
AI	in	Games:	Achievements	
and	Challenges

Yuandong	Tian
Facebook	AI	Research

AI	works	in	a	lot	of	situations

Medical Translation

Personalization Surveillance

Object	Recognition

Smart	Design

Speech	Recognition

Board	game

What	AI	still	needs	to	improve	

Exponential space to explore
Very few supervised	data
Complicated/unknown	environments	with	lots	of	corner	cases.
Common	Sense

Home	Robotics Autonomous Driving ChatBot StarCraft Question	Answering

The	Charm	of	Games

Complicated long-term strategies. Realistic Worlds

Game	as	a	Vehicle	of	AI

Less	safety	and	
ethical concerns

Faster	than	real-time

Infinite supply	of	
fully labeled	data

Controllable and replicable Low cost	per sample

Complicated	dynamics	
with	simple	rules.

Game	as	a	Vehicle	of	AI

？

Abstract	game	to	real-world

Algorithm	is	slow	and	data-inefficient Require	a	lot	of	resources.		

Hard	to	benchmark	the	progress

Game	as	a	Vehicle	of	AI

Better	Algorithm/System Better	Environment

？

Abstract	game	to	real-world

Algorithm	is	slow	and	data-inefficient Require	a	lot	of	resources.		

Hard	to	benchmark	the	progress

Game	as	a	Vehicle	of	AI

Better	Algorithm/System Better	Environment

？

Abstract	game	to	real-world

Algorithm	is	slow	and	data-inefficient Require	a	lot	of	resources.		

Hard	to	benchmark	the	progress

Our	work

ELF:	Extensive	Lightweight	and	Flexible	Framework
(Yuandong	Tian	et	al,	NIPS17)

Better	Environment

House3D:	An interactive 3D environment
for navigation
(Yi Wu, Georgia	Gkioxari, Yuxin Wu, Yuandong	Tian)

Our	work

DarkForest Go	Engine
(Y. Tian,	Y. Zhu,	ICLR16)

Doom	AI
(Yuxin Wu,	Y. Tian,	ICLR17)

Better	Algorithm/System

MiniRTS
(Y. Tian,	Q. Gong, W. Shang)

ELF:	Extensive,	Lightweight	and	Flexible	
Framework	for	Game	Research

Larry ZitnickQucheng Gong Wenling Shang Yuxin WuYuandong Tian

Facebook AI Research

Reinforcement Learning: Ideal and Reality

Action
State Reward

Agent

Environment
st+1

[R. S.	Sutton	and	A. G.	Barto, Reinforcement Learning: An Introduction]

Reinforcement Learning: Ideal and Reality

Action
State Reward

Agent

Environment

CPU, GPU?
Simulation, Replays
Concurrency

st+1

[R. S.	Sutton	and	A. G.	Barto, Reinforcement Learning: An Introduction]

Design Choices:

ELF: A simple for-loop
ActionState Reward

Agent

Environment
st+1C++

Python

ELF Characteristics

Lightweight
Fast.	Mini-RTS	(40K	FPS	per	core)
Minimal	resource	usage	(1GPU+several	CPUs)
Fast training (half a day for a RTS game)

Flexible
Environment-Actor	topology
Parametrized game	environments.
Choice	of	different	RL	methods.	

Extensive
Any	games	with	C++	interfaces	
can	be	incorporated.

Extensibility
ELF

RTS Engine
ALEGo

Mini-RTS Capture
the Flag

Tower
DefensePong Breakout

Lightweight

Lightweight

Evaluation

Act

Flexibility

Act Act Act Act Act

Training

Act

Flexibility

Act Act Act Act Act

Flexibility

Act Act Act Act Act Act

Act Act Act ActAct Act

Self-play

Flexibility

Act Act Act Act Act Act

Act Act Act ActAct Act

Multi-agent

Act Act Act Act Act Act

Act Act Act ActAct Act

Flexibility

1/1

2/10

2/10

1/1

20/30

10/18

9/10

10/12

1/8

22/40

Monte-Carlo Tree Search

ELF	design

Game	1

Producer	(Games	in	C++)

History
buffer

ELF	design

Game	1

Game	N

Producer	(Games	in	C++)

Game	2

History
buffer

History
buffer

History
buffer

ELF	design

Game	1

Game	N

Producer	(Games	in	C++)

Game	2

History
buffer

History
buffer

History
buffer

Collector

ELF	design

Game	1

Game	N

Producer	(Games	in	C++)

Game	2

History
buffer

Consumers (Python)

Reply

Batch	with
History	info	

Distributor
History
buffer

History
buffer

Collector

ELF	design

Model

ActorGame	1

Game	N

Producer	(Games	in	C++)

Game	2

History
buffer

Consumers (Python)

Reply

Batch	with
History	info	

Actor

Model
Distributor

History
buffer

History
buffer

Collector

ELF	design

Model

Optimizer

ActorGame	1

Game	N

Producer	(Games	in	C++)

Game	2

History
buffer

Consumers (Python)

Reply

Batch	with
History	info	

Actor

Model

Optimizer

Distributor
History
buffer

History
buffer

Collector

ELF	design

Model

Optimizer

ActorGame	1

Game	N

Producer	(Games	in	C++)

Game	2

History
buffer

Consumers (Python)

Reply

Batch	with
History	info	

Actor

Model

Optimizer

Distributor
History
buffer

History
buffer

Collector

Process

Gorilla

[Nair et al, Massively Parallel Methods for Deep Reinforcement Learning, ICML 2015]

Game Actor
Process

Model

SynchronizationReplay	
Buffer

Optimizer

OR

AE

Game Experience Model

OptimizerModel

OptimizerModel

Asynchronized Advantageous Actor-Critic (A3C)

[Mnih et al, Asynchronous Methods for Deep Reinforcement Learning, ICML 2016]

Game	1

Game	N

Game	2

Actor

Actor

Actor

Process	1

Process	2

Process	N

Model

Model

Model

Synchronization

Optimizer

Optimizer

Optimizer

AE
OAE

AE

GA3C / BatchA2C

[Babaeizadeh et al, Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU, ICLR 2017]

Game	1

Game	N

Game	2

Process	1

Process	2

Process	N

Model

Actor

Training	Process

E
E A
E

O

Optimizer

GPU

ELF:	A	unified	framework

Many-to-OneOne-to-One
Vanilla A3C BatchA2C, GA3C

Off-policy training
Deep Q-learning

E
E A
E

O
OR

AE
AE

OAE
AE

ELF:	A	unified	framework

One-to-Many
Self-Play,

Monte-Carlo Tree Search

A

E

Many-to-OneOne-to-One
Vanilla A3C BatchA3C, GA3C

Off-policy training
Deep Q-learning

E
E A
E

O A
AOR

AE
AE

OAE
AE

O

Open Source

https://github.com/facebookresearch/ELF

MiniRTS: A	miniature	RTS	engine

Enemy base

Your base

Your barracks

Worker

Enemy unit

Resource

Fog of War

*	Using	CPU	only **	Using	CPUs	and	GPU

Platform Frame per second

ALE 6,000

Open AI Universe 60

Malmo 120

DeepMind Lab 287*/866**

VizDoom 7,000

TorchCraft 2,000

MiniRTS 40,000

MiniRTS
Build	workers	and	collect	resources.	

Contains	1000	minerals.	

Build	barracks	and	gather	resource.	
Low	speed	in movement and	low	attack	damage.	

Build	melee	attacker	and	range	attacker.	

High HP,	medium	movement	speed,	short	attack	range,	high	attack	damage.	

Low HP,	high	movement	speed,	long	attack	range	and	medium	attack	damage.	

Base

Resource

Barracks

Worker

Melee Tank

Range Tank

Training AI

x4

Policy

Value

Game internal data
(respecting	fog	of	war)

(x, y) of units

HP portion

Using	Internal Game data and Actor-Critic Models.	
Reward	is	only	available	once	the	game	is	over.

Resource

Conv ReLUBN
Affiliation

⇡

9	Discrete Strategic	Actions
No. Action name Descriptions
1 IDLE Do nothing
2 BUILD	WORKER If the base is idle, build a worker

3 BUILD	BARRACK Move	a	worker	(gathering	or	idle)	to	an	empty	place	and	build	a	
barrack.	

4 BUILD	MELEE	ATTACKER	 If	we	have	an	idle	barrack,	build	an	melee	attacker.	
5 BUILD	RANGE	ATTACKER	 If	we	have	an	idle	barrack,	build	a range attacker.	

6 HIT	AND	RUN	
If	we	have	range	attackers,	move	towards	opponent	base	and	attack.	
Take	advantage	of	their	long	attack	range	and	high	movement	speed	to	
hit	and	run	if	enemy	counter-attack.	

7 ATTACK	 All	melee	and	range	attackers	attack	the	opponent’s	base.	
8 ATTACK	IN	RANGE	 All	melee	and	range	attackers	attack	enemies	in	sight.	
9 ALL	DEFEND All	troops	attack	enemy	troops	near	the	base	and	resource.	

Rule-based AIs

Build 5 tanks and attack Build 2 tanks and harass

MiniRTS trains	with	a	single	GPU	and	6	CPUs	in	half	a	day.

Trained AI Trained AI

Win rate against rule-based AI

Win Rate
(10K games)

SIMPLE
(median)

SIMPLE
(mean/std)

HIT_AND_RUN
(median)

HIT_AND_RUN
(mean/std)

ReLU 52.8 54.7(±4.2) 60.4 57.0(±6.8)
Leaky ReLU 59.8 61.0(±2.6) 60.2 60.3(±3.3)
ReLU + BN 61.0 64.4(±7.4) 55.6 57.5(±6.8)
Leaky ReLU + BN 72.2 68.4(±4.3) 65.5 63.6(±7.9)

Network Architecture Conv ReLUBN

Curriculum Training

Win Rate Without
curriculum training

With
curriculum training

AI_SIMPLE 66.0 (±2.4) 68.4 (±4.3)

AI_HIT_AND_RUN 54.4 (±15.9) 63.6	(±7.9)

First k decisions made by
then made by trained AI

Transfer Learning

Win Rate AI_SIMPLE AI_HIT_AND_RUN Combined
(50%SIMPLE+50% H&R)

SIMPLE 68.4	(±4.3) 26.6(±7.6) 47.5(±5.1)
HIT_AND_RUN 34.6(±13.1)	 63.6	(±7.9)	 49.1(±10.5)
Combined 51.8(±10.6)	 54.7(±11.2)	 53.2(±8.5)	

Monte Carlo Tree Search

Win Rate AI_SIMPLE AI_HIT_AND_RUN
Random 24.2 (±3.9) 25.9 (±0.6)
MCTS* 73.2 (±0.6) 62.7 (±2.0)

Trained AI 68.4(±4.3) 63.6(±7.9)
*	repeat on 1000 games, each using 800 rollouts.

1/1

2/10

2/10

1/1

20/30

10/18

9/10

10/12

1/8

22/40

MCTS uses complete information and perfect dynamics

Recent Update

Ongoing Work

• Richer	game	scenarios for MiniRTS.	
• LUA scripting support
• Multiple	bases	(Expand?	Rush?	Defending?)
• More	complicated	units.	

• Realistic	action	space
• One	command per	unit	

Engineering

• Model-based	Reinforcement	Learning
• Hierarchical RL
• Self-Play	(Trained	AI	versus	Trained	AI)	

Research

LUA Interface for MiniRTS

• Easy to change game dynamics
• Don’t need to touch C++.

• Comparable speed to C++
• 1.5x slower than compiled code.

RLPytorch

• A	RL	platform	in	PyTorch
• A3C	in	30	lines.

House3D: A rich and realistic 3D environment

Yi Wu Georgia	Gkioxari Yuxin Wu

[Yi Wu et al, Building	Generalizable	Agents	with	a	Realistic	and	Rich	3D	Environment, ICLR 2018 submission]

SUNCG dataset, 45K scenes, all objects are fully labeled.

SUNCG Dataset

Multi-modality

Depth Segmentation mask RGB image

Top-down map

Architecture

Comparison

Successful Rate

Videos

DarkForest: Go engine

• DCNN	as	a	tree	policy	
• Predict	next	k	moves	(rather	than	next	move)
• Trained	on	170k	KGS	dataset/80k	GoGoD,	57.1% accuracy.
• KGS	3D	without	search	(0.1s	per	move)
• Release	3	month	before	AlphaGo,	<	1%	GPUs	(from	Aja	Huang)

Yuandong Tian and Yan Zhu, ICLR 2016

Yan Zhu

Name

Our/enemy	liberties

Ko location

Our/enemy	stones/empty	place

Our/enemy	stone	history

Opponent rank

Feature	used	for	DCNN

Our	computer	Go	player: DarkForest

Pure	DCNN

Win	rate	between	DCNN	and	open	source	engines.

darkforest:	Only	use	top-1	prediction,	trained	on	KGS
darkfores1:	Use	top-3	prediction,	trained	on	GoGoD
darkfores2:	darkfores1 with	fine-tuning.

Monte	Carlo	Tree	Search

2/10

2/10

2/10

1/1

20/30

10/18

9/10

10/12

1/8

22/40

1/1

2/10

2/10

1/1

20/30

10/18

9/10

10/12

1/8

22/40
2/10

1/1

21/31

11/19

10/11

10/12

1/8

23/41

1/1

(a) (b) (c)

Tree policy
Default policy

Aggregate	win	rates,	and	search	towards	the	good	nodes.	

Win	rate	between	DCNN	+	MCTS	and	open	source	engines.

darkfmcts3:	Top-3/5,	75k	rollouts,	~12sec/move,	KGS	5d

94.2%

DCNN + MCTS

• DCNN+MCTS
• Use	top3/5	moves	from	DCNN,	75k	rollouts.
• Stable	KGS	5d.	Open	source.	
• 3rd place	on	KGS	January	Tournaments
• 2nd place	in	9th UEC	Computer	Go	Competition	(Not	this	time	J)

DarkForest versus	Koichi	Kobayashi	(9p)	

DarkForest

https://github.com/facebookresearch/darkforestGo

Win	Rate	analysis	(using	DarkForest)	
(AlphaGo versus	Lee	Sedol)

https://github.com/facebookresearch/ELF/tree/master/go

New version of DarkForest on ELF platform

First	Person	Shooter	(FPS)	Game

Play	the	game	from	the raw image!

Yuxin Wu, Yuandong Tian, ICLR 2017

Yuxin Wu

Network	Structure

Simple	Frame	Stacking is	very	useful	(rather	than	Using	LSTM)

Actor-Critic Models

Update Policy	network

Update	Value	network

Reward

Encourage	actions	leading	to	states	with	high-than-expected	value.
Encourage	value	function	to	converge	to	the	true	cumulative	rewards.
Keep	the	diversity	of	actions

sT

s0

V (sT)

Curriculum	Training

From	simple	to	
complicated

Curriculum Training

VizDoom AI	Competition	2016 (Track1)

Rank Bot 1 2 3 4 5 6 7 8 9 10 11 Total
frags

1 F1 56 62 n/a 54 47 43 47 55 50 48 50 559
2 Arnold 36 34 42 36 36 45 36 39 n/a 33 36 413
3 CLYDE 37 n/a 38 32 37 30 46 42 33 24 44 393

Videos:
https://www.youtube.com/watch?v=94EPSjQH38Y
https://www.youtube.com/watch?v=Qv4esGWOg7w&t=394s

We	won	the	first	place!

Visualization	of	Value	functions
Best	4	frames	(agent	is	about	to	shoot	the	enemy)

Worst	4	frames	(agent	missed	the	shoot	and	is	out	of	ammo)

Thanks!

