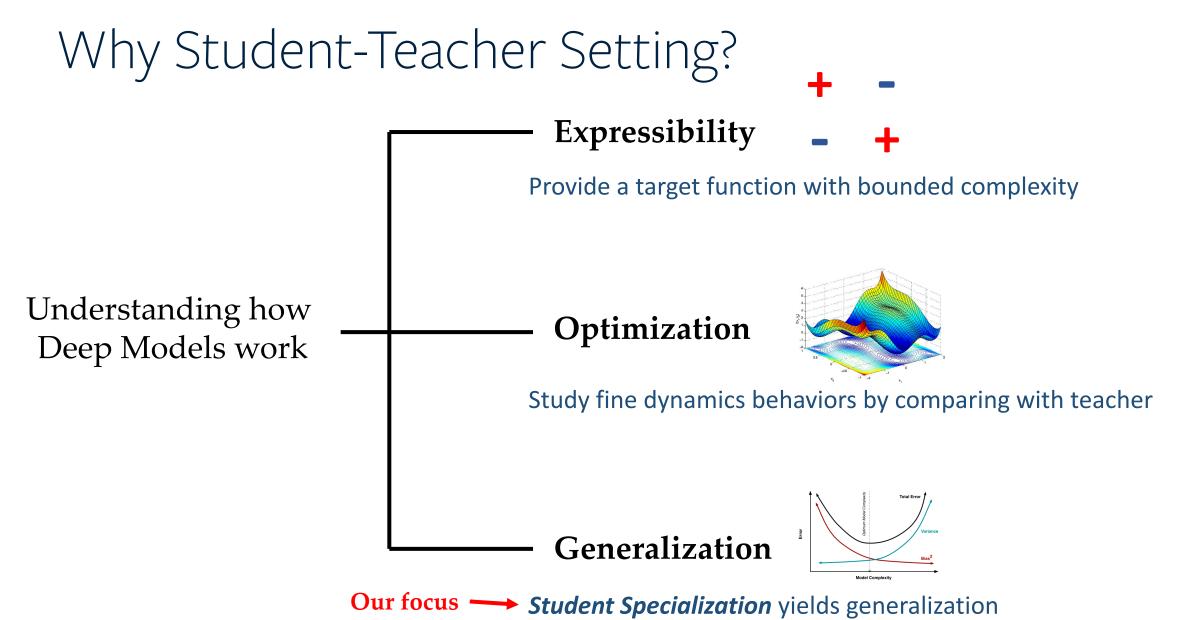
Supervised Learning

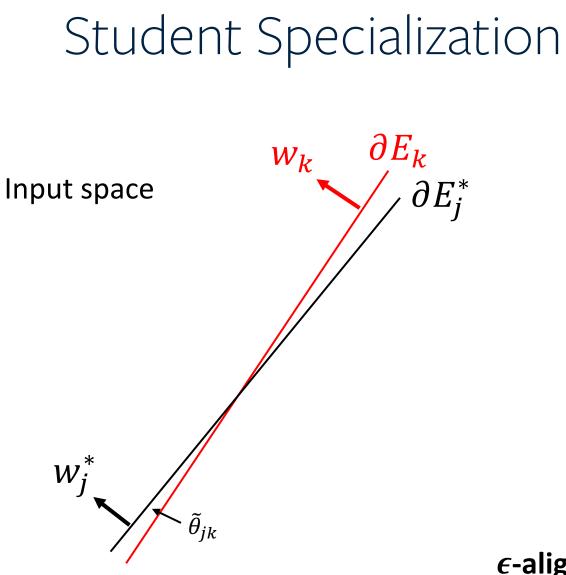


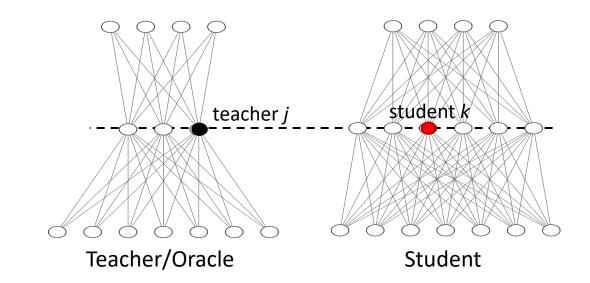
Student-Teacher Setting











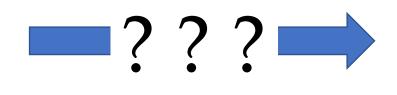
 ∂E_k : Boundary of node k

 ∂E_i^* : Boundary of teacher node *j*

$$\epsilon$$
-alignment: $\sin \tilde{\theta}_{jk} \leq \epsilon$ and $|b_j - b_k^*| \leq \epsilon$

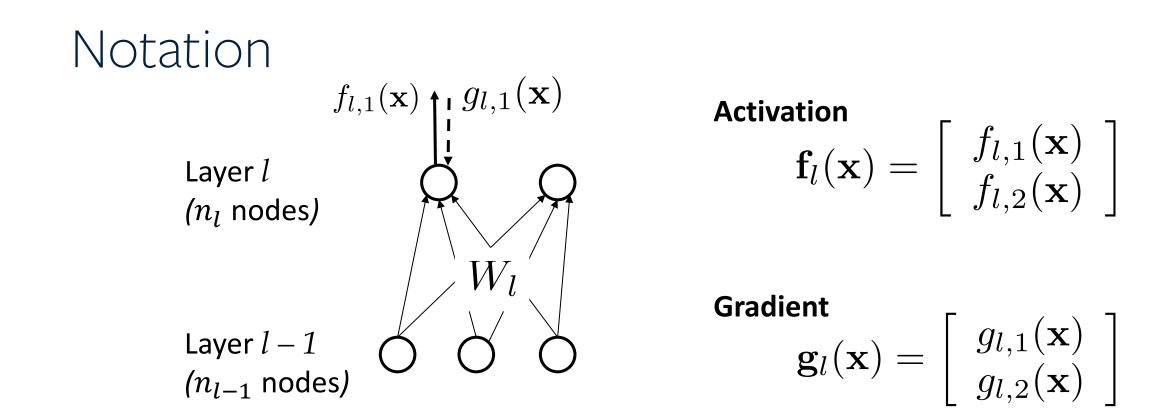
Main Question

Small gradient at every training sample during training



Student aligns with the teacher

Small training error leads to good generalization



Weight update rule:
$$\dot{W}_l = \mathbb{E}_{\mathbf{x}} \left[\mathbf{f}_{l-1}(\mathbf{x}) \mathbf{g}_l^{\mathsf{T}}(\mathbf{x}) \right]$$

GD: expectation taken over the entire dataset SGD: expectation taken over a batch

Lemma1: Recursive Gradient Rule

For layer l, there exists $A_l(x)$ and $B_l(x)$ so that:

$$\mathbf{g}_{l}(\mathbf{x}) = D_{l}(\mathbf{x}) \left[A_{l}(\mathbf{x}) \mathbf{f}_{l}^{*}(\mathbf{x}) - B_{l}(\mathbf{x}) \mathbf{f}_{l}(\mathbf{x}) \right]$$
Student gradient
Teacher mixture
Student gating
Student gating

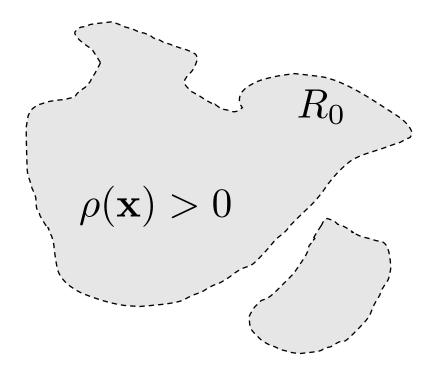
 $A_l(x)$ and $B_l(x)$ are **piece-wise constant.**

Start with A Demonstrative Case:

Two-layer Network, Zero Gradient and Infinite Samples

Assumption of the dataset

No parametrized assumptions

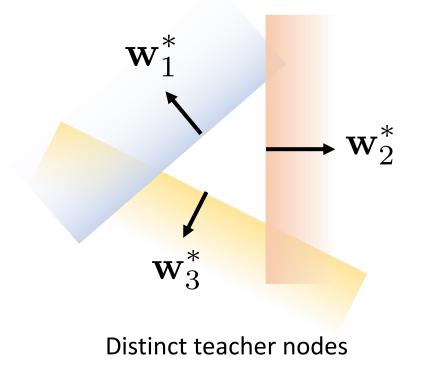


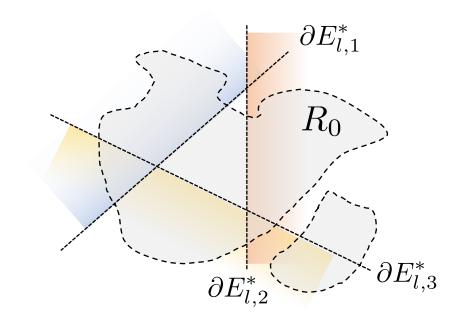
Infinite dataset!

(Region needs to have interiors)

Assumptions on Teacher Network

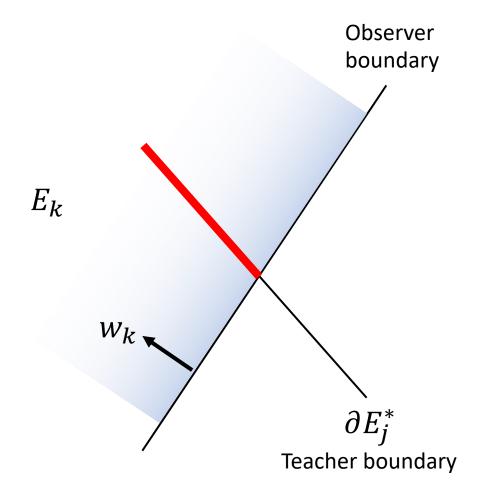
- Cannot reconstruct arbitrary teachers
 - e.g., all ReLU nodes are dead



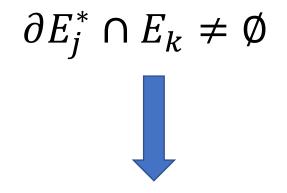


Teacher's ReLU boundary are visible in the dataset

Definition of "Observation"



 E_k : Activation region of node k



Teacher *j* is **observed** by a student *k*

Main results: Alignment could happen!

 $g_1(x) = 0$ for all $x \in R_0$ (all input gradients at layer 1 is *zero* at all training samples)

Teacher *j* is **aligned with** at least one student *k*'

Teacher node *j* is **observed** by a student node *k*

Proof Sketch

The gradient of observer k is 0:

From Lemma 1,
$$g_k(x) = \boldsymbol{\alpha}_k^T \boldsymbol{f}^*(x) - \boldsymbol{\beta}_k^T \boldsymbol{f}(x) = 0$$

If $x \in E_k$
 ∂E_j

 E_k

Proof Sketch

The gradient of observer k is 0:

From Lemma 1,
$$g_k(x) = \boldsymbol{\alpha}_k^T \boldsymbol{f}^*(x) - \boldsymbol{\beta}_k^T \boldsymbol{f}(x) = 0$$

If $x \in E_k$

 E_k

 ∂E_i

ReLUs are linear independent!

Coefficients for teacher *j* direction must be 0

Proof Sketch

The gradient of observer k is 0:

From Lemma 1,
$$g_k(x) = \boldsymbol{\alpha}_k^T \boldsymbol{f}^*(x) - \boldsymbol{\beta}_k^T \boldsymbol{f}(x) = 0$$

If $x \in E_k$
ReLUs are
linear independent!

 E_k

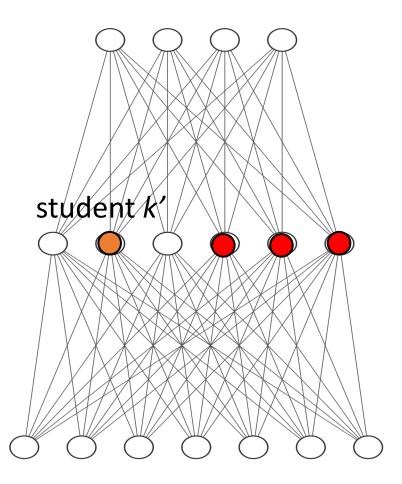
Coefficients for teacher *j* direction must be 0

Teacher *j* is aligned with at least one student *k'* (sum of coefficients = 0)

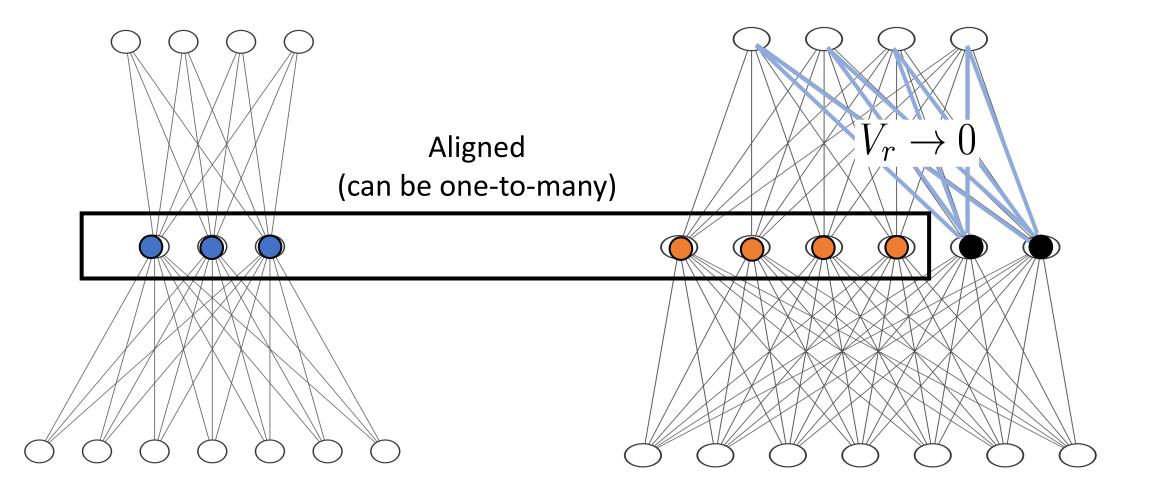
 ∂E_i

Why Over-realization helps?

More observers!

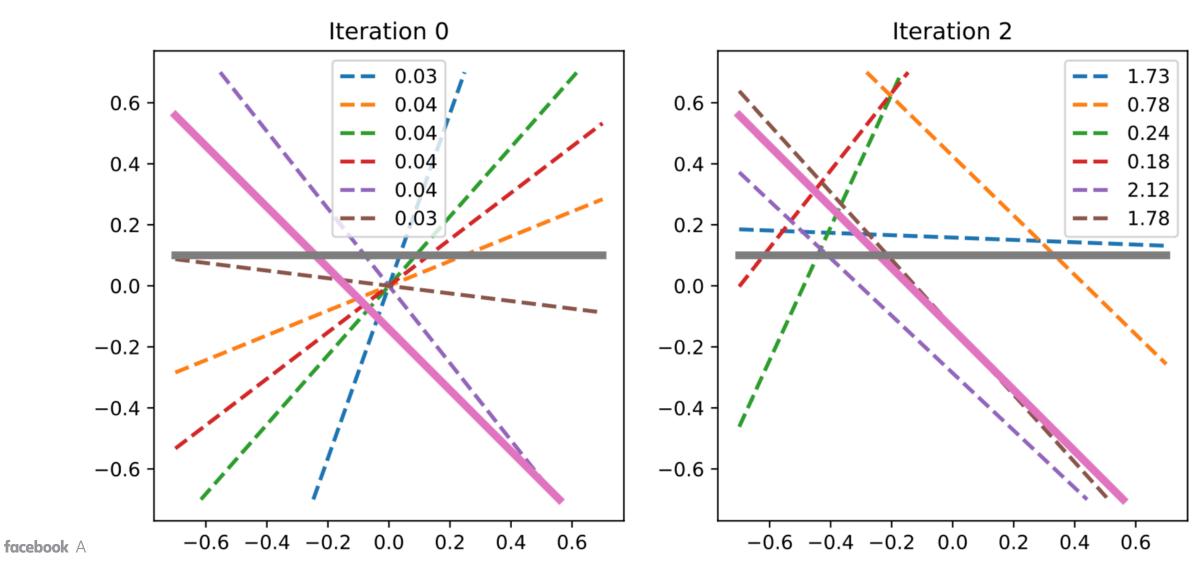


What happens to unaligned students?

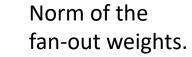


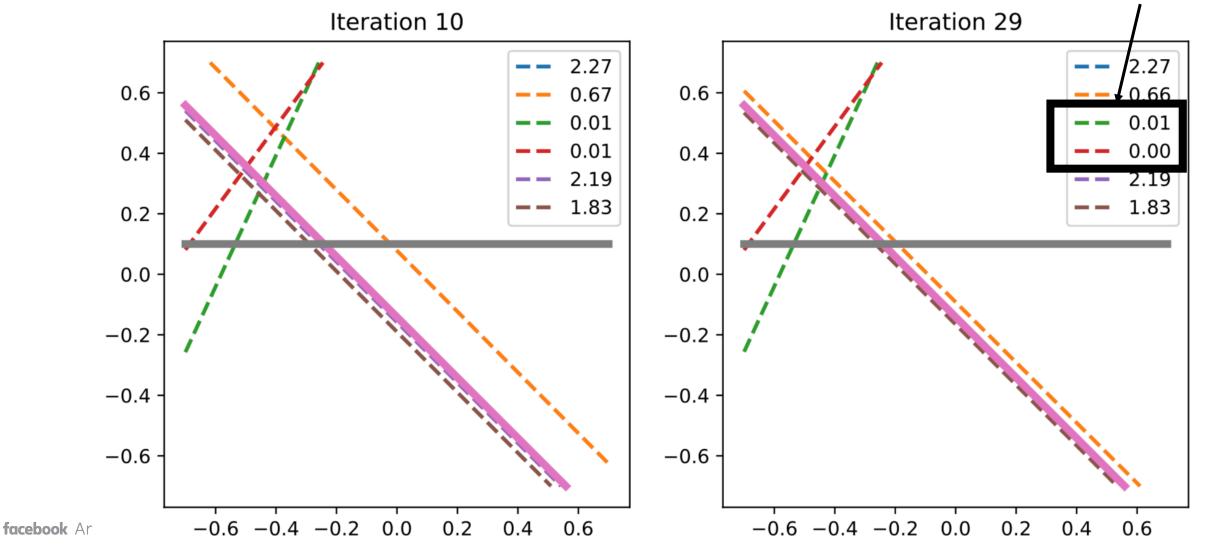
– – Student BoundaryTeacher Boundary

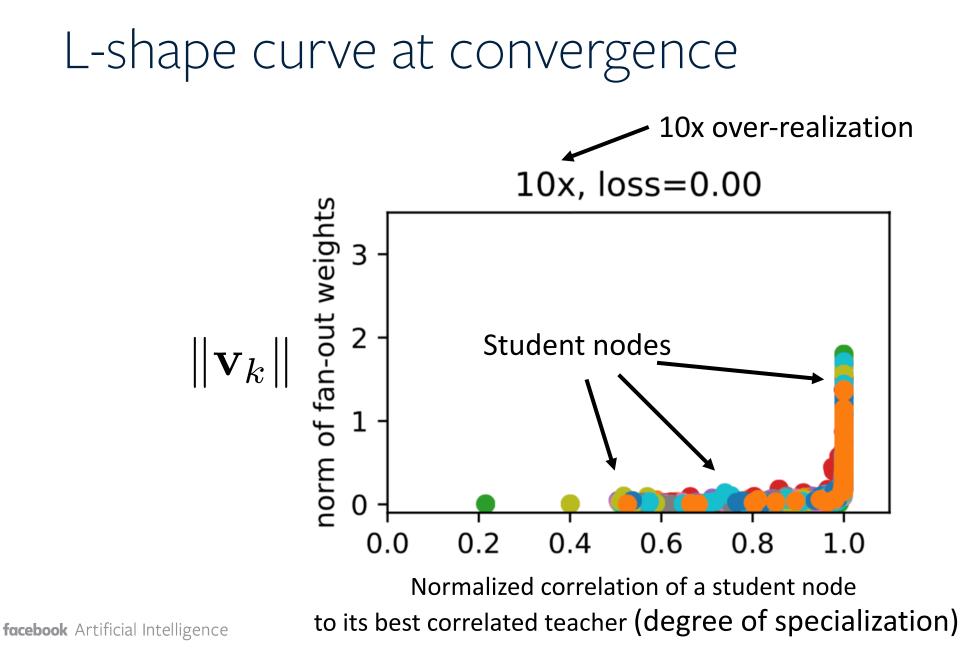
Simple 2D experiments

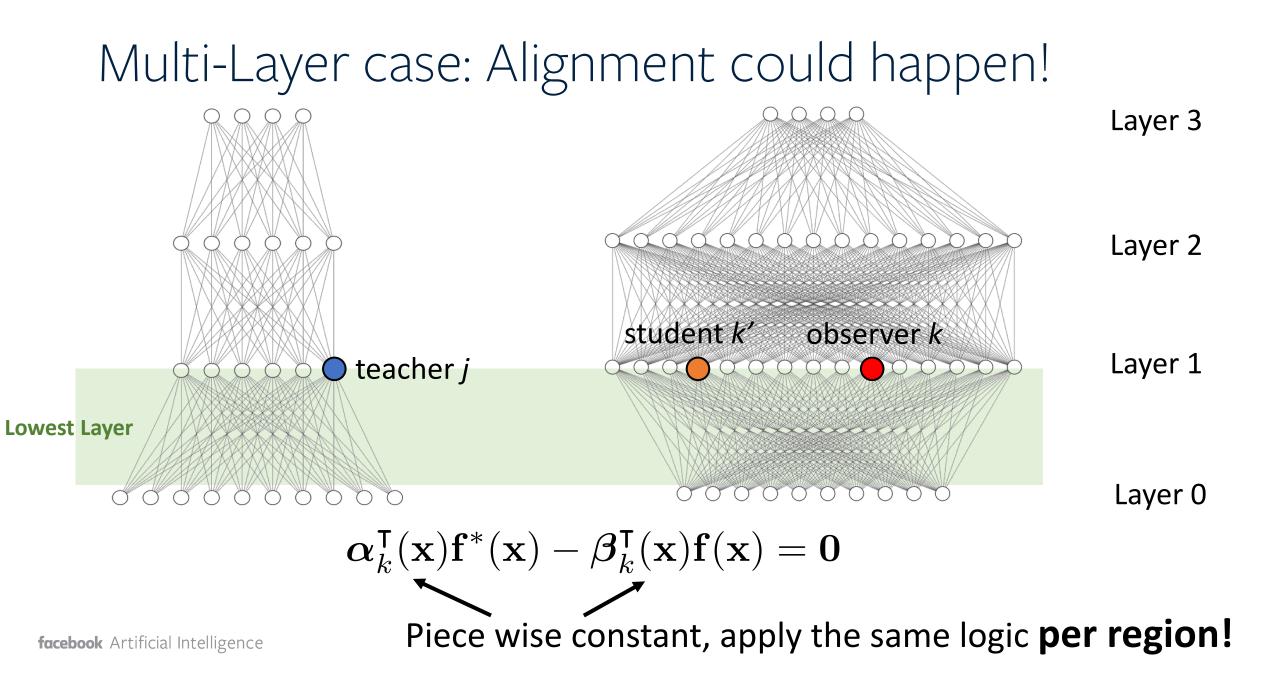


Simple 2D experiments





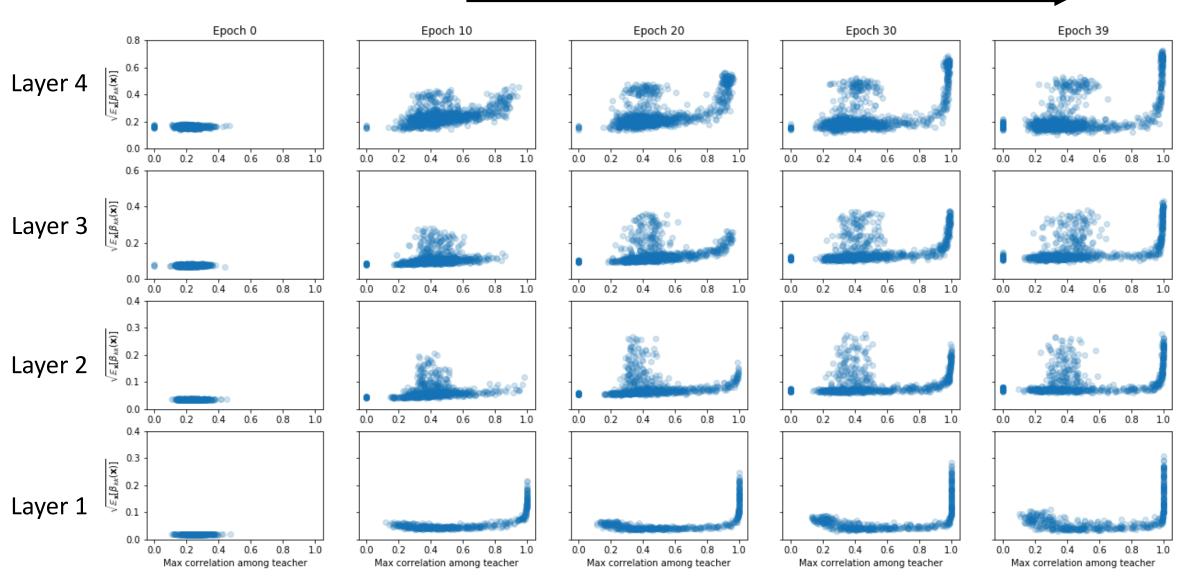




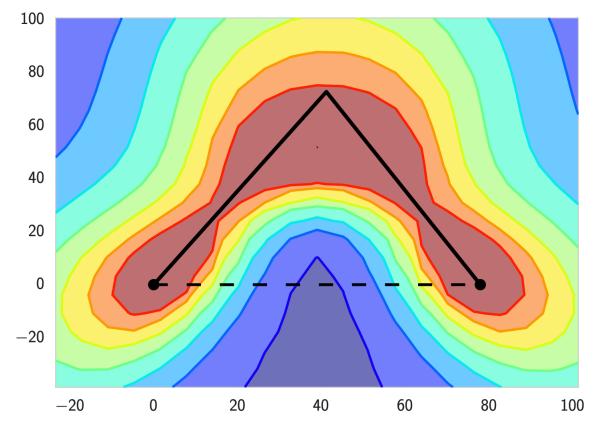
For 2-layer:

 $\sqrt{\mathbb{E}_{\mathbf{x}}\left[\beta_{kk}(\mathbf{x})\right]} = \|\mathbf{v}_k\|$

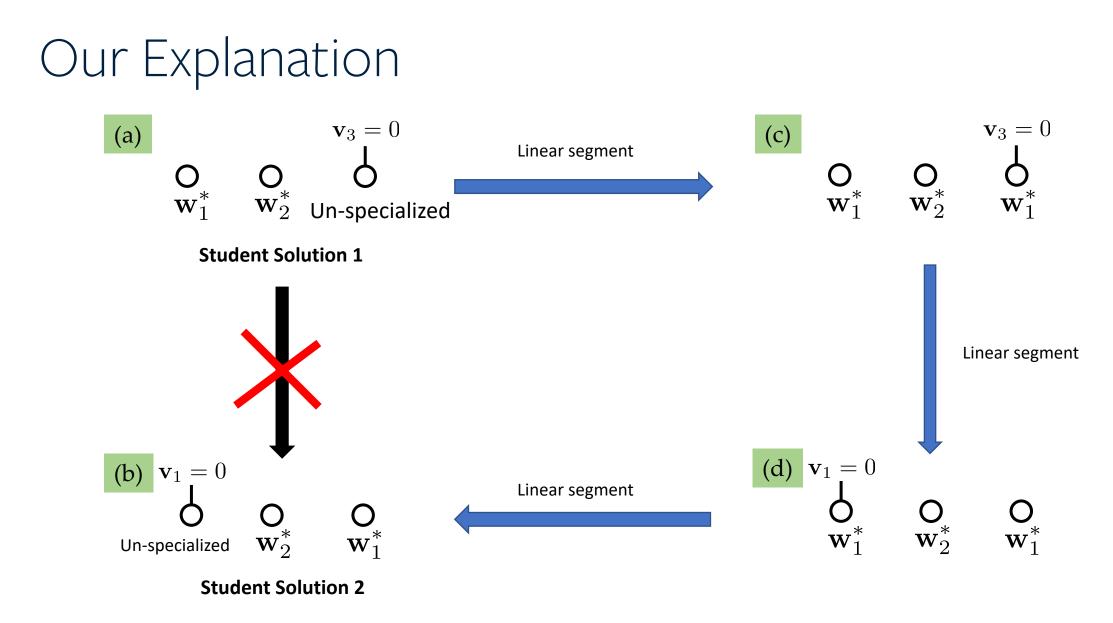
Training Progresses



Solutions can be connected by line segments



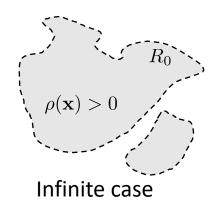
[Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs, Garipov et al. NeurIPS 2018] [Essentially No Barriers in Neural Network Energy Landscape, Draxler et al, 2018] [Explaining Landscape Connectivity of Low-cost Solutions for Multilayer Nets, Kuditipudi et al, 2019]

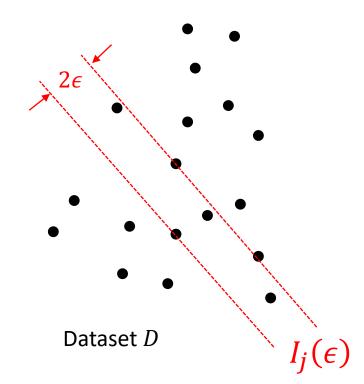


More Realistic Case:

Student Specialization with 2-layers ReLU nets, Small Gradient and Finite Samples

Dataset Assumption





For any hyper-plane band $I_i(\epsilon)$:

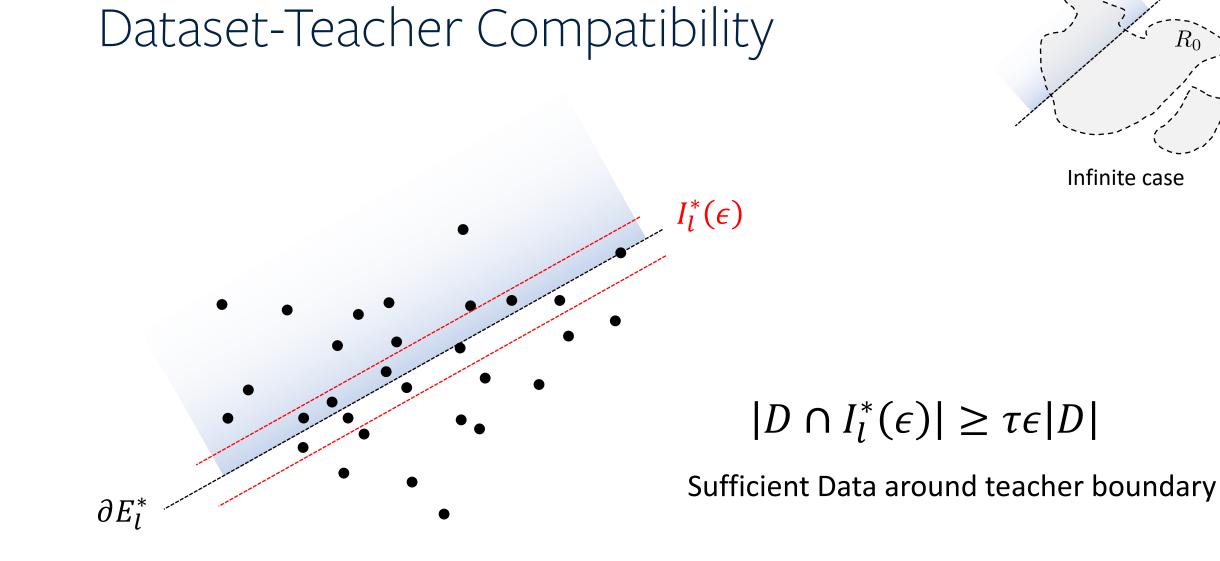
 $|D \cap I_j(\epsilon)| \le \eta \epsilon |D| + (d+1)$

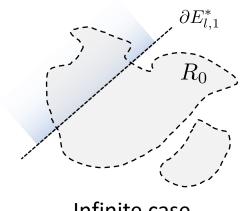
Intuition: Data should be full-rank

 $|D \cap I_j(\epsilon)| \approx |D|$ But ϵ is small

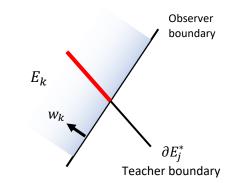
••••

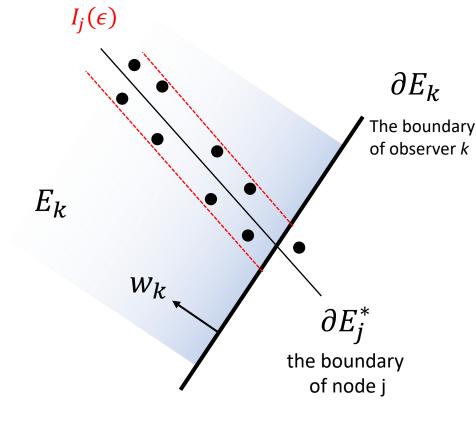
Failure case (low-rank)





Observation in Finite Sample Case



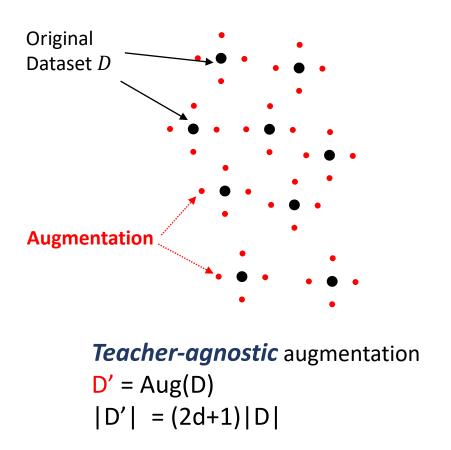


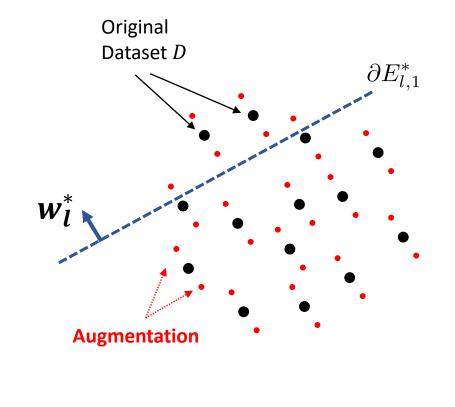
For a teacher node j, there exists a student k:

 $|D \cap I_j(\epsilon) \cap E_k| \ge \kappa |D \cap I_j(\epsilon)|$

A sufficient portion of boundary samples lie in E_k

Data Augmentation





Teacher-aware augmentation D' = Aug(D) |D'| = 2m|D|

Polynomial Complexity for 2-layered Network

To achieve ϵ -alignment between a teacher *j* and student *k*

$$K_1 = m_1 + n_1$$

Small gradient

$$\|\mathbf{g}_1(\mathbf{x}, \hat{\mathcal{W}})\|_{\infty} \leq \frac{\alpha_{kj}}{5K_1^{3/2}\sqrt{d}}\epsilon, \, \mathbf{x} \in D'_{\infty}$$

$$\|\mathbf{g}_1(\mathbf{x},\hat{\mathcal{W}})\|_\infty \leq rac{lpha_{kj}}{5K_1^{3/2}}\epsilon_1$$

Sample Complexity of original Dataset D

$$N = \mathcal{O}(K_1^{5/2} d^2 \epsilon^{-1} \kappa^{-1})$$

Teacher-agnostic augmentation D' = Aug(D)|D'| = (2d+1)|D|

$$\mathcal{O}(K_1^{5/2} d\epsilon^{-1} \kappa^{-1})$$

Teacher-aware augmentation D' = Aug(D) |D'| = m|D|

Polynomial Complexity for 2-layered Network

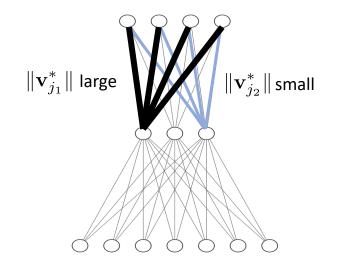
To achieve ϵ -alignment between a teacher *j* and student *k*

$$K_1 = m_1 + n_1$$

Small gradient

$$\|\mathbf{g}_1(\mathbf{x}, \hat{\mathcal{W}})\|_{\infty} \leq rac{lpha_{kj}}{5K_1^{3/2}\sqrt{d}}\epsilon, \, \mathbf{x} \in D'_{1,j}$$

$$\|\mathbf{g}_1(\mathbf{x},\hat{\mathcal{W}})\|_\infty \leq rac{lpha_{kj}}{5K_1^{3/2}}\epsilon_1$$



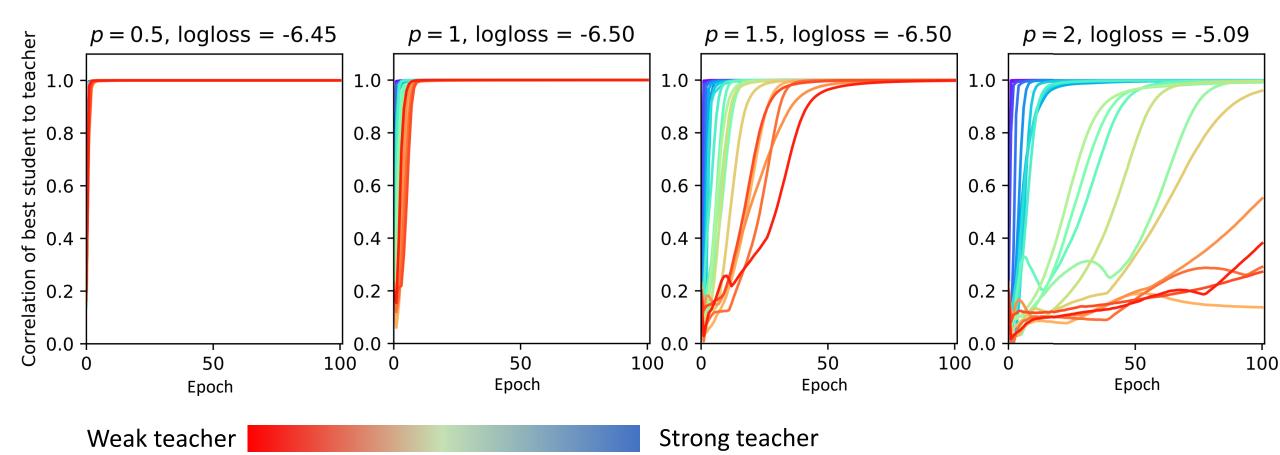
$$\alpha_{kj} := \boldsymbol{\nu}_k^{\mathrm{T}} \boldsymbol{\nu}_j^*$$

Strong teacher nodes are learned faster

- 1. Robust to Noise! 😃
- 2. Hard to learn weak teacher nodes 😢

Weak teacher nodes are slow to learn

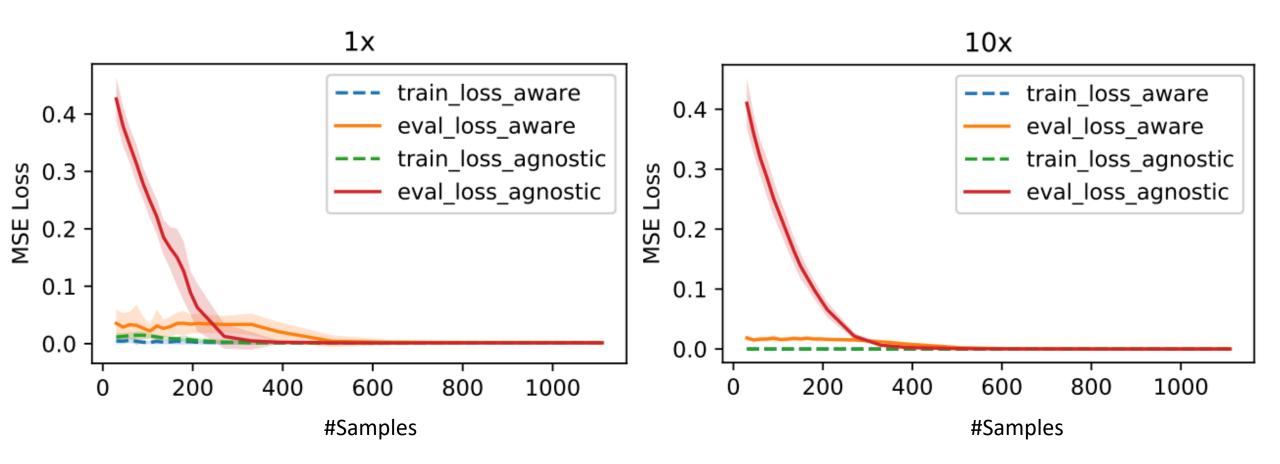
Teacher j: $\|\mathbf{v}_j^*\| \propto 1/j^p$

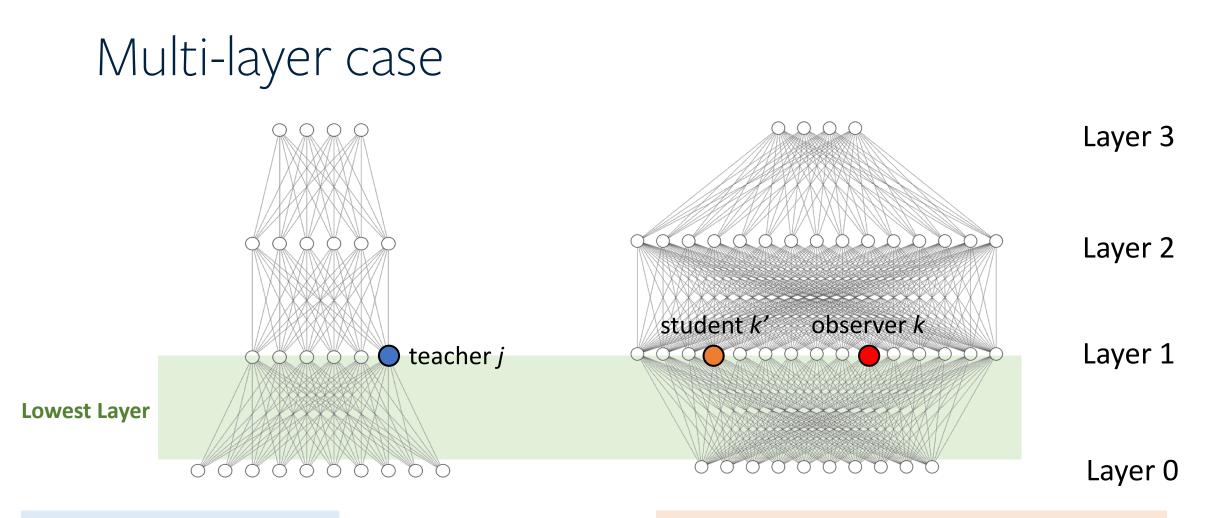


Polynomial Complexity for 2-layered Network

To achieve ϵ -alignment between a teacher *j* and student *k* $K_1 = m_1 + n_1$ Small gradient $\|\mathbf{g}_1(\mathbf{x}, \hat{\mathcal{W}})\|_{\infty} \leq \frac{\alpha_{kj}}{5K_1^{3/2}}\epsilon$ $\|\mathbf{g}_1(\mathbf{x}, \hat{\mathcal{W}})\|_{\infty} \leq rac{lpha_{kj}}{5K_1^{3/2}\sqrt{d}}\epsilon, \, \mathbf{x} \in D'_{j}$ No \sqrt{d} Sample Complexity of original Dataset D $N = \mathcal{O}(K_1^{5/2} d^2 \epsilon^{-1} \kappa^{-1})$ $\mathcal{O}(K_1^{5/2}d\epsilon^{-1}\kappa^{-1})$ Linear w.r.t d Teacher-agnostic augmentation *Teacher-aware* augmentation D' = Aug(D)D' = Aug(D)|D'| = (2d+1)|D||D'| = m|D|

Teacher-Agnostic versus Teacher-aware





Small gradient

$$\|\mathbf{g}_1(\mathbf{x}, \hat{\mathcal{W}})\|_{\infty} \leq rac{\min_{R \in \mathcal{R}} lpha_{kj}(R)}{5Q^{3/2}\sqrt{d}} \epsilon$$
, for $\mathbf{x} \in D'$

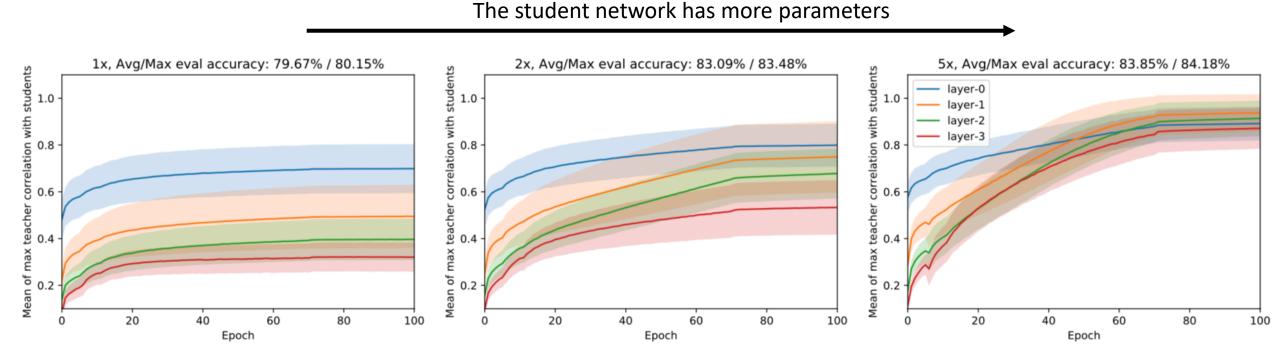
facebook Artificial Intelligence

Q: #boundaries of hyperplanes (w.r.t network depth)

Sample Complexity of original Dataset D

 $\mathcal{O}(Q^{5/2}d^2\epsilon^{-1}\kappa^{-1})$

- 1. Train a conv teacher network of size 64-64-64.
- 2. [Construct Oracle] Prune the teacher network with [0.3,0.5,0.5,0.7] rate.
- 3. Then train a student network to mimic teacher's output (before softmax)



Summary and Future Works

- Student Specialization in finite width and finite input dimension
 - Polynomial sample complexity in 2-layer ReLU networks.
 - Specialization in the lowest layer of deep ReLU networks
 - Experiments verify the claims.
- Future Works
 - Specialization at intermediate layers
 - Generalization Bound
 - Training Dynamics
 - Connect with empirical practices (e.g., network distillations).

Thanks!