Al in Games: Achievements
and Challenges

Yuandong Tian
Facebook Al Research

Al works in a lot of situations

o.'”

;‘-v.‘. ‘11\“" L . - 4
Medical

Malignant

Who
posted it

Brilliant.sgf - Gennan Inseki vs Honinbo Shusaku =

When it
posted

Type of
content

Interactions
with the post

Personalization Surveillance Smart Design Board game

What Al still needs to improve

Home Robotics Autonomous Driving ChatBot Question Answering

Exponential space to explore

Very few supervised data
Complicated/unknown environments with lots of corner cases.

Common Sense

The Charm of Games

© O O |+ srilliant.sgf - Gennan Inseki vs Honinbo Shusaku

Complicated long-term strategies. Realistic Worlds

Game as a Vehicle of Al

00 4

Infinite supply of Controllable and replicable Low cost per sample
fully labeled data

4 o

Faster than real-time Less safety and Complicated dynamics
ethical concerns with simple rules.

\ 4
“‘-\\l\ﬂl“\“l'lllﬂlH“l\l\llllln i

2

Game as a Vehicle of Al

Algorithm is slow and data-inefficient Require a lot of resources.

L

Abstract game to real-world Hard to benchmark the progress

Game as a Vehicle of Al

Algorithm is slow and data-inefficient Require a lot of resources.

L

Abstract game to real-world Hard to benchmark the progress

Better Algorithm/System Better Environment

Game as a Vehicle of Al

Algorithm is slow and data-inefficient Require a lot of resources.

L

Abstract game to real-world Hard to benchmark the progress

Better Algorithm/System Better Environment

Our work

Better Environment

ﬂ? ELF: Extensive Lightweight and Flexible Framework
(Yuandong Tian et al, NIPS17)

House3D: An interactive 3D environment

for navigation
(Yi Wu, Georgia Gkioxari, Yuxin Wu, Yuandong Tian)

Our work

Better Algorithm/System

DarkForest Go Engine Doom Al MiniRTS
(Y. Tian, Y. Zhu, ICLR16) (Yuxin Wu, Y. Tian, ICLR17) (Y. Tian, Q. Gong, W. Shang)

ELF: Extensive, Lightweight and Flexible
Framework for Game Research

Yuandong Tian Qucheng Gong Wenling Shang Yuxin Wu Larry Zitnick

Facebook Al Research

Reinforcement Learning: Ideal and Reality

Action Q¢

=
~

[R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction]

Reinforcement Learning: Ideal and Reality

Q,
°

_____________ A t};i . :

; (e Design Choices:

i Rewara Action Q¢ CPU/ GPU?

| Simulation, Replays
i Concurrency

[R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction]

ELF: A simple for-loop

while True:

batched_states = GameContext.Wait()
replies = model(batched_states)
GameContext.Steps (replies)

ELF Characteristics

O | - 4

Flexible

Environment-Actor topology
Parametrized game environments.
Choice of different RL methods.

'Y
Extensive

Any games with C++ interfaces
can be incorporated.

Lightweight
Fast. Mini-RTS (40K FPS per core)
Minimal resource usage (1GPU+several CPUs)
Fast training (half a day for a RTS game)

Extensibility

ALE

ELF

Breakout

o3l = 1

/R

RTS Engine

Mini-RTS

4

apture
the Flag

Tower
Defense

N W B~ G

0

Lightweight

KEPS per CPU core for Pong (Atari)

131%’

64 threads

128 threads

256 threads

512 threads

1024 threads

m] core
M 2 cores

W 4 cores
“ 8 cores
®m 16 cores

B OpenAl Gym

N W B~ Gl

0

Lightweight

KEPS per CPU core for Pong (Atari)

64 threads

128 threads

256 threads

512 threads

1024 threads

®] core
M 2 cores

W 4 cores
“ 8 cores
®m 16 cores

B OpenAl Gym
W ELF

Flexibility R 4

b

l

Act —> Act — Act —

59‘ Act — Act — Act

while True:
batched = GameContext.Wait ()
replies = model(batched)
GameContext.Steps(replies) = = = m =

-----»

Evaluation

Flexibility > y

i .
g!
jﬁ Act — Act — Act — Act —| Act — Act —

while True:

if batch["type"] == "actor":

Ju Il INN NN BN DN S S . -

Training

Flexibility R 4

o
o
ey Act — Act — Act — Act —{ Act —| Act —
= B
e |
4w Act — Act Act —> Act — Act — Act —
‘__,\' g— I
I
while True: :
e o o I
if batch["type"] == "actor0": :
elif batch["type"] == "actorl":

Self-play

Flexibility

\}
i
k) Act > Act >/ Act —{ Act —/ Act — Act —
=B o
H_,U» Act —> Act —*| Act —*| Act — Act > Act
Q,
i Act —{ Act >/ Act > Act —{ Act —{ Act —
~ 8 o
Act —> Act —*| Act —*| Act — Act /> Act
S8
while True:
for i in range(n):
if batch["type"] == "actory/d" % i:

Multi-agent

Flexibility

22/40

while True:
batched = GameContext.Wait ()
replies = model(batched)
GameContext.Steps(replies) "==**

Monte-Carlo Tree Search

ELF design

J III :

History
buffer

Producer (Games in C++)

ELF design

History
Game 1 buffer
History
G 2

ame buffer

o

(]

o
G N History
: ame buffer

Producer (Games in C++)

ELF design

History
Game 1 buffer
Game 2 History Collector

buffer

o

o

o
G N History
: ame buffer

Producer (Games in C++)

ELF design

History : 3
Game 1 buffer : Batch with :
) : History info :
Game 2 History Collector g/ —>| Distributor
buffer : :
° Reply
o
[
G N History
:[2ame buffer

Producer (Games in C++) Consumers (Python) :

ELF design

History : 3
Game 1 buffer : Batch with
) : History info :
Game 2 History Collector g/ —>| Distributor
buffer : :
o
[
G N History
:[2ame buffer

Producer (Games in C++) Consumers (Python) :

ELF design

History : 3
Game 1 buffer : Batch with
) : History info :
Game 2 History Collector g/ —>| Distributor
buffer : :
° Reply
o
[
G N History
:[2ame buffer

Producer (Games in C++)

ELF design

History : 3
Game 1 buffer : Batch with :
) : History info :
Game 2 History Collector g/ —>| Distributor
buffer : :
° Reply

e N History
| >ame buffer

Producer (Games in C++)

Process |

2

Gorilla

Game Actor — Model «

Process o

Optimizer

N\

Optimizer

Game Experience ﬂpe‘.\e(\ce Model
(-(\e
'""'"":/
: Replay :
: P V: » Model
: Buffer :\
Model

Optimizer

e

[Nair et al, Massively Parallel Methods for Deep Reinforcement Learning, ICML 2015]

v

Synchronization

Asynchronized Advantageous Actor-Critic (A3C)

Game 1 Actor Model Optimizer

Process 1

Synchronization

Game 2 Actor Model Optimizer

Process 2
IIIIII.II
[]
o

Game N Actor Model Optimizer

Process N

[Mnih et al, Asynchronous Methods for Deep Reinforcement Learning, ICML 2016] ‘.o'l.

GA3C / BatchA2C

;IIIIIIIIIIIIIII:
-| Game 1
E = GameE :IIIIIIIIIIIIIIIIIII
. Process 11 ™o s :
Rep[y E Model E
Game 2 ﬁ ﬂ Actor
:....Process 2 : :
° - .
° . Optimizer .
o .
: : : Training Process :
: GameN L EEEEEEEEEEEEEEEEEENT
: : GPU
: Process N :

[Babaeizadeh et al, Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU, ICLR 2017]

ELF: A unified framework

|
Off-policy training One-to-One Many-to-One
Deep Q-learning Vanilla A3C BatchA2C, GA3C

ELF: A unified framework

|
Off-policy training One-to-One Many-to-One
D . : One-to-Many
eep Q-learning Vanilla A3C BatchA3C, GA3C
Self-Play,

Monte-Carlo Tree Search

Open Source

[facebookresearch [ELF ® Unwatch~ 89 % Unstar 1,201 ¥ Fork 158

<> Code Issues 4 Pull requests 1 Projects 0 Wiki Insights

An End-To-End, Lightweight and Flexible Platform for Game Research

gaming cpp python artificial-intelligence deep-learning neural-network platform reinforcement-learning

D 500 commits ¥ 11 branches © 0 releases 22 11 contributors

https://github.com/facebookresearch/ELF

MiniRTS: A miniature RTS engine

Your base

ALE 6,000
N o Open Al Universe 60
Malmo 120
— DeepMind Lab 287%*/866**
o e VizDoom 7,000
Fog of War TorchCraft 2,000
Sl \iniRTS 40,000

* Using CPU only ** Using CPUs and GPU

Base

Resource \\ ,’

Barracks

Worker @
Melee Tank H

Range Tank m

Build workers and collect resources.

Contains 1000 minerals.

Build melee attacker and range attacker.

Build barracks and gather resource.
Low speed in movement and low attack damage.

High HP, medium movement speed, short attack range, high attack damage.

Low HP, high movement speed, long attack range and medium attack damage.
[o 2)

Training Al

O Ll e ———————————————— 1
(x, y) of units =} o Policy
_ - ‘ Conv [~ BN | RelU 14
Affiliation .
HP portion X4§ Value

Resource /

Game internal data
(respecting fog of war)

Using Internal Game data and Actor-Critic Models.
Reward is only available once the game is over.

9 Discrete Strategic Actions

No. Action name ____|Descriptions _________________________

1
2

3

IDLE
BUILD WORKER

BUILD BARRACK

BUILD MELEE ATTACKER

BUILD RANGE ATTACKER

HIT AND RUN

ATTACK
ATTACK IN RANGE
ALL DEFEND

Do nothing
If the base is idle, build a worker

Move a worker (gathering or idle) to an empty place and build a
barrack.

If we have an idle barrack, build an melee attacker.
If we have an idle barrack, build a range attacker.

If we have range attackers, move towards opponent base and attack.
Take advantage of their long attack range and high movement speed to
hit and run if enemy counter-attack.

All melee and range attackers attack the opponent’s base.
All melee and range attackers attack enemies in sight.

All troops attack enemy troops near the base and resource.

Rule-based Als

ATI_SIMPLE AT HIT_AND_RUN
Build 5 tanks and attack Build 2 tanks and harass

MiniRTS trains with a single GPU and 6 CPUs in half a day.

Trained Al

AI _SIMPLE AI SIMPLE

Win rate against rule-based Al

Network Architecture

Conv

BN

{ RelLU

Win Rate |SIMPLE |SIMPLE HIT_AND_RUN |HIT_AND_RUN
(10K games) |(median) |(mean/std) |(median) (mean/std)

RelLU 52.8
Leaky RelLU 59.8
ReLU + BN 61.0

Leaky ReLU + BN 72.2

54.7(4.2)
61.0(2.6)
64.4(7.4)
68.4(+4.3)

60.4
60.2
55.6
65.5

57.0(+6.8)
60.3(+3.3)
57.5(+6.8)
63.6(7.9)

Curriculum Training

Without With
curriculum training | curriculum training

Al_SIMPLE 66.0 (+2.4) 68.4 (+4.3)
Al_HIT AND_RUN 54.4 (+15.9) 63.6 (+7.9)

First k decisions made by AT_SIMPLE K

then made by trained Al

k ~ Uniform|0, K|
K x 5—#game_played

#gamé_played

Transfer Learning

Combined
m Al_SIMPLE Al_HIT _AND_RUN (50%SIMPLE+50% H&R)

SIMPLE 68.4 (+4.3) 26.6(+7.6) 47.5(5.1)
HIT AND RUN 34.6(+13.1) 63.6 (+7.9) 49.1(+10.5)
Combined 51.8(+10.6) 54.7(x11.2) 53.2(+8.5)

22/40

Monte Carlo Tree Search

2/10

9/10

1/1
. WinRate | AI_SIMPLE AI_HIT_AND_RUN

Random 24.2 (£3.9) 25.9 (£0.6)
MCTS* 73.2 (+x0.6) 62.7 (+2.0)
Trained Al 68.4(+4.3) 63.6(+7.9)

* repeat on 1000 games, each using 800 rollouts.

MCTS uses complete information and perfect dynamics

Recent Update

Win rate versus iterations

Win rate versus iterations

0.8 0.8 —
0.7 — ',_... >
0.6
Q Q
© 0o © — Vanilla
C C -
£ 0.4l . = RN.N |
03l — Vanilla | | — BuildTime
—— Vanilla (hist=4) « —— PrevSeen
0.2 — RNN | 0.2 — Completelnfo ||
0.1 | | | | 0_1 | | 1 |
0 100 200 300 400 500 0 100 200 300 400 500
lteration Ilteration

Method Vanilla Vanilla(hist=4) RNN BuildHistory | PrevSeen | Complete Info

Win rate || 72.9£1.8 79.8£0.7 79.7£1.3 80.8+1.7 81.41+0.8 81.71+0.7

Ongoing Work

Engineering

* Richer game scenarios for MiniRTS.
* LUA scripting support
* Multiple bases (Expand? Rush? Defending?)
* More complicated units.

 Realistic action space
* One command per unit

Research
* Model-based Reinforcement Learning

* Hierarchical RL
* Self-Play (Trained Al versus Trained Al)

g_funcs = { }
function g_funcs.attack(env, cmd)
local target = env:unit(cmd.target)

LUA Interface for MiniRTS etz emsew

if target:isdead() or not u:can_see(target) then
—— c_print("Task finished!")
return global.CMD_COMPLETE

end
. local att_r = uzatt_r()
¢ Easy tO Change ga me dynamICS local in_range = env:dist_sqr(target:p()) <= att_r % att_r
, if u:cd_expired(global.CD_ATTACK) and in_range then
* Don’t need to touch C++. __ print("Attacking .. ")
—— Then we need to attack.
 Comparable speed to C++ if att_r <= 1.0 then
. env:send_cmd_melee_attack(cmd.target, u:att())
e 1.5x slower than compiled code. e
env:send_cmd_emit_bullet(cmd.target, u:att())
end
env:cd_start(global.CD_ATTACK)
else
if not in_range then
—— print("Moving towards target .. ")
env:move_towards(target)
end
end
—— print("Done with Attacking .. ")

end

RLPytorch

* A RL platform in PyTorch
* A3Cin 30 lines.

A3C

def update(self, batch):
?22 Actor critic model 7’
R = deepcopy(batch["V"][T - 1])
batchsize = R.size(0)
R.resize_(batchsize, 1)

for t in range(T - 2, -1, -1):
Forward pass
curr = self.model_interface.forward("model", batch.hist(t))

Compute the reward.

R = R * self.args.discount + batch["r"][t]

If we see any terminal signal, do not backprop

for i, terminal in enumerate(batch["terminal"] [t]):
if terminal: R[t][i] = curr["V"].datal[il

We need to set it beforehand.
self.policy_gradient_weights = R - curr["V"].data

Compute policy gradient error:

errs = self._compute_policy_entropy_err(curr["pi"], batch["a"][t])
Compute critic error

value_err = self.value_loss(curr["V"], Variable(R))

overall_err = value_err + errs["policy_err"]
overall_err += errs["entropy_err"] * self.args.entropy_ratio .,’.‘.
overall_err.backward() e

House3D: A rich and realistic 3D environment

T

g

Yi Wu Georgia Gkioxari Yuxin Wu

[Yi Wu et al, Building Generalizable Agents with a Realistic and Rich 3D Environment, ICLR 2018 submission]

SUNCG Dataset

SUNCG dataset, 45K scenes, all objects are fully labeled. .‘

Multi-modality

Depth Segmentation mask RGB image

Architecture

X¢ Gated Fusion —— MLP — Q(st, a4]0)
Gated-CNN f a,
for DDPG with CNN ‘
continuous actions Gated Fusion > MLP — u(s¢|0)
stack
Al
4 A\
State 5, == e e e e e e e e e e \
f Inputat t-1 Input at t \‘
1 I
: Instruction :
1 I .
: esecee go to kitchen [Embeddmg
, :
1 I
‘. /I
[:
,,,,,, CNN X4 Gated Fusion
| v(s¢10)
Gated-LSTM v Il i
forA3Cwith ..l — ISTM | eeeens MLP n(a; s¢|0)

discrete actions 7

Comparison

Environment 3D | Realistic | Large-scale | Fast-speed | Customizable
Atari (Bellemare et al., 2013) [)
OpenAl Universe (shiet al, 2017) ° ° °
Malmo (Johnson et al., 2016) ® o [o
DeepMind Lab (Beattic et a1, 2016) ° ° °
VizDoom (Kempka et al., 2016) ®) o
AI2-THOR (Zhu et al., 2017) ® o [)
House3D ° ° ° ° °

Successful Rate

Training Success Rate on the Large Set Generalization Success Rate on the Test Set
a5 40 (trained on the large set)
39.6 35.8
40
35 327
35.2
35 33.8 29.7
30
30 257 257 26.6
26.3 26.6 27.1 25
21.8
25 225 213
20.8 20
20
15
15
10.1 10.1
10 8.1 8.1 10
0 0
RGB + Depth Mask + Depth RGB + Depth Mask + Depth
M gated-LSTM (A3C) B concat-LSTM (A3C) = gated-CNN (DDPG) = concat-CNN(DDPG) H Random M gated-LSTM (A3C) ® concat-LSTM (A3C) m gated-CNN (DDPG) = concat-CNN(DDPG) ® Random

(a) Training performances (b) Generalization performances on the test set

Videos

DarkForest: Go engine

Yuandong Tian and Yan Zhu, ICLR 2016

* DCNN as a tree policy
* Predict next k moves (rather than next move)
* Trained on 170k KGS dataset/80k GoGoD, 57.1% accuracy.
* KGS 3D without search (0.1s per move)
* Release 3 month before AlphaGo, < 1% GPUs (from Aja Huang)

Conv layer Conv layers x 10 Conv layer % parallel softmax
Current board 25 feature planes 92 channels 384 channels k maps P
5 x 5 kernel 3 x 3 kernel 3 x 3 kernel

. . MY =) = .
g i ' Our next move (next-1)
35797) A e—

g | g Opponent move (next-2)
| x 10 A - = -

-------------- Our counter move (next-3)

Our computer Go player: DarkForest

feature type: standard

1.
é —3¥—nstep=1
— —O—nstep=2
Name R nsep=3
Our/enemy liberties > 0.8
Ko location 17 f\
£
Our/enemy stones/empty place 8,0,7
©
Our/enemy stone history o)
Opponent rank g 0.6
E 0.5 ' : ' : !
Feature used for DCNN 20 30 40 50 60 70

epoch

Pure DCNN

darkforest: Only use top-1 prediction, trained on KGS
darkfores1: Use top-3 prediction, trained on GoGoD
darkfores2: darkfores1 with fine-tuning.

GnuGo (level 10) Pachi 10k Pachi 100k | Fuego 10k | Fuego 100k
Clark & Storkey (2015) 91.0 - - 14.0
Maddison et al. (2015) 97.2 47.4 11.0 23.3 12.5
darkforest 98.0£1.0 71.5+£21 | 27.3£3.0 | 84.5£1.5 | 56.7E2.5
darkforesl 99.7+0.3 88.7+2.1 | 89.0+3.3 | 93.2+£1.5 | 78.0L£1.7
darkfores2 100 £ 0.0 943+1.7 | 726+1.9 | 98.5+0.1 | 89.7+2.1

Win rate between DCNN and open source engines.

Monte Carlo Tree Search

Aggregate win rates, and search towards the good nodes.

(a) (b) 0 (c)

2/10
2/10

9/10
9/10

P 1/1

== Tree policy
~~P Default policy

DCNN + MCTS

darkfmcts3: Top-3/5, 75k rollouts, ~12sec/move, KGS 5d

darkforest+MCTS | darkfores1+MCTS | darkfores2+MCTS
Vs pure DCNN (1000rl/top-20) 84.8% 74.0% 62.8%
Vs pure DCNN (1000rl/top-5) 89.6% 76.4% 68.4%
Vs pure DCNN (1000rl/top-3) 91.6% 89.6% 792% 94.2%
Vs pure DCNN (5000rl/top-5) 96.8% 94.3% 82.3%
Vs Pachi 10k (pure DCNN baseline) 71.5% 88.7% 94.3%
Vs Pachi 10k (1000rl/top-20) 91.2% (+19.7%) 92.0% (+3.3%) 95.2% (+0.9%)
Vs Pachi 10k (1000rl/top-5) 88.4% (+16.9%) 94.4% (+5.7%) 97.6% (+3.3%)
Vs Pachi 10k (1000rl/top-3) 95.2% (+23.7%) 98.4% (+9.7%) 99.2% (+4.9%)
Vs Pachi 10k (5000/top-5) 98.4% 99.6% 100.0%

Win rate between DCNN + MCTS and open source engines.

DarkForest

* DCNN+MCTS

Use top3/5 moves from DCNN, 75k rollouts.

Stable KGS 5d. Open source. https://github.com/facebookresearch/darkforestGo
3"d place on KGS January Tournaments

2" place in 9t UEC Computer Go Competition (Not this time ©)

DarkForest versus Koichi Kobayashi (9p)

Win Rate analysis (using DarkForest)
(AlphaGo versus Lee Sedol)

Game1 Game2
LeeSedol — LeeSedol
AlphaGo 0.8 AlphaGo —
”]
4 ("
prosees ot
0.8 N . 07
p | 5
A
a ¥\
2o e,
"‘ v ¥ \ I
/ v | .
© o \ poud o 06
% 06 o pee \ PVA %
- \ ¥ [o4
\/

| ¢ |
£ Los
= s

o
S

0.2 1

vvvvvvvvvvvvvvvvvvvvvvvvv

New version of DarkForest on ELF platform

https://github.com/facebookresearch/ELF/tree/master/go \

First Person Shooter (FPS) Game

Yuxin Wu, Yuandong Tian, ICLR 2017

Play the game from the raw image!

Network Structure

e Dog9»ce
= [HB_B_)I

R | ConviReLU | 8| Fc | Policy function 77 (a|s; W
: FC
wy W, shared \
Regular Attention Game variables —’
frames (RGB) frames (RGB) (Health and ammo) Value function V' (s; wy)

Simple Frame Stacking is very useful (rather than Using LSTM)

Actor-Critic Models

Viogm(a|st) (R — V(st))

_L> Update Policy network == Reward

» Update Value network +=——"

(R — V(st))VV(sy)

Encourage actions leading to states with high-than-expected value.
Encourage value function to converge to the true cumulative rewards.
Keep the diversity of actions

Curriculum Training

—

From simple to
complicated

® eed

CIGTrackl

Curriculum Training

Class

Class

° o [] ¢ [] .' []
*0 ole Class 0 | Class1 | Class2 | Class3 | Class4 | Class 5 | Class 6 | Class 7
e, Speed || 0.2 0.2 0.4 0.4 0.6 0.8 0.8 1.0
. . Health 40 40 40 60 60 60 80 100
O .
FlatMap
30 5
25 4 s Model O
I Model 1
20
g 3 B Model 2
ugi 15 B Model 3
310 2 Model 4
. Model 5
| || Il \|I|\ dilaldlal ==
0 0 I JI JI JI L “I hl
o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7

VizDoom Al Competition 2016 (Track1)

We won the first place!

frags
1 F1 56 62 47 43 47 55 50 48 50 559

n/a 54
2 Arnold 36 34 42 36 36 45 36 39 n/a 33 36 413
3 CLYDE 37 n/a 38 32 37 30 46 42 33 24 44 393
Videos:

https://www.youtube.com/watch?v=94EPSjQH38Y
https://www.youtube.com/watch?v=Qv4esGWOg7w&t=394s

Visualization of Value functions

Best 4 frames (agent is about to shoot the enemy)

Worst 4 frames (agent missed the shoot and is out of ammo)

Thanks!

