An Analytical Formula of Population Gradient for two-layered ReLU network and its Applications in Convergence and Critical Point Analysis

Yuandong Tian

Facebook AI Research

ICML 2017

General Framework of Optimization

Optimization with Guarantees

Optimization we want to understand

How about modeling data distribution?

	Simple Objective	Complicated Objective
General Data Distribution	Many Guarantees ?	Not feasible/NP-hard
Specific Data Distribution		?

Example: Image Alignment

A Globally Optimal Data-Driven Approach for Image Distortion Estimation, Y. Tian and S. Narasimhan, CVPR 2010 Hierarchical Data-Driven Descent for Efficient Optimal Deformation Estimation, Y. Tian and S. Narasimhan, ICCV 2013

Example: Image Alignment

To achieve
$$\|\mathbf{p} - \mathbf{p}^*\| \leq \epsilon$$
:

Method	Sample complexity
Gradient descent	Local optimality
Nearest Neighbor	$O(1/\epsilon^d)$

Non-convex objective

$$\min_{\mathbf{p}} J(\mathbf{p}; I_{\mathbf{p}^*}) = \min_{\mathbf{p}} \|I_{\mathbf{p}^*}(W(\cdot; \mathbf{p}) - I_0(\cdot)\|^2$$

To achieve
$$\|\mathbf{p} - \mathbf{p}^*\| \leq \epsilon$$
:

Method	Sample complexity
Gradient descent	Local optimality
Nearest Neighbor	$O(1/\epsilon^d)$
[Y. Tian and S. Narasimhan, CVPR 10]	$O(C^d \log 1/\epsilon)$
[Y. Tian and S. Narasimhan, ICCV 13]	$O(C_1^d + C_2 \log 1/\epsilon)$

How about deep models?

This paper

$$g(\mathbf{x}; \mathbf{w}) = \sum_{j=1}^{K} \sigma(\mathbf{w}_{j}^{T} \mathbf{x}) \qquad \sigma(x) = \max(x, 0)$$
$$\mathbb{E}_{\mathbf{x}} J(\mathbf{x}; \mathbf{w}) = \frac{1}{2} \mathbb{E}_{\mathbf{x}} \left[\|g(\mathbf{x}; \mathbf{w}^{*}) - g(\mathbf{x}; \mathbf{w})\|^{2} \right]$$

population objective

Related Works

Independence of Activations / Path / Weights

No bad local minima: Data independent training error guarantees for multilayer neural networks, D. Soudry and Y. Carmon

The Loss Surfaces of Multilayer Networks, A. Choromanska et al, AISTATS 2015

Gaussian Assumption

An Analytic Formula for a single hidden node

Close-form Population Gradient:

$$\mathbb{E}\left[\nabla_{\mathbf{w}}J\right] = \frac{N}{2}(\mathbf{w} - \mathbf{w}^*) + \frac{N}{2\pi}\left(\theta\mathbf{w}^* - \frac{\|\mathbf{w}^*\|}{\|\mathbf{w}\|}\sin\theta\mathbf{w}\right)$$

Linear component.
Nonlinear component
due to ReLU gating

Derivation

$$F(\mathbf{e}, \mathbf{w}) = X^T D(\mathbf{e}) D(\mathbf{w}) X \mathbf{w}$$

Alternative Derivation

$$\mathbb{E}_{\mathbf{x}}J(\mathbf{x};\mathbf{w}) = \sum_{j,k} \left[\phi_1(\mathbf{w}_j,\mathbf{w}_k) - 2\phi_1(\mathbf{w}_j^*,\mathbf{w}_k) + \phi_1(\mathbf{w}_j^*,\mathbf{w}_k^*) \right]^2$$

Globally Optimal Gradient Descent for a ConvNet with Gaussian Inputs, A. Brutzkus and A. Globerson, ICML 2017

Kernel Methods for Deep Learning, Y. Cho and L. K. Saul, NIPS 2009

$$\phi_1(\mathbf{w}_j, \mathbf{w}_k) = \mathbb{E}_{\mathbf{x}} \left[\sigma(\mathbf{w}_j^T \mathbf{x}) \sigma(\mathbf{w}_k^T \mathbf{x}) \right]$$

Has close form

Critical Point Analysis

K-dimensional space

Critical Point Analysis

K-dimensional space

\mathbf{W}	\mathbf{w}^*
Student	Teacher

In-plane: All
$$\mathbf{w}_j \in \Pi^*$$

K-dimensional space

Out-of-plane: Any $\mathbf{w}_j \in \Pi^*$

Critical Point Analysis (Out of plane)

If P is critical point, so does P' and P"

Theorem 2 If $d \ge K+2$, then out-of-plane critical points (solutions of Eqn. 9) are non-isolated and lie in a manifold.

Why we have such structure?

Critical Point Analysis (Out of plane)

How to prove?

Infinitesimal Rotation

Principle Plane *invariant* under rotation

➔ Invariant Objective

Is this a critical point?

Decomposition:

Decomposition:

Decomposition:

Theorem 3 If $\bar{\mathbf{w}}^* \neq 0$, and for a given parameter \mathbf{w} , $L_{jj'}(\{\theta_l^{*k}\}, \Theta) > 0$ (or < 0) for all $1 \leq k \leq K$, then \mathbf{w} cannot be a critical point.

Critical Point Analysis (K=2)

Convergence Analysis (single node)

Convergence Analysis (single node)

Sampling Strategy

$$B_r$$
 Large \longrightarrow Negligible probability B_r Small \longrightarrow Locally hyperplane: p ~1/2

Convergence Analysis (single node)

Sampling Strategy:

Theorem 6 The dynamics in Eqn. 6 converges to \mathbf{w}^* with probability at least $(1 - \epsilon)/2$, if the initial value \mathbf{w}^0 is sampled uniformly from $B_r = {\mathbf{w} : ||\mathbf{w}|| \le r}$ with $r \le \epsilon \sqrt{\frac{2\pi}{d+1}} ||\mathbf{w}^*||.$ $r \sim O(1/\sqrt{d})$

Xavier/Kaiming initialization

Convergence Analysis (multiple nodes)

$$\sigma(x) = \max(x, 0)$$

Condition 1: Symmetric weights: $\mathcal{G} = \{P_j\}$ $\mathbf{w}_j = P_j \mathbf{w}_1$ $\mathbf{w}_j^* = P_j \mathbf{w}_1^*$

Condition 2: Orthonormal ground truth weights:

 $\mathbf{w}_{j}^{*T}\mathbf{w}_{k}^{*} = \delta_{jk}$

Condition 3: Initial \mathbf{w}^0 is in-plane

One special case of Cond1 + Cond2: Non-overlapping shared weights

Convergence Analysis (multiple nodes)

Reduce to 2D system (x, y) $\mathbf{w}_1 = [x, y, \dots, y]^T$ under the basis of $\{\mathbf{w}_j^*\}_{j=1}^K$

$$-\frac{2\pi}{N}\mathbb{E}\begin{bmatrix}\nabla_x J\\\nabla_y J\end{bmatrix} = -\left\{ \left[(\pi-\phi)(x-1+(K-1)y)\right]\begin{bmatrix}1\\1\end{bmatrix} + \begin{bmatrix}\theta\\\phi^*-\phi\end{bmatrix} + \phi\begin{bmatrix}x-1\\y\end{bmatrix}\right\} + \left[(K-1)(\alpha\sin\phi^*-\sin\phi) + \alpha\sin\theta\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}$$

 $\alpha = (x^2 + (K-1)y^2)^{-1/2}, \quad \cos \theta = \alpha x, \quad \cos \phi^* = \alpha y, \quad \cos \phi = \alpha^2 (2xy + (K-2)y^2)$

Theorem 7

(1) When the student parameters is initialized to be $[x^0, y^0, \dots, y^0]$ under the basis of \mathbf{w}^* , where $(x^0, y^0) \in \Omega = \{x \in (0, 1], y \in [0, 1], x > y\}$, then the dynamics (Eqn. 64) converges to teacher's parameters $\{\mathbf{w}_j^*\}$ (or (x, y) = (1, 0));

(2) when $x^0 = y^0 \in (0,1]$, then it converges to a saddle point $x = y = \frac{1}{\pi K}(\sqrt{K-1} - \arccos(1/\sqrt{K}) + \pi)$.

2D dynamics

How to prove?

- 1. Prove the region is convergent
- Prove within the region, there is no critical point except for (1, 0) (via reparametrization)

$$-\frac{2\pi}{N}\mathbb{E}\begin{bmatrix}\nabla_x J\\\nabla_y J\end{bmatrix} = -\left\{ \left[(\pi-\phi)(x-1+(K-1)y)\right]\begin{bmatrix}1\\1\end{bmatrix} + \begin{bmatrix}\theta\\\phi^*-\phi\end{bmatrix} + \phi\begin{bmatrix}x-1\\y\end{bmatrix}\right\} + \left[(K-1)(\alpha\sin\phi^*-\sin\phi) + \alpha\sin\theta\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}$$

Spontaneous Symmetry Breaking

$$\begin{split} \mathbf{w}_1^0 &= [x, x, \dots, x]^\mathsf{T} & \text{Converges to saddle} \\ \mathbf{w}_1^0 &= [x + \epsilon, x, \dots, x]^\mathsf{T} & \text{Converges to } \mathbf{w}^* \\ \mathbf{w}_1^0 &= [x, x + \epsilon, \dots, x]^\mathsf{T} & \text{Converges to permutation of } \mathbf{w}^* \end{split}$$

Numerical Experiments

Numerical Experiments

$$\mathbb{E}\left[F(\mathbf{e}, \mathbf{w})\right] = \frac{N}{2\pi}\left[(\pi - \theta)\mathbf{w} + \|\mathbf{w}\|\sin\theta\mathbf{e}\right]$$

Numerical Experiments (2D dynamics)

Summary

- An analytic form of population gradient for 2-layered ReLU network with Gaussian input
- Critical Point Analysis
 - Out-of-plane
 - In-plane
- Convergence Analysis
 - Single node
 - Multiple node (special symmetric case)

Future Work

Non-Gaussian Case?

Isotropic: $\mathbb{E}_{\mathbf{x}} \left[F(\mathbf{e}, \mathbf{w}) \right] = A(\theta) \mathbf{w} + \| \mathbf{w} \| B(\theta) \mathbf{e}$

More general distributions?

Multilayered nonlinear network

Proposition 2 Denote [c] as all nodes in layer c. Denote \mathbf{u}_j^* and \mathbf{u}_j as the output of node j at layer c of the teacher and student network, then the gradient of the parameters \mathbf{w}_j immediate under node $j \in [c]$ is:

$$\nabla_{\mathbf{w}_j} J = X_c^{\mathsf{T}} D_j Q_j \sum_{j' \in [c]} (Q_{j'} \mathbf{u}_{j'} - Q_{j'}^* \mathbf{u}_{j'}^*)$$
(19)

where X_c is the data fed into node j, Q_j and Q_j^* are Nby-N diagonal matrices. For any node $k \in [c+1]$, $Q_k = \sum_{j \in [c]} w_{jk} D_j Q_j$ and similarly for Q_k^* .

Thanks!

Poster #85