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Abstract

Real-world surfaces such as clothing, water and human

body deform in complex ways. The image distortions ob-

served are high-dimensional and non-linear, making it hard

to estimate these deformations accurately. The recent data-

driven descent approach [16] applies Nearest Neighbor es-

timators iteratively on a particular distribution of training

samples to obtain a globally optimal and dense deforma-

tion field between a template and a distorted image. In this

work, we develop a hierarchical structure for the Nearest

Neighbor estimators, each of which can have only a local

image support. We demonstrate in both theory and practice

that this algorithm has several advantages over the non-

hierarchical version: it guarantees global optimality with

significantly fewer training samples, is several orders faster,

provides a metric to decide whether a given image is “hard”

(or “easy”) requiring more (or less) samples, and can han-

dle more complex scenes that include both global motion

and local deformation. The proposed algorithm success-

fully tracks a broad range of non-rigid scenes including wa-

ter, clothing, and medical images, and compares favorably

against several other deformation estimation and tracking

approaches that do not provide optimality guarantees.

1. Introduction

Accurately finding dense correspondence between im-

ages capturing deforming objects is important for many

vision tasks, such as 3D reconstruction, image alignment

and tracking. However, estimating the parameters of non-

rigid deformation is hard due to its high-dimensionality and

strong nonconvexity. Continuous optimization approaches

(e.g. gradient descent or Newton’s method) require no train-

ing but often suffer from local minima, while regression-

based approaches (e.g., Nearest Neighbor) have guaranteed

solutions, but need a lot of training samples.

Recently, Tian and Narasimhan [16] proposed Data-

driven Descent which combines the best properties of both

continuous optimization and regression. They show that if

a generative model for deformation is available, then the

training samples can be generated by simply deforming

the template using parameters from a particular distribu-
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Figure 1. Illustrations of order of training sample complexity re-
quired for estimating d dimensional deformation. (a): To achieve a
guaranteed accuracy 1/ǫ, traditional regression-based approaches

(e.g. Nearest Neighbor) require O(1/ǫd) training samples. Data-

driven Descent [16] requires O(Cd log 1/ǫ), decoupling the di-
mensionality from the accuracy. Our hierarchical framework for

deformation estimation achieves O(Cd

1 + C2 log 1/ǫ) with con-
stant C1 much smaller than C and C2 independent of dimension-
ality. (b) Sample complexity per iteration. A constant number of
samples per iteration is needed in [16]. The number of samples
needed is a constant for the first few iterations, and then decays
double exponentially for our algorithm.

tion. Then a sequence of Nearest Neighbor predictions will

achieve the globally optimal solution that warps the test im-

age to the template. Furthermore, to achieve the accuracy

of 1/ǫ, the number of samples needed is O(Cd log 1/ǫ) for

d dimensional warping, much less than O(1/ǫd) required

for general regressions. Intuitively, this approach captures

the group-like structure in deformation and uses the train-

ing samples which are far away from the test image for pre-

diction. Their approach shows good empirical results for

local deformation, but fails to capture general deformation

that contains both global and local components (e.g., cloth

moving and deforming).

In this paper, we develop a top-down hierarchical struc-

ture for deformation estimation with global optimality guar-

antee. First, the deformation field is parameterized so that

the deformation happening within a local image patch can

be predicted by the content of that patch, reducing the di-

mensionality. Then, we model the relationship between

the image content and the deformation parameters using

a novel criterion. With this criterion, all patches at differ-

ent locations and scales can be regarded as predictors with
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guaranteed worst-case precisions. Finally, we show that

combining these predictors together in a top-down hierar-

chical manner leads to an overall predictor that can handle

large and high-dimensional deformation with both local and

global components.

Our contributions are three-fold. First, our approach

brings down sample complexity to O(Cd
1 + C2 log 1/ǫ),

which varies very slowly with respect to the accuracy. In

particular, the number of samples required in each itera-

tion stays constant for the first few iterations (layers of

hierarchy), and then decays double exponentially (Fig. 1).

Practically, our unoptimized Matlab implementation is fast,

achieving 3-4 fps on real images. Second, compared to

[16], our sample complexity guarantee is based on much

weaker assumptions that can be verified with an efficient

algorithm. As a result, our constant C1 is much smaller

than the constant C in [16]. Third, our work provides a rig-

orous theoretical analysis and interesting insights for top-

down coarse-to-fine hierarchical structures. We believe this

can be useful for analyzing many other hierarchies proposed

in the computer vision community.

Our work not only has strong theoretical foundations, but

also demonstrates good quantitative and qualitative results

on real video sequences containing different types of de-

formation, including clothing and water surface deforma-

tions as well as medical images of internal organs. Our

approach outperforms optimization-based approaches such

as Lucas-Kanade [1] and Free-form registration [9] (both

with coarse-to-fine implementations), regression-based ap-

proaches such as Nearest Neighbor and Explicit Shape Re-

gression [3], feature-based approaches such as SIFT [6],

tracking-based approaches such as KLT [13], and hybrid

methods such as Data-driven Descent [16].

2. Related Works

Optimization-based approaches (e.g., [1, 7, 9]) usually

reach a local minimum using gradient descent or Newton’s

method. Random initialization is used to improve the qual-

ity of solutions on a heuristic basis. Regression-based ap-

proaches aim to learn a mapping from the distorted im-

age to the deformation parameter set using labeled train-

ing samples. The actual form of mapping could be Nearest

Neighbor, Linear [7], Random Forest [14], Boosted Ran-

dom Fern [3] and so on. Feature-based approaches like

SIFT [6] find correspondence using local feature matching,

and have to balance between distinctiveness and invariance

under deformation.

Hierarchical structures have been used extensively in vi-

sion. Typical scenarios include coarse-to-fine optimiza-

tion [9] for a better local solution, interest point detec-

tion [6], multi-resolutional feature extraction [5], biologi-

cally plausible framework for object recognition [12] and

so on. Recently, it is also used in Deep Learning, showing
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Figure 2. Local parameterization of deformation. (a)-(b) The de-
formation field is controlled by a set of landmarks on the template
image. By moving these landmarks, a deformed image is created.
(c) Local parameterization. Each parameter p(i) encodes the 2D
displacement of the landmark i. (d) Displacement on any pixel x
is interpolated using displacements of nearby landmarks.

state-of-art performance in image classification [4]. How-

ever, as far as we know, none of the previous works provide

theoretical performance guarantees.

3. The Image Deformation Model

Denote T as the template image and Ip as the distorted

image with deformation parameters p. The deformation

field W (x;p) maps the pixel location x on the template to

the pixel location W (x;p) on the distorted image Ip:

Ip(W (x;p)) = T (x) (1)

We locally parameterize the deformation field W (x;p)
at any 2D point x by a weighted linear combination of dis-

placements p = [p(1),p(2), . . . ,p(K)]T on K landmarks

(Fig. 2):

W (x;p) = x + B(x)p (2)

where B(x) = [b1(x), b2(x), . . . , bK(x)] is a K-

dimensional row vector of weighting factors on location x

from K landmarks, p is a K-by-2 matrix storing all the

displacements and p(i) is a 2-dimensional column vector.

Naturally, at any location x, its weights from all K land-

marks add to 1 (
∑

i bi(x) = 1), and the weight bi(·) at

i-th landmark location li is 1 while others are zero. Prac-

tically, B(x) can be any interpolation function, e.g., Thin-

plate Spline [2], B-spline [9], local linear interpolation, etc.

Note that Eqn. 2 is an over-parameterization of the de-

formation field W (x;p). Due to strong correlation be-

tween nearby landmark displacements, the dimensionality

d of the warping field could be much less than 2K, which is

the total number of unknown image coordinates in Eqn. 2.

Many previous works [16, 7, 11] also assume similar form

of W (x;p). However, their parameter set p, usually given

by dimensionality reduction procedures such as PCA, is the

minimal set to specify the deformation field and is not local-

ized to spatial landmarks. As we shall discuss, local over-

parameterization enables us to further reduce the training

samples needed.



Generating training samples. From Eqn. 1, given the

parameter p, one can generate the deformed image Ip from

the template T . This is done by assigning every pixel y

of the deformed image Ip with the pixel value on location

x = W−1(y;p) of the template T . Choosing different

parameters {pi} gives many training samples {(pi, Ipi
)}.

The task now becomes how to properly distribute the train-

ing samples and how many samples are needed (i.e., sam-

ple complexity) to achieve the globally optimal prediction

of the unknown parameter for a distorted test image. This is

the core of our contribution and will be described next.

4. The Relationship between Image Evidence
and Distortion Parameters

Suppose we have training samples {p, Ip} and want to

predict the parameter for a test image I with an unknown

true parameter p1. The simplest way is to use the Nearest

Neighbor predictor: find Ip2
in the training set that is closest

to I , and return the parameter p2 as the prediction.

To make this approach work, we need to assume a posi-

tive correlation between the image difference ∆I ≡ ||Ip1
−

Ip2
|| in terms of a certain image metric and the parameter

difference ∆p ≡ ||p1 − p2||∞ in terms of maximal ab-

solute difference between landmark displacements. Intu-

itively, this means that if two images are close, so are their

parameters and vice versa. This can be represented by the

following Lipchitz conditions proposed in [16]:

L1∆I ≤ ∆p ≤ L2∆I (3)

where, L1 and L2 are two constants that are dependent on

the template T . [16] shows that the ratio L2/L1 is a charac-

tistic for samples complexity for guaranteed Nearest Neigh-

bor prediction. For simple images that contain one salient

object with a clear background, L2/L1 is small and a few

samples suffice. For difficult images with repetitive pat-

terns, L2/L1 is large and a lot of samples are needed to

distinguish among locally similar-looking structures.

4.1. Relaxed Lipchitz Condition

One shortcoming of Eqn. 3 is that it must hold for arbi-

trarily small ∆I and ∆p. Thus it fails in two situations:

• Noisy images. Adding noise to a distorted image Ip
changes its appearance but not its parameters. As a

result, ∆p ≈ 0 but ∆I is finite. This makes L1 → 0.

• Repetitive Patterns. If an image resembles itself after

some transformation, then ∆p is finite but ∆I ≈ 0.

This makes L2 → +∞.

In both cases, [16] gives a trivial (infinite) bound on sample

complexity and global optimality cannot be guaranteed.

In this paper, we relax this condition using a patch-based

approach. Denote R = R(x, r) as a square centered at x
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Figure 3. Relaxed Lipchitz Condition (Eqn. 4). (a) Four constants
(α, γ, A, Γ) capture the correlations between ∆I and ∆p. When
∆p is small (≤ αr), ∆I is small as well (≤ Ar). Conversely,
with large parameter difference (≥ γr), the image difference is
also large (≥ Γr). (b) Given α, there exists a minimal γ. (c) For a
monotonic relationship between ∆I and ∆p, α = γ ∈ [0, 1].

with size 2r. I(R) is the patch within R and S = S(x, r)
is the subset of landmarks whose displacements p(S) in-

fluence the patch content I(R). p(S) is a |S| by 2 matrix

obtained by choosing S rows from p. We assume I(R) and

p(S) satisfy the following relaxed Lipchitz Condition:

Assumption 1 (Relaxed Lipchitz Condition) There ex-
ists 0 < α(x, r) ≤ γ(x, r) < 1 and 0 < A(x, r) < Γ(x, r)
so that for any p1 and p2 with ||p1||∞ ≤ r, ||p2||∞ ≤ r:

∆p ≤ αr =⇒ ∆I ≤ Ar, ∆p ≥ γr =⇒ ∆I ≥ Γr
(4)

for ∆p≡||p1(S)−p2(S)||∞ and ∆I≡||Ip1
(R)−Ip2

(R)||.

Here ||x||∞ ≡ maxi |xi|. Visually, the first part of Eqn. 4

says all (∆p,∆I) left to the vertical line αr have to be in

the red-shaded box; while the second part says all (∆p,∆I)
right to the vertical line γr have to be in the blue-shaded box

(Fig. 3(a)). The condition A < Γ means that the bottom

of blue is always above the top of red. When they touch

(Fig. 3(b)), the minimal, or tightest γ is achieved for a given

α, which is the monotonous curve γ = γ(α).
Different from the Lipchitz conditions (Eqn. 3), one im-

portant aspect of Eqn. 4 is that ∆I and ∆p are only cor-

related up to the scale of r. This weaker condition allows

Eqn. 4 to account for noise and parameter changes outside

the subset S that may influence the patch I(R) without al-

tering p(S). This also accounts for the case in which two

slightly different parameters share the same image appear-

ance. In both cases, the image-dependent pair (α, γ) is still

well-behaved while L2/L1 is not. Another aspect is that

Eqn. 4 is assumed for every patch located at x with scale r,

while Eqn. 3 is a single condition for the entire image.

Besides, Eqn. 4 holds only for deformation within the

acceptance range r, i.e., ||p||∞ ≤ r). This is a practical

condition because if p(S) is large, the image content I(R)
is no longer related to the local patch deformation p(S).

Degrees of Freedom on patches. Since p(S) is a |S|-
by-2 matrix, there are at most 2|S| apparent degrees of free-

dom for patch I(R). How large is |S|? If landmarks are

distributed uniformly (e.g., on a regular grid), |S| is propor-

tional to Area(R), which gives 2|S| ∝ r2.



On the other hand, if the overall effective degree of free-

dom is d, then no matter how large 2|S| is, p(S) contains

dependent displacements and the effective degree of free-

dom in R never exceeds d. Therefore, we assume:

Assumption 2 (Degrees of Freedom for Patches) The lo-
cal degrees of freedom of a patch (x, r) is min(d, 2|S|).
4.2. Guaranteed Prediction using Nearest Neighbor

Now let us study how the relaxed Lipchitz condition

helps Nearest Neighbor prediction. We wish to know how

well patch (x, r) can predict the deformation p(S) within

its acceptance range r (i.e., ||p||∞ ≤ r). Without any train-

ing samples, we can trivially set the prediction p̂(S) = 0
and get a worst-case guaranteed prediction error of r. Now

the problem is: if we want to obtain a slightly better predic-

tion, how many training samples do we need?

Theorem 1 gives the answer. It shows that if the relaxed

Lipchitz condition (Eqn. 4) holds, then a Nearest Neighbor

prediction with 1/α samples per dimension will always re-

duce the error by a factor of γ < 1:

Theorem 1 (Guaranteed Nearest Neighbor) Given a dis-
torted image Ip with ||p||∞ ≤ r, then with

N(x, r) = min
(

cSS ⌈1/α⌉d
, ⌈1/α⌉2|S|

)

(5)

number of samples uniformly distributed in the hypercube

[−r, r]2|S|, we can compute a prediction p̂(S) so that

||p̂(S) − p(S)|| ≤ γr (6)

using Nearest Neighbor in the region R with image metric.

Proof Sketch We first fill the 2|S|-dimensional hyper-

cube [−r, r]2|S| with (1/α)2|S| training samples uniformly.

Then, for any test sample I within, there is I ′ whose pa-

rameter difference is within αr. By Eqn. 4, ||I − I ′|| ≤ Ar.

The nearest neighbor of I , namely INN, is closer to I than

I ′ to I . Again by Eqn. 4, the parameter of INN, which is the

prediction, is γr close to the true parameters of I .

If the local deformation is d-dimensional with d < 2|S|,
then it turns out that only a small fraction of the hypercube

are sampled and cSS ⌈1/α⌉d
samples suffices. See supple-

mentary materials for detailed derivation of cSS .

From Theorem 1, the exponent of Eqn. 5 is the degrees of

freedom mentioned in Assumption 2, which demonstrates

the curse of dimensionality. From Eqn. 5 and Eqn. 6, now

both α and γ have their physical meanings: α is the inverse

of sample complexity per dimension, while γ is the inverse

of prediction accuracy. Ideally we want α to be large for

lower sample complexity, and γ to be small for higher ac-

curacy. However, the constraint α ≤ γ and the minimal

curve γ = γ(α) show there is a trade-off. Like L2/L1 in

Eqn. 3, this trade-off reflects the difficulty level of images

for deformation prediction (See Sec. 6 for details).

5. Construction of Hierarchical Structure

According to Theorem 1, different image patches (x, r)
show different characteristics in their prediction guarantees:

large patches (large r) can deal with large deformation but

have low prediction precision, while small patches (small

r) only deals with small deformation but enjoys high pre-

diction precision. Therefore, in order to estimate large de-

formation with high precision, a natural way is to build

a coarse-to-fine hierarchy of predictions as follows: the

coarse layer (large patch) reduces the prediction residue by

a certain extent so that it is within the acceptance range of

the fine layer (small patch), where the prediction is refined.

From this argument, we construct the hierarchical struc-

ture as follows. Within the same layer t, scale of patches

is fixed and denoted as rt. When going from top to bottom

(t becomes large), the scale rt of patches shrinks towards

zero. The shrinking factor γ̄ = rt+1/rt is set to be

γ̄ ≡ max
(x,r)

γ(x, r) < 1 (7)

Algorithm 1 Hierarchical Deformation Estimation.

1: INPUT Training samples Tr(x, r) ≡ {(pi, Ii)} for
each image patch (x, r).

2: INPUT Test image Itest with unknown parameters p.
3: Set an initial estimation p̂

0 = 0.
4: for t = 1 to T do
5: Set the current image Ic(x) = Itest(W (x; p̂t−1)).
6: for Patch (xj , rt) within layer t do
7: Sj = S(xj , rt), Rj = R(xj , rt)
8: Find the Nearest Neighbor i∗ for patch I(Rj):

i∗ = arg mini∈Tr(x,r) ||Ic(Rj) − Ii(Rj)||
9: Set the estimation p̃j→i(Sj) = pi∗(Sj).

10: end for
11: Aggregation: p̃(i) = meani∈Sj

p̃j→i(Sj).

12: Update: p̂
t(i) = p̂

t−1(i) + p̃(i) for all landmarks.
13: end for
14: Return final predictions p̂

T (i) for all landmarks.

Fig. 4 and Alg. 1 illustrate the algorithm that estimates

the unknown parameter p given the test image Itest. For the

first iteration, the test image Itest is directly compared with

the training samples generated from the entire image with

scale r1 to obtain the Nearest Neighbor prediction p̂
1. Then

for the second iteration, we have a slightly less distorted im-

age Itest(W (x, p̂1)), from which we estimate p−p̂
1. Since

||p−p̂
1||∞ is smaller than ||p||∞, its predictions can be local-

ized to smaller patches. Then this procedure is iterated until

the lowest layer. Similar to [16], Alg. 1 will converge to the

globally optimal solution (Theorem 2), while the required

number of samples is O(Cd
1 + C2 log 1/ǫ) (Theorem 3).

Note that a less distorted image Itest(W (x; p̂t−1)), as

the input of layer t, is not necessarily the same as a dis-

torted image Ip−p̂t−1 generated directly from the template

image. However, their difference decreases when rt → 0
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Figure 4. Work flow of our hierarchical algorithm for deformation estimation. On Layer 1, a global prediction is made and the estimation
is updated. On Layer 2, local deformation is estimated and aggregated. The procedure repeats until the last layer.

and global convergence guarantee still holds. See supple-

mentary materials for all analyses and proofs.

Theorem 2 (The Global Convergence Theorem) If
||p||∞ ≤ r1, then the prediction p̂

t(i) satisfies:

||p̂t(i) − p(i)||∞ ≤ γ̄tr1 → 0 when t → +∞ (8)

Proof Sketch From Theorem 1, from the top layer, after

each layer the residue is contracted by at least γ̄. Then γ̄ <
1 implies that the error diminishes from top to bottom.

Theorem 3 (The Number of Samples Needed) The total
number N of samples needed is bounded by:

N ≤ C3C
d
1 + C2 log1/γ̄ 1/ǫ (9)

where C1 = 1/ min(x,r) α(x, r), C2 = 21/(1−γ̄2) and

C3 = 2 + cSS(⌈ 1
2 log1/γ̄ 2K/d⌉ + 1).

Proof Sketch From Assumption 2, the areas of patches, as

well as |S|, decrease by a factor of γ̄2 from top to bottom.

Therefore, the number of samples needed stays the same

until 2|S| ≈ d, and then goes down double-exponentially.

Using Theorem 1, we know N , the total sample complex-

ity, is bounded by the summation of a fast decaying series,

whose upper bound is given by Eqn. 9.

6. Empirical Upper Bounds For Images

Given a spectific template and a specific family of defor-

mation, we can generate many deformed images and their

parameters (pi, Ipi
), compute all-pair image/parameter dis-

tances {∆pi,∆Ii} and estimate the monotonous curve γ =
γ(α) like Fig. 3. This curve can help predict the theoretical

difficulties of images for deformation estimation. For sim-

plicity, we set a constant and convergent contraction fac-

tor γ̄ = 0.95 and compute the largest α0.95 = γ−1(0.95).
Therefore, simple images have high α0.95, indicating low

sample complexity per dimension (1/α0.95), and vice versa.

We randomly generate 1000 deformed samples and com-

pute all-pair distances. The deformation is 2D translation

and in-plane rotation (d = 3) up to ±π/8. We propose

Alg. 2 which only costs O(M log M) to compute the curve

γ = γ(α), while brute-force search costs O(M3).

Fig. 5 shows each template and its 1/α0.95. Note that im-

ages with a salient object and uniform background requires

fewer samples, while images with repetitive patterns and

cluttered backgrounds require more. In contrast, L2/γL1,

as suggested in [16], is much higher in both cases.

Regarding to total sample complexity N , Theorem 1 tells

that for easy images, 1/α0.95 ≈ 5 and N ≈ [5·(2+
√

2)]4 =
84926 (See supplementary materials for details), while for

hard images, 1/α0.95 ≈ 12 and N ≈ [12 · (2 +
√

2)]4 =
2817654. Although practically N may be much smaller, it

gives a sense of difficulty levels of images.

Algorithm 2 Find Local Lipschitz Constants.

INPUT Parameter distances {∆pi} with ∆pi ≤ ∆pi+1.
Image distances {∆Ii} and scale r.

∆I+
i = max1≤j≤i ∆Ij , for i = 1 . . . M .

∆I−i = mini≤j≤M ∆Ij , for i = 1 . . . M .
for i = 1 to M do

Find minimal j so that ∆I−j > ∆I+
i .

if i ≤ j then
Store a curve point (α, γ) = (∆pi,∆pj)/r.

end if
end for

7. Experiments on Synthetic Data

Our algorithm works well for synthetic data. For all the

experiments, our approach adopts a hierarchical structure

using a grid of 256 landmarks with γ̄ = 0.7 and T = 8
layers. For bases functions, we use Thin-Plate Spline [2]

proper normalization. While our theory gives an upper

bound of the sample complexity, practically 350 training

samples over all layers suffice for good performance.

7.1. Convergence Behavior

We artificially distorted 100 images with a 20-

dimensional global warping field specified in [16]. For each

image, its 10 distorted versions are generated with random

parameters, which are estimated using Data-driven Descent

(TN) [16] and using our approach.

Fig. 6 shows the performance comparison. Our algo-

rithm obtains much better performance and lower variance
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Figure 5. Exemplar images and the theoretical bounds for the number of samples needed per dimension. For each bracket, the first number
is our bound (given by 1/α0.95), while the second number from Data-Driven Descent (given by L2/γL1 with γ = 0.95). Top Row:
Images with a salient object and clean background require only a few samples per dimension. Bottom Row: Images with repetitive
patterns require more samples per dimension. In both cases, our bound is smaller than that given by Data-Driven Descent.
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Figure 6. Performance of the proposed algorithm. Left: Perfor-
mance comparison with [16]. Accuracy of our approach increases
much faster than [16] with the same number of samples. To ob-
tain the same level of accuracy of our approach with 400 samples,
[16] requires 10000 samples or more. Our approach also has lower
variance in performance. Right: Convergence behavior of our ap-
proach with different number of training samples.

compared to TN with the same number of training samples.

Note that the strong drop in error shows that our method

achieves very high accuracy by adding very few samples

once it starts to work. This coincides with Fig. 1.

7.2. Deformation Estimation on Repetitive Patterns

We further test our approach on synthetic data contain-

ing distorted repetitive patterns, and compare it with previ-

ous methods. From an undistorted template (240-by-240),

we generate a dataset of 200 distorted images, each with la-

beled 49 points. The deformation field is created by random

Gaussian noise without temporal continuity.

The overall degree of freedom for this dataset is very

high (50 dimensions are needed to achieve < 1 pixel recon-

struction error). It is in general impossible to have sufficient

number of samples for global optimality conditions to be

satisfied. However, practically our method still works well.

We compare our approach to the following previous

methods: Lucas-Kanade (LK) [1], Data-driven Descent

(TN) [16], Free-form registration (FF) [9], Explicit Shape

LK TN ESR FF SR Ours

RMS 14.79 6.44 8.98 7.29 98.94 5.63
sec/frame 11 77 0.012 35 1.25 0.10

Table 1. Performance comparison of different approaches, includ-
ing Lucas-Kanade (LK) [1], Data-driven Descent (TN) [16], Free-
form registration (FF) [9], Explicit Shape Regression [3] and SIFT
matching with outlier removal using RANSAC (SR) [6]. Ours is
the best performer and second best in time cost per frame.

Regression (ESR) [3] and SIFT matching with outlier re-

moval using RANSAC (SR) [6]. LK and TN use a local

parametric deformation model. LK uses local affine bases

of size 100-by-100, and TN uses a 20-dimensional smooth

bases of size 57-by-40 [16]. LK, FF and TN compute dense

deformations and our hierarchy outputs 256 predicted land-

marks, from which 49 landmark locations are interpolated.

The KLT tracker [13] requires temporal information and

will be compared in the real video sequence.

For one image, the RMS error is computed between the

estimated landmark locations p̂ and ground truth locations

p as RMS =
√

1
K

∑K
i=1 ||p(i) − p̂(i)||2. For multiple im-

ages, averaged RMS is reported.

Table 1 compares the performance. Due to repetitive pat-

terns, previous approaches fail to estimate the landmarks

correctly. SIFT matching fails completely. The predic-

tion of ESR is restricted to be on the linear shape subspace

spanned by the training samples. Thus, it is insufficient to

use the template to capture the subspace of a complex defor-

mation field. LK and FF are stuck in local maxima despite

their coarse-to-fine implementations. Our approach obtains

the best performance. Fig. 7 shows the progression of our

algorithm. In terms of speed, our approach is second only

to ESR, which uses a fast boosting framework.

Influence of multiple layers. It is interesting to see how

the performance changes if we switch off the first L lay-
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Initialization Iteration 5 Final resultTest image

Figure 7. Demonstration of the iterative procedure of our algo-
rithm. Starting from initialization, the algorithm applies predictors
of different layers to estimate the landmark locations. Numbers on
top show RMS errors.

3.74 9.31 10.88 11.19

layer 1-3 off layer 1-5 off layer 1-6 offUse all layers

Figure 8. Performance changes if the first K layers are switched
off. When more layers are switched off, the algorithm is unable
to identify global deformation and is essentially the same as local
template matching at each landmark.

L 0 1 2 3 4 5 6

RMS 5.63 5.20 5.14 5.83 6.72 7.95 8.74
Table 2. Performance on synthetic data if the first L layer of pre-
dictors are switched off, showing the bottom layers play a critical
role for performance.

ers of predictors. As shown in Table 2, the first two layers

have less contribution on the performance than the rest of

the layers. On the other hand, the lower 6 layers indeed

help the performance. Fig. 8 demonstrates how prediction

from coarse layers (large patch) help the lower layer (small

patch) find correct correspondences in repetitive patterns,

justifying the hierarchy.

8. Real Experiments

We also apply our framework to real world scenarios

such as water distortion, cloth deformation and registra-

tion of medical images. In Fig. 9, contour tracking is

achieved by interpolating contour points from frame corre-

spondences, while the contour of the first frame is manually

labeled. In Fig. 10, tracked mesh is shown.

The three water distortion sequences (Row 1-2 in Fig. 9,

Row 1 in Fig. 10) and one cloth sequence (Row 3 in Fig. 9)

are from [16]. Two cloth sequences (Row 2-3 in Fig. 10)

are from [15] and [8]. The medical sequence of cardiac

magnetic resonance images (4th row in Fig. 9) is from [17].

We captured the cloth sequence in the 5th row of Fig. 9.

For the sequences on the 4th row of Fig. 9 and the 1st row

of Fig. 10, we use temporal information by adding training

samples generated from perturbing the final estimation of

the previous frame. This slows down the processing to 0.3-

0.5fps, yet is still faster than previous approaches. For other

sequences, our algorithm runs at around 3-4 fps.

Note that our method successfully estimates the defor-

mations. In comparison, SIFT+RANSAC only obtains a

sparse set of distinctive matches, not enough for estimat-

ing a nonrigid deformation (even if we are using Thin-Plate

Spline). TN can capture detailed local deformations but not

global shifts of the cloth without modeling the relationship

between local patches. KLT trackers lose the target quickly

and localize contour inaccurately.

We also quantitatively measure the landmark localiza-

tion error using the densely labeled dataset provided in [16],

which contains 30 labeled frames, each with 232 landmarks.

In terms of RMS, LK gives 5.20, FF gives 3.93, TN gives

2.51 while our approach gives 3.29. Our framework is only

second to TN, which is much slower.

We have tested our algorithm on existing datasets of

deformable objects proposed by [10, 11]. Although no

groundtruth is available, our performance is close to their

published results (e.g. 4.10 mean pixel distance difference

in cushion video [10] and 4.43 in bed-sheet video [11]). All

video sequences are 404-by-504.

Please see Supplementary Materials for videos.
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Sample Frame Our approach TN KLT SIFT+RANSACTemplate

Figure 9. Example contour localization results given by our approach, TN [16], KLT [13], and SIFT matching with RANSAC [6]. Each
row is a video sequence, two from underwater imaging, two from cloth deformation and the final one is from medical imaging. For each
dataset, one sample frame is shown. The contours are drawn manually for the template image (1st column), and are transferred to every
video frame after the correspondence was found. Our approach is stable and better than other approaches. All video sequences are available
in the supplementary material. (This figure is best viewed in color)

Sample Frame Our approach TN KLT FF SIFT+RANSAC

Figure 10. Example dense correspondence results given by our approach, TN, KLT, FF and SIFT matching with RANSAC. Each row is a
video, two from cloth deformation and one from underwater imaging. The mesh is a regular grid on the template.


